1
|
Wang C, Gao Y, Luan C, Sun W, Ge S, Li Y, Xu L, Du Q, Liu W, Lu G, Gong W, Ma X. Zinc finger protein ZBTB17 controls cellular senescence via interacting with nuclear receptor RXRA and its downstream calcium signaling. FASEB J 2023; 37:e23193. [PMID: 37698375 DOI: 10.1096/fj.202301050r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/05/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Cellular senescence is broadly known as a stable cell cycle arrest accompanied by a senescence-associated secretory phenotype (SASP). In the past decades, calcium signaling has emerged as a key mediator of cellular senescence. However, the transcriptional regulation of calcium signaling during cellular senescence remains partially understood. We have previously identified the nuclear receptor RXRA as a key senescence repressor through inhibiting the endoplasmic reticulum (ER) calcium release channel inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) mediated intracellular calcium signaling. Nevertheless, as a transcriptional recruiter, the mechanism by which RXRA inhibits ITPR2 during cellular senescence remains unclear. Here we identified the zinc finger protein ZBTB17 can interact with RXRA. Interestingly, knockdown of ZBTB17 induces a cascade of RXRA-dependent intracellular calcium signaling, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) accumulation, DNA damages, and ultimately cellular senescence. Moreover, the signaling and senescence phenotype induced by knocking down of ZBTB17 can also be abolished after silencing ITPR2. Altogether, our work provides a new mechanism controlling intracellular calcium signaling and cellular senescence and unveils novel insight toward the role of zinc finger proteins.
Collapse
Affiliation(s)
- Chaofan Wang
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yue Gao
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Changjiao Luan
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Lung, The Third People's Hospital of Yangzhou, Yangzhou, China
| | - Wentao Sun
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Sumin Ge
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yaru Li
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Lei Xu
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Qiu Du
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weili Liu
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Guotao Lu
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weijuan Gong
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xingjie Ma
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Brewitz L, Nakashima Y, Piasecka SK, Salah E, Fletcher SC, Tumber A, Corner TP, Kennedy TJ, Fiorini G, Thalhammer A, Christensen KE, Coleman ML, Schofield CJ. 5-Substituted Pyridine-2,4-dicarboxylate Derivatives Have Potential for Selective Inhibition of Human Jumonji-C Domain-Containing Protein 5. J Med Chem 2023; 66:10849-10865. [PMID: 37527664 PMCID: PMC10424186 DOI: 10.1021/acs.jmedchem.3c01114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 08/03/2023]
Abstract
Jumonji-C domain-containing protein 5 (JMJD5) is a 2-oxoglutarate (2OG)-dependent oxygenase that plays important roles in development, circadian rhythm, and cancer through unclear mechanisms. JMJD5 has been reported to have activity as a histone protease, as an Nε-methyl lysine demethylase, and as an arginine residue hydroxylase. Small-molecule JMJD5-selective inhibitors will be useful for investigating its (patho)physiological roles. Following the observation that the broad-spectrum 2OG oxygenase inhibitor pyridine-2,4-dicarboxylic acid (2,4-PDCA) is a 2OG-competing JMJD5 inhibitor, we report that 5-aminoalkyl-substituted 2,4-PDCA derivatives are potent JMJD5 inhibitors manifesting selectivity for JMJD5 over other human 2OG oxygenases. Crystallographic analyses with five inhibitors imply induced fit binding and reveal that the 2,4-PDCA C5 substituent orients into the JMJD5 substrate-binding pocket. Cellular studies indicate that the lead compounds display similar phenotypes as reported for clinically observed JMJD5 variants, which have a reduced catalytic activity compared to wild-type JMJD5.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, U.K.
| | - Yu Nakashima
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, U.K.
| | - Sonia K. Piasecka
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
| | - Eidarus Salah
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, U.K.
| | - Sally C. Fletcher
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
| | - Anthony Tumber
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, U.K.
| | - Thomas P. Corner
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, U.K.
| | - Tristan J. Kennedy
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
| | - Giorgia Fiorini
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, U.K.
| | - Armin Thalhammer
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, U.K.
| | - Kirsten E. Christensen
- Chemical
Crystallography, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, U.K.
| | - Mathew L. Coleman
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, U.K.
