1
|
Park S, Zhu A, Cao F, Palmiter RD. Parabrachial Calca neurons mediate second-order conditioning. Nat Commun 2024; 15:9721. [PMID: 39521770 PMCID: PMC11550384 DOI: 10.1038/s41467-024-53977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Learning to associate cues, both directly and indirectly, with biologically significant events is essential for survival. Second-order conditioning (SOC) involves forming an association between a previously reinforced conditioned stimulus (CS1) and a new conditioned stimulus (CS2) without the presence of an unconditioned stimulus (US). The neural substrates mediating SOC, however, remain unclear. Parabrachial Calca neurons, which react to the noxious US, also respond to a CS after pairing with a US, suggesting that Calca neurons mediate SOC. We established an aversive SOC behavioral paradigm in mice and monitored Calca neuron activity via single-cell calcium imaging during conditioning and subsequent recall phases. These neurons were activated by both CS1 and CS2 after SOC. Chemogenetically inhibiting Calca neurons during CS1-CS2 pairing attenuated SOC. Thus, reactivation of the US pathway by a learned CS plays an important role in forming the association between the old and a new CS, promoting the formation of second-order memories.
Collapse
Affiliation(s)
- Sekun Park
- Howard Hugues Medical Institute, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anqi Zhu
- Howard Hugues Medical Institute, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Feng Cao
- Howard Hugues Medical Institute, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Richard D Palmiter
- Howard Hugues Medical Institute, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Department of Genome Science, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Leake J, Cardona LS, Mencevski F, Westbrook RF, Holmes NM. Context and Time Regulate Fear Memory Consolidation and Reconsolidation in the Basolateral Amygdala Complex. J Neurosci 2024; 44:e1698232023. [PMID: 38286626 PMCID: PMC10904089 DOI: 10.1523/jneurosci.1698-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 01/31/2024] Open
Abstract
It is widely accepted that fear memories are consolidated through protein synthesis-dependent changes in the basolateral amygdala complex (BLA). However, recent studies show that protein synthesis is not required to consolidate the memory of a new dangerous experience when it is similar to a prior experience. Here, we examined whether the protein synthesis requirement for consolidating the new experience varies with its spatial and temporal distance from the prior experience. Female and male rats were conditioned to fear a stimulus (S1, e.g., light) paired with shock in stage 1 and a second stimulus (S2, e.g., tone) that preceded additional S1-shock pairings (S2-S1-shock) in stage 2. The latter stage was followed by a BLA infusion of a protein synthesis inhibitor, cycloheximide, or vehicle. Subsequent testing with S2 revealed that protein synthesis in the BLA was not required to consolidate fear to S2 when the training stages occurred 48 h apart in the same context; was required when they were separated by 14 d or occurred in different contexts; but was again not required if S1 was re-presented after the delay or in the different context. Similarly, protein synthesis in the BLA was not required to reconsolidate fear to S2 when the training stages occurred 48 h apart but was required when they occurred 14 d apart. Thus, the protein synthesis requirement for consolidating/reconsolidating fear memories in the BLA is determined by similarity between present and past experiences, the time and place in which they occur, and reminders of the past experiences.
