1
|
Abstract
Working memory enables us to bridge past sensory information to upcoming future behaviour. Accordingly, by its very nature, working memory is concerned with two components: the past and the future. Yet, in conventional laboratory tasks, these two components are often conflated, such as when sensory information in working memory is encoded and tested at the same location. We developed a task in which we dissociated the past (encoded location) and future (to-be-tested location) attributes of visual contents in working memory. This enabled us to independently track the utilisation of past and future memory attributes through gaze, as observed during mnemonic selection. Our results reveal the joint consideration of past and future locations. This was prevalent even at the single-trial level of individual saccades that were jointly biased to the past and future. This uncovers the rich nature of working memory representations, whereby both past and future memory attributes are retained and can be accessed together when memory contents become relevant for behaviour.
Collapse
Affiliation(s)
- Baiwei Liu
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Zampeta-Sofia Alexopoulou
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Freek van Ede
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
| |
Collapse
|
2
|
Nobre AC, van Ede F. Attention in flux. Neuron 2023; 111:971-986. [PMID: 37023719 DOI: 10.1016/j.neuron.2023.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 04/08/2023]
Abstract
Selective attention comprises essential infrastructural functions supporting cognition-anticipating, prioritizing, selecting, routing, integrating, and preparing signals to guide adaptive behavior. Most studies have examined its consequences, systems, and mechanisms in a static way, but attention is at the confluence of multiple sources of flux. The world advances, we operate within it, our minds change, and all resulting signals progress through multiple pathways within the dynamic networks of our brains. Our aim in this review is to raise awareness of and interest in three important facets of how timing impacts our understanding of attention. These include the challenges posed to attention by the timing of neural processing and psychological functions, the opportunities conferred to attention by various temporal structures in the environment, and how tracking the time courses of neural and behavioral modulations with continuous measures yields surprising insights into the workings and principles of attention.
Collapse
Affiliation(s)
- Anna C Nobre
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK.
| | - Freek van Ede
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam 1081BT, the Netherlands.
| |
Collapse
|
3
|
Abstract
Flexible behavior requires guidance not only by sensations that are available immediately but also by relevant mental contents carried forward through working memory. Therefore, selective-attention functions that modulate the contents of working memory to guide behavior (inside-out) are just as important as those operating on sensory signals to generate internal contents (outside-in). We review the burgeoning literature on selective attention in the inside-out direction and underscore its functional, flexible, and future-focused nature. We discuss in turn the purpose (why), targets (what), sources (when), and mechanisms (how) of selective attention inside working memory, using visual working memory as a model. We show how the study of internal selective attention brings new insights concerning the core cognitive processes of attention and working memory and how considering selective attention and working memory together paves the way for a rich and integrated understanding of how mind serves behavior.
Collapse
Affiliation(s)
- Freek van Ede
- Institute for Brain and Behavior Amsterdam, and Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands;
| | - Anna C Nobre
- Departments of Experimental Psychology and Psychiatry, Oxford Centre for Human Brain Activity, and Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
4
|
Abstract
In this reflective piece on visual working memory, I depart from the laboriously honed skills of writing a review. Instead of integrating approaches, synthesizing evidence, and building a cohesive perspective, I scratch my head and share niggles and puzzlements. I expose where my scholarship and understanding are stumped by findings and standard views in the literature.
Collapse
|
5
|
Déli É, Peters JF, Kisvárday Z. How the Brain Becomes the Mind: Can Thermodynamics Explain the Emergence and Nature of Emotions? ENTROPY (BASEL, SWITZERLAND) 2022; 24:1498. [PMID: 37420518 PMCID: PMC9601684 DOI: 10.3390/e24101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 07/09/2023]
Abstract
The neural systems' electric activities are fundamental for the phenomenology of consciousness. Sensory perception triggers an information/energy exchange with the environment, but the brain's recurrent activations maintain a resting state with constant parameters. Therefore, perception forms a closed thermodynamic cycle. In physics, the Carnot engine is an ideal thermodynamic cycle that converts heat from a hot reservoir into work, or inversely, requires work to transfer heat from a low- to a high-temperature reservoir (the reversed Carnot cycle). We analyze the high entropy brain by the endothermic reversed Carnot cycle. Its irreversible activations provide temporal directionality for future orientation. A flexible transfer between neural states inspires openness and creativity. In contrast, the low entropy resting state parallels reversible activations, which impose past focus via repetitive thinking, remorse, and regret. The exothermic Carnot cycle degrades mental energy. Therefore, the brain's energy/information balance formulates motivation, sensed as position or negative emotions. Our work provides an analytical perspective of positive and negative emotions and spontaneous behavior from the free energy principle. Furthermore, electrical activities, thoughts, and beliefs lend themselves to a temporal organization, an orthogonal condition to physical systems. Here, we suggest that an experimental validation of the thermodynamic origin of emotions might inspire better treatment options for mental diseases.