| |
Collapse
|
3
|
Tumber A, Salah E, Brewitz L, Corner TP, Schofield CJ. Kinetic and inhibition studies on human Jumonji-C (JmjC) domain-containing protein 5. RSC Chem Biol 2023; 4:399-413. [PMID: 37292060 PMCID: PMC10246557 DOI: 10.1039/d2cb00249c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/19/2023] [Indexed: 06/10/2023] Open
Abstract
Jumonji-C (JmjC) domain-containing protein 5 (JMJD5) is a human 2-oxoglutarate (2OG) and Fe(ii)-dependent oxygenase which catalyses the post-translational C3 hydroxylation of arginyl-residues and which is linked to the circadian rhythm and to cancer biology through as yet unidentified mechanisms. We report robust solid phase extraction coupled to mass spectrometry (SPE-MS)-based JMJD5 assays which enable kinetic and high-throughput inhibition studies. The kinetic studies reveal that some synthetic 2OG derivatives, notably including a 2OG derivative with a cyclic carbon backbone (i.e. (1R)-3-(carboxycarbonyl)cyclopentane-1-carboxylic acid), are efficient alternative cosubstrates of JMJD5 and of factor inhibiting hypoxia-inducible transcription factor HIF-α (FIH), but not of the Jumonji-C (JmjC) histone Nε-methyl lysine demethylase KDM4E, apparently reflecting the closer structural similarity of JMJD5 and FIH. The JMJD5 inhibition assays were validated by investigating the effect of reported 2OG oxygenase inhibitors on JMJD5 catalysis; the results reveal that broad-spectrum 2OG oxygenase inhibitors are also efficient JMJD5 inhibitors (e.g. N-oxalylglycine, pyridine-2,4-dicarboxylic acid, ebselen) whereas most 2OG oxygenase inhibitors that are in clinical use (e.g. roxadustat) do not inhibit JMJD5. The SPE-MS assays will help enable the development of efficient and selective JMJD5 inhibitors for investigating the biochemical functions of JMJD5 in cellular studies.
Collapse
Affiliation(s)
- Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Thomas P Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| |
Collapse
|
4
|
Tian C, An Y, Zhao J, Zhu X, Wei W, Ruan G, Li Y, Pan X. Bone Marrow Mesenchymal Stem Cells Reversed Ovarian Aging-related m6A RNA Methylation Modification Profile in Aged Granulosa Cells. Stem Cell Rev Rep 2023; 19:953-967. [PMID: 36609903 DOI: 10.1007/s12015-022-10485-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Ovarian ageing causes endocrine disturbances and the degeneration of systemic tissue and organ functions to seriously affect women's physical and mental health, and effective treatment methods are urgently needed. Based on our previous studies using juvenile rhesus monkey bone marrow mesenchymal stem cells (BMMSCs) to treat ovarian ageing in rhesus monkey, we found that BMMSCs improved ovarian structure and function. This study continues to explore the mechanism by which BMMSCs reversed granulosa cell (GC) ageing. METHODS A GC ageing model and coculture system of BMMSCs were established, changes in the level of the N6-methyladenosine (m6A) methylation modification were detected, m6A-modified RNA immunoprecipitation sequencing (MeRIP-seq) were performed, correlations between m6A peaks and mRNA expression were determined, and the expression of hub genes was identified using Q-PCR, immunofluorescence staining, and western blot. RESULTS Our results showed that H2O2 successfully induced GC ageing and that BMMSCs reversed measures of GC ageing. BMMSCs increased the expression of the FTO protein and reduced the overall level of m6A. We identified 797 m6A peaks (348 hypomethylated and 449 hypermethylated peaks) and 817 differentially expressed genes (DEGs) (412 upregulated and 405 downregulated) after aged GCs were cocultured with BMMSCs, which significantly associated with ovarian function and epigenetic modification. The epigenetic repressive mark and important cell cycle regulator lysine demethylase 8 (KDM8) was downregulated at both the mRNA and protein levels, histone H3 was upregulated in aged GCs after BMMSC coculture, and KDM8 was upregulated after FTO was inhibited through FB23. CONCLUSIONS Our study revealed an essential role for m6A in BMMSCs in reversing GC ageing, and FTO regulated KDM8 mediates histone H3 changes may as a novel regulatory mechanism in BMMSCs to reverse GC ageing.