Collapse
Affiliation(s)
- Jessica Leake
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Luisa Saavedra Cardona
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Filip Mencevski
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - R Frederick Westbrook
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Nathan M Holmes
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
3
|
Leake J, Leidl DM, Lay BPP, Fam JP, Giles MC, Qureshi OA, Westbrook RF, Holmes NM. What is Learned Determines How Pavlovian Conditioned Fear is Consolidated in the Brain. J Neurosci 2024; 44:e0513232023. [PMID: 37963767 PMCID: PMC10860607 DOI: 10.1523/jneurosci.0513-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
Activity in the basolateral amygdala complex (BLA) is needed to encode fears acquired through contact with both innate sources of danger (i.e., things that are painful) and learned sources of danger (e.g., being threatened with a gun). However, within the BLA, the molecular processes required to consolidate the two types of fear are not the same: protein synthesis is needed to consolidate the first type of fear (so-called first-order fear) but not the latter (so-called second-order fear). The present study examined why first- and second-order fears differ in this respect. Specifically, it used a range of conditioning protocols in male and female rats, and assessed the effects of a BLA infusion of the protein synthesis inhibitor, cycloheximide, on first- and second-order conditioned fear. The results revealed that the differential protein synthesis requirements for consolidation of first- and second-order fears reflect differences in what is learned in each case. Protein synthesis in the BLA is needed to consolidate fears that result from encoding of relations between stimuli in the environment (stimulus-stimulus associations, typical for first-order fear) but is not needed to consolidate fears that form when environmental stimuli associate directly with fear responses emitted by the animal (stimulus-response associations, typical for second-order fear). Thus, the substrates of Pavlovian fear conditioning in the BLA depend on the way that the environment impinges upon the animal. This is discussed with respect to theories of amygdala function in Pavlovian fear conditioning, and ways in which stimulus-response associations might be consolidated in the brain.
Collapse
Affiliation(s)
- Jessica Leake
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dana M Leidl
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Belinda P P Lay
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Justine P Fam
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Madeleine C Giles
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Omar A Qureshi
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec HB4 1R6, Canada
| | - R Frederick Westbrook
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Nathan M Holmes
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Sepahvand T, Power KD, Qin T, Yuan Q. The Basolateral Amygdala: The Core of a Network for Threat Conditioning, Extinction, and Second-Order Threat Conditioning. BIOLOGY 2023; 12:1274. [PMID: 37886984 PMCID: PMC10604397 DOI: 10.3390/biology12101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Threat conditioning, extinction, and second-order threat conditioning studied in animal models provide insight into the brain-based mechanisms of fear- and anxiety-related disorders and their treatment. Much attention has been paid to the role of the basolateral amygdala (BLA) in such processes, an overview of which is presented in this review. More recent evidence suggests that the BLA serves as the core of a greater network of structures in these forms of learning, including associative and sensory cortices. The BLA is importantly regulated by hippocampal and prefrontal inputs, as well as by the catecholaminergic neuromodulators, norepinephrine and dopamine, that may provide important prediction-error or learning signals for these forms of learning. The sensory cortices may be required for the long-term storage of threat memories. As such, future research may further investigate the potential of the sensory cortices for the long-term storage of extinction and second-order conditioning memories.
Collapse
Affiliation(s)
| | | | | | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University, St John’s, NL A1B 3V6, Canada; (T.S.); (K.D.P.); (T.Q.)
| |
Collapse
|
5
|
Qureshi OA, Leake J, Delaney AJ, Killcross S, Westbrook RF, Holmes NM. Danger Changes the Way the Brain Consolidates Neutral Information; and Does So by Interacting with Processes Involved in the Encoding of That Information. J Neurosci 2023; 43:2934-2949. [PMID: 36927572 PMCID: PMC10124951 DOI: 10.1523/jneurosci.1796-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/25/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
This study examined the effect of danger on consolidation of neutral information in two regions of the rat (male and female) medial temporal lobe: the perirhinal cortex (PRh) and basolateral amygdala complex (BLA). The neutral information was the association that forms between an auditory stimulus and a visual stimulus (labeled S2 and S1) across their pairings in sensory preconditioning. We show that, when the sensory preconditioning session is followed by a shocked context exposure, the danger shifts consolidation of the S2-S1 association from the PRh to the BLA; and does so by interacting with processes involved in encoding of the S2-S1 pairings. Specifically, we show that the initial S2-S1 pairing in sensory preconditioning is encoded in the BLA and not the PRh; whereas the later S2-S1 pairings are encoded in the PRh and not the BLA. When the sensory preconditioning session is followed by a context alone exposure, the BLA-dependent trace of the early S2-S1 pairings decays and the PRh-dependent trace of the later S2-S1 pairings is consolidated in memory. However, when the sensory preconditioning session is followed by a shocked context exposure, the PRh-dependent trace of the later S2-S1 pairings is suppressed and the BLA-dependent trace of the initial S2-S1 pairing is consolidated in memory. These findings are discussed with respect to mutually inhibitory interactions between the PRh and BLA, and the way that these regions support memory in other protocols, including recognition memory in people.SIGNIFICANCE STATEMENT The perirhinal cortex (PRh) and basolateral amygdala complex (BLA) process the pairings of neutral auditory and visual stimuli in sensory preconditioning. The involvement of each region in this processing is determined by the novelty/familiarity of the stimuli as well as events that occur immediately after the preconditioning session. Novel stimuli are represented in the BLA; however, as these stimuli are repeatedly presented without consequence, they come to be represented in the PRh. Whether the BLA- or PRh-dependent representation is consolidated in memory depends on what happens next. When nothing of significance occurs, the PRh-dependent representation is consolidated and the BLA-dependent representation decays; but when danger is encountered, the PRh-dependent representation is inhibited and the BLA-dependent representation is selected for consolidation.