Collapse
Affiliation(s)
- Éva Déli
- Department of Anatomy, Histology, and Embryology, University of Debrecen, 4032 Debrecen, Hungary
| | - James F. Peters
- Department of Electrical & Computer Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Mathematics, Adiyaman University, Adiyaman 02040, Turkey
| | - Zoltán Kisvárday
- Department of Anatomy, Histology, and Embryology, University of Debrecen, 4032 Debrecen, Hungary
- ELKH Neuroscience Research Group, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
6
|
Moradi N, LeVan P, Akin B, Goodyear BG, Sotero RC. Holo-Hilbert spectral-based noise removal method for EEG high-frequency bands. J Neurosci Methods 2021; 368:109470. [PMID: 34973273 DOI: 10.1016/j.jneumeth.2021.109470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 11/16/2022]
Abstract
Simultaneous EEG-fMRI is a growing and promising field, as it has great potential to further our understanding of the spatiotemporal dynamics of brain function in health and disease. In particular, there is much interest in understanding the fMRI correlates of brain activity in the gamma band (> 30 Hz), as these frequencies are thought to be associated with cognitive processes involving perception, attention, and memory, as well as with disorders such as schizophrenia and autism. However, progress in this area has been limited due to issues such as MR-induced artifacts in EEG recordings, which seem to be more problematic for gamma frequencies. This paper presents a noise removal method for the gamma band of EEG that is based on the Holo-Hilbert spectral analysis (HHSA), but with a new implementation strategy. HHSA uses a nested empirical mode decomposition (EMD) to identify amplitude and frequency modulations (AM and FM, respectively) by averaging over frequencies with high and significant powers. Our method examines gamma band by applying two layers of EMD to the FM and AM components, removing components with very low power based on the power-instantaneous frequency spectrum, and subsequently reconstructs the denoised gamma-band signal from the remaining components. Simulations demonstrate that our proposed method efficiently reduces artifacts while preserving the original gamma signal which is especially critical for simultaneous EEG/fMRI studies.
Collapse
Affiliation(s)
- Narges Moradi
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada; Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Pierre LeVan
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute and Departments of Paediatrics, University of Calgary, Calgary, Canada; Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, Germany
| | - Burak Akin
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, Germany; Section on Functional Imaging Methods, NIMH, NIH, Bethesda, MD, USA
| | - Bradley G Goodyear
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Roberto C Sotero
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
Haslam N, Vylomova E, Murphy SC, Wilson SJ. The Neuroscientification of Psychology: The Rising Prevalence of Neuroscientific Concepts in Psychology From 1965 to 2016. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2021; 17:519-529. [PMID: 34283670 DOI: 10.1177/1745691621991864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The apparent convergence of psychology and brain science has been the subject of both celebration and critique, but it has never been systematically charted. We examined historical trends in the representation of neuroscientific concepts in a corpus of 798,402 psychology journal articles published over the past half century, from 1965 to 2016. A dictionary of 522 uniquely neuroscience-related terms was developed, and the percentage of article abstracts in which at least one term appeared was calculated for each year. This percentage grew from 9.15% to 16.45% over the study period, whereas the percentage containing a subset of 199 terms containing the prefix "neur-" rose much more steeply, from 2.30% to 10.06%. From the mid-1970s, the growing representation of neuroscience in psychology was linear. Proportions were highest among journals covering neuropsychology and physiological psychology and behavioral neuroscience, lowest in those covering social psychology and developmental and educational psychology, and intermediate in those covering experimental and cognitive psychology and clinical psychology. The steepest rises were found in social and clinical psychology journals. Changes in the most salient neuroscientific terms revealed historical shifts in technology, topic, and anatomical focus, which may contribute to our understanding of relationships among mind, brain, and behavior.
Collapse
Affiliation(s)
- Nick Haslam
- School of Psychological Sciences, The University of Melbourne
| | | | - Sean C Murphy
- School of Psychological Sciences, The University of Melbourne
| | - Sarah J Wilson
- School of Psychological Sciences, The University of Melbourne
| |
Collapse
|
8
|
Zokaei N, Gillebert CR, Chauvin JJ, Gresch D, Board AG, Rolinski M, Hu MT, Nobre AC. Temporal orienting in Parkinson's disease. Eur J Neurosci 2021; 53:2713-2725. [PMID: 33450082 PMCID: PMC8290223 DOI: 10.1111/ejn.15114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022]
Abstract
Temporal orienting of attention can affect multiple stages of processing to guide adaptive behaviour. We tested whether temporal expectation in different task contexts is compromised in individuals with Parkinson's disease (PD). In Experiment 1 two temporal-orienting tasks were used: a speeded task emphasizing motor preparation and a non-speeded task emphasizing perceptual discrimination using rapid serial visual presentation. In both tasks, auditory cues indicated the likelihood of a target appearing after a short or long interval. In the speeded-response task, participants used the cues to anticipate an easily detectable target stimulus. In the non-speeded perceptual-discrimination task, participants used the cues to help discriminate a target letter embedded in a stream of letters. Relative to healthy participants, participants with PD did not show altered temporal orienting effects in the speeded-response task. However, they were impaired in using temporal cues to improve perceptual discrimination. In Experiment 2, we tested whether the temporal-orienting deficits in the perceptual-discrimination task depended on the requirement to ignore temporally distracting stimuli. We replicated the impaired temporal orienting for perceptual discrimination in an independent group of individuals with PD, and showed the impairment was abolished when individuals were on their dopaminergic medication. In a task without any distracting letters, however, patients off or on medication benefited normally from temporal orienting cues. Our findings suggest that deficits in temporal orienting in individuals with PD interact with specific task demands, such as the requirement to select target from temporally competing distractors.
Collapse
Affiliation(s)
- Nahid Zokaei
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Celine R Gillebert
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Department of Brain and Cognition, KU Leuven, Leuven, Belgium
| | - Joshua J Chauvin
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Daniela Gresch
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Alexander G Board
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Michal Rolinski
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Michele T Hu
- Department of Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anna Christina Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|