Collapse
Affiliation(s)
- Chuan Tian
- The Basic Medical Laboratory of the 920Th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Yuanyuan An
- The Affiliated Stomatology of Kunming Medical University, Kunming, 650106, Yunnan Province, China
| | - Jing Zhao
- The Basic Medical Laboratory of the 920Th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Xiangqing Zhu
- The Basic Medical Laboratory of the 920Th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Wei Wei
- The Basic Medical Laboratory of the 920Th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Guangping Ruan
- The Basic Medical Laboratory of the 920Th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Ye Li
- The Basic Medical Laboratory of the 920Th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Xinghua Pan
- The Basic Medical Laboratory of the 920Th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
5
|
Chin-Chan M, Montes S, Blanco-Álvarez VM, Aguirre-Alarcón HA, Hernández-Rodríguez I, Bautista E. Relevance of biometals during neuronal differentiation and myelination: in vitro and in vivo studies. Biometals 2022; 35:395-427. [DOI: 10.1007/s10534-022-00380-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/27/2022] [Indexed: 12/20/2022]
|
6
|
Yang L, Shen XM, Wang ZF, Li K, Wang W. The Notch signalling pathway and miRNA regulation play important roles in the differentiation of Schwann cells from adipose-derived stem cells. J Transl Med 2022; 102:320-328. [PMID: 34795395 DOI: 10.1038/s41374-021-00687-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/08/2022] Open
Abstract
An exploration of the underlying mechanisms is necessary to improve nerve myelin-forming cell Schwann cell (SC) differentiation from adipose-derived stem cells (ADSCs). Primary rat ADSCs were isolated and characterised for cell surface markers using flow cytometry analysis. After treatment with a mixture of glial growth factors, ADSCs were induced to differentiate and subsequently identified by immunofluorescence staining and western blotting. A miRNA microarray analysis was performed to explore the genes and signalling pathways regulating ADSC differentiation into SCs. ELISAs were conducted to measure the expression of neurotrophic factors and changes in the level of nerve cell adhesion factor. Dual luciferase reporter assays and RIP assays were performed to explore the potential mechanism of miR-21-5p in ADSC differentiation. The isolated ADSCs were positive for CD29 and CD44 but negative for CD49. After induction with specific cytokines, the differentiated ADSCs presented a spindle-like morphology similar to SCs and expressed S100. RNA-sequencing analyses revealed that 9821 mRNAs of protein-coding genes and 175 miRNAs were differentially expressed in differentiated SC-like cells compared to primary cultures of ADSCs. KEGG and Gene Ontology analyses revealed that the involvement of the Notch signalling pathway and miRNA negative regulation may be associated with the differentiation of ADSCs into SCs. Treatment with a Notch inhibitor promoted the differentiation of ADSCs. Furthermore, mechanistic studies showed that Jag1 bound to miR-21-5p and upregulated its target gene Jag1, thus affecting ADSC differentiation. These results revealed the mechanism underlying the important roles of miRNAs and the Notch signalling pathway in the differentiation of SCs from ADSCs, enabling potential therapeutic applications of ADSCs in peripheral nerve regeneration in the future.
Collapse
Affiliation(s)
- Liang Yang
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, Changsha, 410078, P.R. China
| | - Xiang-Min Shen
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, P.R. China
| | - Zhi-Fei Wang
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, Changsha, 410078, P.R. China
| | - Ke Li
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, P.R. China
| | - Wei Wang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, P.R. China.
