1
|
Mosberger AC, Sibener LJ, Chen TX, Rodrigues HFM, Hormigo R, Ingram JN, Athalye VR, Tabachnik T, Wolpert DM, Murray JM, Costa RM. Exploration biases forelimb reaching strategies. Cell Rep 2024; 43:113958. [PMID: 38520691 PMCID: PMC11097405 DOI: 10.1016/j.celrep.2024.113958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/05/2023] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
The brain can generate actions, such as reaching to a target, using different movement strategies. We investigate how such strategies are learned in a task where perched head-fixed mice learn to reach to an invisible target area from a set start position using a joystick. This can be achieved by learning to move in a specific direction or to a specific endpoint location. As mice learn to reach the target, they refine their variable joystick trajectories into controlled reaches, which depend on the sensorimotor cortex. We show that individual mice learned strategies biased to either direction- or endpoint-based movements. This endpoint/direction bias correlates with spatial directional variability with which the workspace was explored during training. Model-free reinforcement learning agents can generate both strategies with similar correlation between variability during training and learning bias. These results provide evidence that reinforcement of individual exploratory behavior during training biases the reaching strategies that mice learn.
Collapse
Affiliation(s)
- Alice C Mosberger
- Departments of Neuroscience and Neurology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| | - Leslie J Sibener
- Departments of Neuroscience and Neurology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Tiffany X Chen
- Departments of Neuroscience and Neurology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Helio F M Rodrigues
- Departments of Neuroscience and Neurology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Allen Institute, Seattle, WA 98109, USA
| | - Richard Hormigo
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - James N Ingram
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Vivek R Athalye
- Departments of Neuroscience and Neurology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Tanya Tabachnik
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Daniel M Wolpert
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - James M Murray
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Rui M Costa
- Departments of Neuroscience and Neurology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Allen Institute, Seattle, WA 98109, USA.
| |
Collapse
|
2
|
Lindsay GW. Grounding neuroscience in behavioral changes using artificial neural networks. Curr Opin Neurobiol 2024; 84:102816. [PMID: 38052111 DOI: 10.1016/j.conb.2023.102816] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/15/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023]
Abstract
Connecting neural activity to function is a common aim in neuroscience. How to define and conceptualize function, however, can vary. Here I focus on grounding this goal in the specific question of how a given change in behavior is produced by a change in neural circuits or activity. Artificial neural network models offer a particularly fruitful format for tackling such questions because they use neural mechanisms to perform complex transformations and produce appropriate behavior. Therefore, they can be a means of causally testing the extent to which a neural change can be responsible for an experimentally observed behavioral change. Furthermore, because the field of interpretability in artificial intelligence has similar aims, neuroscientists can look to interpretability methods for new ways of identifying neural features that drive performance and behaviors.
Collapse
Affiliation(s)
- Grace W Lindsay
- Department of Psychology and Center for Data Science, New York University, USA.
| |
Collapse
|
3
|
Peleg-Raibstein D, Viskaitis P, Burdakov D. Eat, seek, rest? An orexin/hypocretin perspective. J Neuroendocrinol 2023; 35:e13259. [PMID: 36994677 DOI: 10.1111/jne.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023]
Abstract
Seeking and ingesting nutrients is an essential cycle of life in all species. In classical neuropsychology these two behaviours are viewed as fundamentally distinct from each other, and known as appetitive and consummatory, respectively. Appetitive behaviour is highly flexible and diverse, but typically involves increased locomotion and spatial exploration. Consummatory behaviour, in contrast, typically requires reduced locomotion. Another long-standing concept is "rest and digest", a hypolocomotive response to calorie intake, thought to facilitate digestion and storage of energy after eating. Here, we note that the classical seek➔ingest➔rest behavioural sequence is not evolutionarily advantageous for all ingested nutrients. Our limited stomach capacity should be invested wisely, rather than spent on the first available nutrient. This is because nutrients are not simply calories: some nutrients are more essential for survival than others. Thus, a key choice that needs to be made soon after ingestion: to eat more and rest, or to terminate eating and search for better food. We offer a perspective on recent work suggesting how nutrient-specific neural responses shape this choice. Specifically, the hypothalamic hypocretin/orexin neurons (HONs) - cells that promote hyperlocomotive explorative behaviours - are rapidly and differentially modulated by different ingested macronutrients. Dietary non-essential (but not essential) amino acids activate HONs, while glucose depresses HONs. This nutrient-specific HON modulation engages distinct reflex arcs, seek➔ingest➔seek and seek➔ingest➔rest, respectively. We propose that these nutri-neural reflexes evolved to facilitate optimal nutrition despite the limitations of our body.