Collapse
Affiliation(s)
- Omar A Qureshi
- School of Psychology, University of New South Wales, Sydney, New South Wales Australia, 2052
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec Canada, H4B 1R6
| | - Jessica Leake
- School of Psychology, University of New South Wales, Sydney, New South Wales Australia, 2052
| | - Andrew J Delaney
- School of Biomedical Sciences, Charles Sturt University, Orange, New South Wales Australia, 2678
| | - Simon Killcross
- School of Psychology, University of New South Wales, Sydney, New South Wales Australia, 2052
| | - R Frederick Westbrook
- School of Psychology, University of New South Wales, Sydney, New South Wales Australia, 2052
| | - Nathan M Holmes
- School of Psychology, University of New South Wales, Sydney, New South Wales Australia, 2052
| |
Collapse
|
6
|
Williams-Spooner MJ, Delaney AJ, Westbrook RF, Holmes NM. Prediction Error Determines Whether NMDA Receptors in the Basolateral Amygdala Complex Are Involved in Pavlovian Fear Conditioning. J Neurosci 2022; 42:4360-4379. [PMID: 35410880 PMCID: PMC9145214 DOI: 10.1523/jneurosci.2156-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
It is widely accepted that activation of NMDA receptors (NMDAR) is necessary for the formation of fear memories in the basolateral amygdala complex (BLA). This acceptance is based on findings that blockade of NMDAR in the BLA disrupts Pavlovian fear conditioning in rodents when initially innocuous stimuli are paired with aversive and unexpected events (surprising foot shock). The present study challenges this acceptance by showing that the involvement of NMDAR in Pavlovian fear conditioning is determined by prediction errors in relation to aversive events. In the initial experiments, male rats received a BLA infusion of the NMDAR antagonist, D-AP5 and were then exposed to pairings of a novel target stimulus and foot shock. This infusion disrupted acquisition of fear to the target when the shock was surprising (experiments 1a, 1b, 2a, 2b, 3a, and 3b) but spared fear to the target when the shock was expected based on the context, time and other stimuli that were present (experiments 1a and 1b). Under the latter circumstances, fear to the target required activation of calcium-permeable AMPAR (CP-AMPA; experiments 4a, 4b, and 4c), which, using electrophysiology, were shown to regulate the activity of interneurons in the BLA (experiment 5). Thus, NMDAR activation is not required for fear conditioning when danger occurs as expected given the context, time and stimuli present, but is required for fear conditioning when danger occurs unexpectedly. These findings are related to current theories of NMDAR function and ways that prediction errors might influence the substrates of fear memory formation in the BLA.SIGNIFICANCE STATEMENT It is widely accepted that NMDA receptors (NMDAR) in the basolateral amygdala complex (BLA) are activated by pairings of a conditioned stimulus (CS) and an aversive unconditioned (US) stimulus, leading to the synaptic changes that underlie formation of a CS-US association. The present findings are significant in showing that this theory is incomplete. When the aversive US is unexpected, animals encode all features of the situation (context, time and stimuli present) as a new fear/threat memory, which is regulated by NMDAR in the BLA. However, when the US is expected based on the context, time and stimuli present, the new fear memory is assimilated into networks that represent those features, which occurs independently of NMDAR activation in the BLA.