| |
Collapse
|
7
|
Huff TC, Sant DW, Camarena V, Van Booven D, Andrade NS, Mustafi S, Monje PV, Wang G. Vitamin C regulates Schwann cell myelination by promoting DNA demethylation of pro-myelinating genes. J Neurochem 2021; 157:1759-1773. [PMID: 32219848 PMCID: PMC7530063 DOI: 10.1111/jnc.15015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Ascorbic acid (vitamin C) is critical for Schwann cells to myelinate peripheral nerve axons during development and remyelination after injury. However, its exact mechanism remains elusive. Vitamin C is a dietary nutrient that was recently discovered to promote active DNA demethylation. Schwann cell myelination is characterized by global DNA demethylation in vivo and may therefore be regulated by vitamin C. We found that vitamin C induces a massive transcriptomic shift (n = 3,848 genes) in primary cultured Schwann cells while simultaneously producing a global increase in genomic 5-hydroxymethylcytosine (5hmC), a DNA demethylation intermediate which regulates transcription. Vitamin C up-regulates 10 pro-myelinating genes which exhibit elevated 5hmC content in both the promoter and gene body regions of these loci following treatment. Using a mouse model of human vitamin C metabolism, we found that maternal dietary vitamin C deficiency causes peripheral nerve hypomyelination throughout early development in resulting offspring. Additionally, dietary vitamin C intake regulates the expression of myelin-related proteins such as periaxin (PRX) and myelin basic protein (MBP) during development and remyelination after injury in mice. Taken together, these results suggest that vitamin C cooperatively promotes myelination through 1) increased DNA demethylation and transcription of pro-myelinating genes, and 2) its known role in stabilizing collagen helices to form the basal lamina that is necessary for myelination.
Collapse
Affiliation(s)
- Tyler C. Huff
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David W. Sant
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vladimir Camarena
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nadja S. Andrade
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sushmita Mustafi
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paula V. Monje
- Department of Neurological Surgery, Indiana University, Indianapolis, IN, USA
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
8
|
Wang S, Lee MP, Jones S, Liu J, Waldhaus J. Mapping the regulatory landscape of auditory hair cells from single-cell multi-omics data. Genome Res 2021; 31:1885-1899. [PMID: 33837132 DOI: 10.1101/gr.271080.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Auditory hair cells transduce sound to the brain and in mammals these cells reside together with supporting cells in the sensory epithelium of the cochlea, called the organ of Corti. To establish the organ's delicate function during development and differentiation, spatiotemporal gene expression is strictly controlled by chromatin accessibility and cell type-specific transcription factors, jointly representing the regulatory landscape. Bulk-sequencing technology and cellular heterogeneity obscured investigations on the interplay between transcription factors and chromatin accessibility in inner ear development. To study the formation of the regulatory landscape in hair cells, we collected single-cell chromatin accessibility profiles accompanied by single-cell RNA data from genetically labeled murine hair cells and supporting cells after birth. Using an integrative approach, we predicted cell type-specific activating and repressing functions of developmental transcription factors. Furthermore, by integrating gene expression and chromatin accessibility datasets, we reconstructed gene regulatory networks. Then, using a comparative approach, 20 hair cell-specific activators and repressors, including putative downstream target genes, were identified. Clustering of target genes resolved groups of related transcription factors and was utilized to infer their developmental functions. Finally, the heterogeneity in the single-cell data allowed us to spatially reconstruct transcriptional as well as chromatin accessibility trajectories, indicating that gradual changes in the chromatin accessibility landscape were lagging behind the transcriptional identity of hair cells along the organ's longitudinal axis. Overall, this study provides a strategy to spatially reconstruct the formation of a lineage specific regulatory landscape using a single-cell multi-omics approach.
Collapse
Affiliation(s)
- Shuze Wang
- University of Michigan, Kresge Hearing Research Institute
| | - Mary P Lee
- University of Michigan, Kresge Hearing Research Institute
| | - Scott Jones
- University of Michigan, Kresge Hearing Research Institute
| | | | - Joerg Waldhaus
- University of Michigan, Kresge Hearing Research Institute;
| |
Collapse
|
9
|
The box C/D snoRNP assembly factor Bcd1 interacts with the histone chaperone Rtt106 and controls its transcription dependent activity. Nat Commun 2021; 12:1859. [PMID: 33767140 PMCID: PMC7994586 DOI: 10.1038/s41467-021-22077-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Biogenesis of eukaryotic box C/D small nucleolar ribonucleoproteins initiates co-transcriptionally and requires the action of the assembly machinery including the Hsp90/R2TP complex, the Rsa1p:Hit1p heterodimer and the Bcd1 protein. We present genetic interactions between the Rsa1p-encoding gene and genes involved in chromatin organization including RTT106 that codes for the H3-H4 histone chaperone Rtt106p controlling H3K56ac deposition. We show that Bcd1p binds Rtt106p and controls its transcription-dependent recruitment by reducing its association with RNA polymerase II, modulating H3K56ac levels at gene body. We reveal the 3D structures of the free and Rtt106p-bound forms of Bcd1p using nuclear magnetic resonance and X-ray crystallography. The interaction is also studied by a combination of biophysical and proteomic techniques. Bcd1p interacts with a region that is distinct from the interaction interface between the histone chaperone and histone H3. Our results are evidence for a protein interaction interface for Rtt106p that controls its transcription-associated activity. Biogenesis of small nucleolar RNAs ribonucleoproteins (snoRNPs) requires dedicated assembly machinery. Here, the authors show that a subset of snoRNP assembly factors interacts, genetically or directly, with factors modulating chromatin architecture, suggesting a link between ribosome formation and chromatin functions.