Collapse
Affiliation(s)
- Daria Peleg-Raibstein
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Paulius Viskaitis
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Denis Burdakov
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| |
Collapse
|
4
|
Maruyama T, Ueta Y. Internal and external modulation factors of the orexin system (REVIEW). Peptides 2023; 165:171009. [PMID: 37054895 DOI: 10.1016/j.peptides.2023.171009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Orexin-A and -B (identical to hypocretin-1 and -2) are neuropeptides synthesized in the lateral hypothalamus and perifornical area, and orexin neurons project their axon terminals broadly throughout the entire central nervous system (CNS). The activity of orexins is mediated by two specific G protein-coupled receptors (GPCRs), termed orexin type1 receptor (OX1R) and orexin type2 receptor (OX2R). The orexin system plays a relevant role in various physiological functions, including arousal, feeding, reward, and thermogenesis, and is key to human health. Orexin neurons receive various signals related to environmental, physiological, and emotional stimuli. Previous studies have reported that several neurotransmitters and neuromodulators influence the activation or inhibition of orexin neuron activity. In this review, we summarize the modulating factors of orexin neurons in the sleep/wake rhythm and feeding behavior, particularly in the context of the modulation of appetite, body fluids, and circadian signaling. We also describe the effects of life activity, behavior, and diet on the orexin system. Some studies have observed phenomena that have been verified in animal experiments, revealing the detailed mechanism and neural pathway, while their applications to humans is expected in future research.
Collapse
Affiliation(s)
- Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Japan.
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Japan
| |
Collapse
|
5
|
Krämer SD, Schuhmann MK, Volkmann J, Fluri F. Deep Brain Stimulation in the Subthalamic Nucleus Can Improve Skilled Forelimb Movements and Retune Dynamics of Striatal Networks in a Rat Stroke Model. Int J Mol Sci 2022; 23:15862. [PMID: 36555504 PMCID: PMC9779486 DOI: 10.3390/ijms232415862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/03/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Recovery of upper limb (UL) impairment after stroke is limited in stroke survivors. Since stroke can be considered as a network disorder, neuromodulation may be an approach to improve UL motor dysfunction. Here, we evaluated the effect of high-frequency stimulation (HFS) of the subthalamic nucleus (STN) in rats on forelimb grasping using the single-pellet reaching (SPR) test after stroke and determined costimulated brain regions during STN-HFS using 2-[18F]Fluoro-2-deoxyglucose-([18F]FDG)-positron emission tomography (PET). After a 4-week training of SPR, photothrombotic stroke was induced in the sensorimotor cortex of the dominant hemisphere. Thereafter, an electrode was implanted in the STN ipsilateral to the infarction, followed by a continuous STN-HFS or sham stimulation for 7 days. On postinterventional day 2 and 7, an SPR test was performed during STN-HFS. Success rate of grasping was compared between these two time points. [18F]FDG-PET was conducted on day 2 and 3 after stroke, without and with STN-HFS, respectively. STN-HFS resulted in a significant improvement of SPR compared to sham stimulation. During STN-HFS, a significantly higher [18F]FDG-uptake was observed in the corticosubthalamic/pallidosubthalamic circuit, particularly ipsilateral to the stimulated side. Additionally, STN-HFS led to an increased glucose metabolism within the brainstem. These data demonstrate that STN-HFS supports rehabilitation of skilled forelimb movements, probably by retuning dysfunctional motor centers within the cerebral network.
Collapse
Affiliation(s)
- Stefanie D. Krämer
- Radiopharmaceutical Sciences/Biopharmacy, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Michael K. Schuhmann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany
| | - Felix Fluri
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany
| |
Collapse
|
6
|
Donegan D, Peleg-Raibstein D, Lambercy O, Burdakov D. Anticipatory countering of motor challenges by premovement activation of orexin neurons. PNAS NEXUS 2022; 1:pgac240. [PMID: 36712356 PMCID: PMC9802298 DOI: 10.1093/pnasnexus/pgac240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Countering upcoming challenges with anticipatory movements is a fundamental function of the brain, whose neural implementations remain poorly defined. Recently, premovement neural activation was found outside canonical premotor areas, in the hypothalamic hypocretin/orexin neurons (HONs). The purpose of this hypothalamic activation is unknown. By studying precisely defined mouse-robot interactions, here we show that the premovement HON activity correlates with experience-dependent emergence of anticipatory movements that counter imminent motor challenges. Through targeted, bidirectional optogenetic interference, we demonstrate that the premovement HON activation governs the anticipatory movements. These findings advance our understanding of the behavioral and cognitive impact of temporally defined HON signals and may provide important insights into healthy adaptive movements.
Collapse
Affiliation(s)
- Dane Donegan
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology - ETH Zürich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Daria Peleg-Raibstein
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology - ETH Zürich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Olivier Lambercy
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology - ETH Zürich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | | |
Collapse
|