Collapse
Affiliation(s)
- Matthew J Williams-Spooner
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia 2052
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada H3G 1M8
| | - Andrew J Delaney
- School of Biomedical Sciences, Charles Sturt University, Orange, New South Wales, Australia 2795
| | - R Frederick Westbrook
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia 2052
| | - Nathan M Holmes
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia 2052
| |
Collapse
|
7
|
Gostolupce D, Lay BPP, Maes EJP, Iordanova MD. Understanding Associative Learning Through Higher-Order Conditioning. Front Behav Neurosci 2022; 16:845616. [PMID: 35517574 PMCID: PMC9062293 DOI: 10.3389/fnbeh.2022.845616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Associative learning is often considered to require the physical presence of stimuli in the environment in order for them to be linked. This, however, is not a necessary condition for learning. Indeed, associative relationships can form between events that are never directly paired. That is, associative learning can occur by integrating information across different phases of training. Higher-order conditioning provides evidence for such learning through two deceptively similar designs - sensory preconditioning and second-order conditioning. In this review, we detail the procedures and factors that influence learning in these designs, describe the associative relationships that can be acquired, and argue for the importance of this knowledge in studying brain function.
Collapse
Affiliation(s)
| | | | | | - Mihaela D. Iordanova
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
8
|
Gostolupce D, Iordanova MD, Lay BPP. Mechanisms of higher-order learning in the amygdala. Behav Brain Res 2021; 414:113435. [PMID: 34197867 DOI: 10.1016/j.bbr.2021.113435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Adaptive behaviour is under the potent control of environmental cues. Such cues can acquire value by virtue of their associations with outcomes of motivational significance, be they appetitive or aversive. There are at least two ways through which an environmental cue can acquire value, through first-order and higher-order conditioning. In first-order conditioning, a neutral cue is directly paired with an outcome of motivational significance. In higher-order conditioning, a cue is indirectly associated with motivational events via a directly conditioned first-order stimulus. The present article reviews some of the associations that support learning in first- and higher-order conditioning, as well as the role of the BLA and the molecular mechanisms involved in these two types of learning.
Collapse
Affiliation(s)
- Dilara Gostolupce
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Mihaela D Iordanova
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada.
| | - Belinda P P Lay
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
9
|
Campit SE, Meliki A, Youngson NA, Chandrasekaran S. Nutrient Sensing by Histone Marks: Reading the Metabolic Histone Code Using Tracing, Omics, and Modeling. Bioessays 2020; 42:e2000083. [PMID: 32638413 PMCID: PMC11426192 DOI: 10.1002/bies.202000083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/23/2020] [Indexed: 12/19/2022]
Abstract
Several metabolites serve as substrates for histone modifications and communicate changes in the metabolic environment to the epigenome. Technologies such as metabolomics and proteomics have allowed us to reconstruct the interactions between metabolic pathways and histones. These technologies have shed light on how nutrient availability can have a dramatic effect on various histone modifications. This metabolism-epigenome cross talk plays a fundamental role in development, immune function, and diseases like cancer. Yet, major challenges remain in understanding the interactions between cellular metabolism and the epigenome. How the levels and fluxes of various metabolites impact epigenetic marks is still unclear. Discussed herein are recent applications and the potential of systems biology methods such as flux tracing and metabolic modeling to address these challenges and to uncover new metabolic-epigenetic interactions. These systems approaches can ultimately help elucidate how nutrients shape the epigenome of microbes and mammalian cells.
Collapse
Affiliation(s)
- Scott E. Campit
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA 48109
| | - Alia Meliki
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI, USA 48109
| | - Neil A. Youngson
- Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
- School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Sriram Chandrasekaran
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA 48109
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI, USA 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA 48109
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA 48109
| |
Collapse
|