Collapse
|
10
|
Gao L, Feng A, Yue P, Liu Y, Zhou Q, Zang Q, Teng J. LncRNA BC083743 Promotes the Proliferation of Schwann Cells and Axon Regeneration Through miR-103-3p/BDNF After Sciatic Nerve Crush. J Neuropathol Exp Neurol 2021; 79:1100-1114. [PMID: 32888019 DOI: 10.1093/jnen/nlaa069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/28/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023] Open
Abstract
To investigate the underlying mechanism of lncRNA BC083743 in regulating the proliferation of Schwann cells (SCs) and axon regeneration after sciatic nerve crush (SNC), we used a rat model. Sciatic function index and the atrophy ratio of gastrocnemius muscle were evaluated. The relationship among BC083743, miR-103-3p, and brain-derived neurotrophic factor (BDNF) and their regulation mechanism in the repair of SNC were investigated using in vivo and in vitro experiments. The expression changes of BC083743 were positively associated with that of BDNF following SNC, but the expression changes of miR-103-3p were inversely associated with that of BDNF. The SC proliferation and BDNF expression could be promoted by overexpression of BC083743, while they were inhibited by a miR-103-3p mimic. In addition, BC083743 interacted with and regulated miR-103-3p, thereby promoting BDNF expression and SC proliferation. BC083743 overexpression also promoted axon regeneration through miR-103-3p. In vivo experiments also indicated that BC083743 overexpression promoted the repair of SNC. In conclusion, LncRNA BC083743 promotes SC proliferation and the axon regeneration through miR-103-3p/BDNF after SNC.
Collapse
Affiliation(s)
- Lin Gao
- Department of Neurological Intensive Care Unit
| | - Aiqin Feng
- Department of Clinical Medicine Laboratory, The Affiliated Huaihe Hospital of Henan University, Kaifeng, China
| | - Peijian Yue
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Liu
- Department of Neurological Intensive Care Unit
| | - Qiaoyu Zhou
- Department of Neurological Intensive Care Unit
| | | | | |
Collapse
|
11
|
Hazard D, Plisson-Petit F, Moreno-Romieux C, Fabre S, Drouilhet L. Genetic Determinism Exists for the Global DNA Methylation Rate in Sheep. Front Genet 2021; 11:616960. [PMID: 33424937 PMCID: PMC7786236 DOI: 10.3389/fgene.2020.616960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 01/21/2023] Open
Abstract
Recent studies showed that epigenetic marks, including DNA methylation, influence production and adaptive traits in plants and animals. So far, most studies dealing with genetics and epigenetics considered DNA methylation sites independently. However, the genetic basis of the global DNA methylation rate (GDMR) remains unknown. The main objective of the present study was to investigate genetic determinism of GDMR in sheep. The experiment was conducted on 1,047 Romane sheep allocated into 10 half-sib families. After weaning, all the lambs were phenotyped for global GDMR in blood as well as for production and adaptive traits. GDMR was measured by LUminometric Methylation Analysis (LUMA) using a pyrosequencing approach. Association analyses were conducted on some of the lambs (n = 775) genotyped by using the Illumina OvineSNP50 BeadChip. Blood GDMR varied among the animals (average 70.7 ± 6.0%). Female lambs had significantly higher GDMR than male lambs. Inter-individual variability of blood GDMR had an additive genetic component and heritability was moderate (h2 = 0.20 ± 0.05). No significant genetic correlation was found between GDMR and growth or carcass traits, birthcoat, or social behaviors. Association analyses revealed 28 QTLs associated with blood GDMR. Seven genomic regions on chromosomes 1, 5, 11, 17, 24, and 26 were of most interest due to either high significant associations with GDMR or to the relevance of genes located close to the QTLs. QTL effects were moderate. Genomic regions associated with GDMR harbored several genes not yet described as being involved in DNA methylation, but some are already known to play an active role in gene expression. In addition, some candidate genes, CHD1, NCO3A, KDM8, KAT7, and KAT6A have previously been described to be involved in epigenetic modifications. In conclusion, the results of the present study indicate that blood GDMR in domestic sheep is under polygenic influence and provide new insights into DNA methylation genetic determinism.
Collapse
Affiliation(s)
- Dominique Hazard
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | | | | | - Stéphane Fabre
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | | |
Collapse
|
12
|
Ross J, Miron CE, Plescia J, Laplante P, McBride K, Moitessier N, Möröy T. Targeting MYC: From understanding its biology to drug discovery. Eur J Med Chem 2020; 213:113137. [PMID: 33460833 DOI: 10.1016/j.ejmech.2020.113137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/06/2023]
Abstract
The MYC oncogene is considered to be a high priority target for clinical intervention in cancer patients due to its aberrant activation in more than 50% of human cancers. Direct small molecule inhibition of MYC has traditionally been hampered by its intrinsically disordered nature and lack of both binding site and enzymatic activity. In recent years, however, a number of strategies for indirectly targeting MYC have emerged, guided by the advent of protein structural information and the growing set of computational tools that can be used to accelerate the hit to lead process in medicinal chemistry. In this review, we provide an overview of small molecules developed for clinical applications of these strategies, which include stabilization of the MYC guanine quadruplex, inhibition of BET factor BRD4, and disruption of the MYC:MAX heterodimer. The recent identification of novel targets for indirect MYC inhibition at the protein level is also discussed.
Collapse
Affiliation(s)
- Julie Ross
- Institut de recherches cliniques de Montréal (IRCM), 110 Pine Ave W., Montréal, Québec, H2W 1R7, Canada
| | - Caitlin E Miron
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec, H3A 0B8, Canada
| | - Jessica Plescia
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec, H3A 0B8, Canada
| | - Patricia Laplante
- AmorChem II Ventures Inc., 4 Westmount Sq. Bureau 160, Westmount, Québec, H3Z 2S6, Canada
| | - Kevin McBride
- AmorChem II Ventures Inc., 4 Westmount Sq. Bureau 160, Westmount, Québec, H3Z 2S6, Canada
| | - Nicolas Moitessier
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec, H3A 0B8, Canada.
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal (IRCM), 110 Pine Ave W., Montréal, Québec, H2W 1R7, Canada; Département de microbiologie, infectiologie et immunologie, Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada; Division of Experimental Medicine, McGill University, 801 Sherbrooke St. W., Montréal, Québec, H3A 0B8, Canada.
| |
Collapse
|
13
|
Wang Z, Liu D, Xu B, Tian R, Zuo Y. Modular arrangements of sequence motifs determine the functional diversity of KDM proteins. Brief Bioinform 2020; 22:5912575. [PMID: 32987405 DOI: 10.1093/bib/bbaa215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Histone lysine demethylases (KDMs) play a vital role in regulating chromatin dynamics and transcription. KDM proteins are given modular activities by its sequence motifs with obvious roles division, which endow the complex and diverse functions. In our review, according to functional features, we classify sequence motifs into four classes: catalytic motifs, targeting motifs, regulatory motifs and potential motifs. JmjC, as the main catalytic motif, combines to Fe2+ and α-ketoglutarate by residues H-D/E-H and S-N-N/Y-K-N/Y-T/S. Targeting motifs make catalytic motifs recognize specific methylated lysines, such as PHD that helps KDM5 to demethylate H3K4me3. Regulatory motifs consist of a functional network. For example, NLS, Ser-rich, TPR and JmjN motifs regulate the nuclear localization. And interactions through the CW-type-C4H2C2-SWIRM are necessary to the demethylase activity of KDM1B. Additionally, many conservative domains that have potential functions but no deep exploration are reviewed for the first time. These conservative domains are usually amino acid-rich regions, which have great research value. The arrangements of four types of sequence motifs generate that KDM proteins diversify toward modular activities and biological functions. Finally, we draw a blueprint of functional mechanisms to discuss the modular activity of KDMs.
Collapse
Affiliation(s)
- Zerong Wang
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University
| | - Dongyang Liu
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University. He is now studying for a master's degree at the institute of botany of the Chinese Academy of Sciences. His research interests include bioinformatics and computational genomics
| | - Baofang Xu
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University
| | - Ruixia Tian
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University
| | - Yongchun Zuo
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University. His research interests include bioinformatics and integration analysis of multiomics in cell reprogramming
| |
Collapse
|
14
|
Duman M, Martinez-Moreno M, Jacob C, Tapinos N. Functions of histone modifications and histone modifiers in Schwann cells. Glia 2020; 68:1584-1595. [PMID: 32034929 DOI: 10.1002/glia.23795] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 01/25/2023]
Abstract
Schwann cells (SCs) are the main glial cells present in the peripheral nervous system (PNS). Their primary functions are to insulate peripheral axons to protect them from the environment and to enable fast conduction of electric signals along big caliber axons by enwrapping them in a thick myelin sheath rich in lipids. In addition, SCs have the peculiar ability to foster axonal regrowth after a lesion by demyelinating and converting into repair cells that secrete neurotrophic factors and guide axons back to their former target to finally remyelinate regenerated axons. The different steps of SC development and their role in the maintenance of PNS integrity and regeneration after lesion are controlled by various factors among which transcription factors and chromatin-remodeling enzymes hold major functions. In this review, we discussed how histone modifications and histone-modifying enzymes control SC development, maintenance of PNS integrity and response to injury. The functions of histone modifiers as part of chromatin-remodeling complexes are discussed in another review published in the same issue of Glia.
Collapse
Affiliation(s)
- Mert Duman
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Margot Martinez-Moreno
- Department of Neurosurgery, Molecular Neuroscience & Neuro-Oncology Laboratory, Brown University, Providence, Rhode Island
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nikos Tapinos
- Department of Neurosurgery, Molecular Neuroscience & Neuro-Oncology Laboratory, Brown University, Providence, Rhode Island
| |
Collapse
|
15
|
Zaghi M, Broccoli V, Sessa A. H3K36 Methylation in Neural Development and Associated Diseases. Front Genet 2020; 10:1291. [PMID: 31998360 PMCID: PMC6962298 DOI: 10.3389/fgene.2019.01291] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Post-translational methylation of H3 lysine 36 (H3K36) is an important epigenetic marker that majorly contributes to the functionality of the chromatin. This mark is interpreted by the cell in several crucial biological processes including gene transcription and DNA methylation. The homeostasis of H3K36 methylation is finely regulated by different enzyme classes which, when impaired, lead to a plethora of diseases; ranging from multi-organ syndromes to cancer, to pure neurological diseases often associated with brain development. This mini-review summarizes current knowledge on these important epigenetic signals with emphasis on the molecular mechanisms that (i) regulate their abundance, (ii) are influenced by H3K36 methylation, and (iii) the associated diseases.
Collapse
Affiliation(s)
- Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,Concilio Nazionale Delle Ricerche (CNR), Instituto di Neuroscienze, Milan, Italy
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
16
|
Fuhrmann D, Elsässer HP. Schwann cell Myc-interacting zinc-finger protein 1 without pox virus and zinc finger: epigenetic implications in a peripheral neuropathy. Neural Regen Res 2018; 13:1534-1537. [PMID: 30127108 PMCID: PMC6126141 DOI: 10.4103/1673-5374.235221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Functionality of adult peripheral nerves essentially relies on differentiation of Schwann cells during postnatal development, as well as fine-tuned re- and transdifferentiation in response to peripheral nerve injury. Epigenetic histone modifications play a major role during the differentiation of embryonic stem cells and diverse organ specific progenitor cells, yet only little is known about the epigenetic regulation of Schwann cells. Just recently, Fuhrmann et al. reported how the transcription factor Myc-interacting zinc-finger protein 1 (Miz1) might contribute to Schwann cell differentiation through repression of the histone demethylase Kdm8. Here, we discuss the potential novel role of Miz1 in Schwann cell differentiation and give a short overview about previously reported histone modifications underlying peripheral nerve development and response to injury.
Collapse
Affiliation(s)
- David Fuhrmann
- Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, Marburg, Germany
| | - Hans-Peter Elsässer
- Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|