1
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard J, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. A synergistic workspace for human consciousness revealed by Integrated Information Decomposition. eLife 2024; 12:RP88173. [PMID: 39022924 PMCID: PMC11257694 DOI: 10.7554/elife.88173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Pedro AM Mediano
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Center for Complexity Science, Imperial College LondonLondonUnited Kingdom
- Data Science Institute, Imperial College LondonLondonUnited Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - John Pickard
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Psychedelics Division - Neuroscape, Department of Neurology, University of CaliforniaSan FranciscoUnited States
| | - Guy B Williams
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Michael M Craig
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Paola Finoia
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Adrian M Owen
- Department of Psychology and Department of Physiology and Pharmacology, The Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity CollegeDublinIreland
| | - David K Menon
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Bor
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
2
|
Luppi AI, Rosas FE, Mediano PAM, Demertzi A, Menon DK, Stamatakis EA. Unravelling consciousness and brain function through the lens of time, space, and information. Trends Neurosci 2024; 47:551-568. [PMID: 38824075 DOI: 10.1016/j.tins.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Disentangling how cognitive functions emerge from the interplay of brain dynamics and network architecture is among the major challenges that neuroscientists face. Pharmacological and pathological perturbations of consciousness provide a lens to investigate these complex challenges. Here, we review how recent advances about consciousness and the brain's functional organisation have been driven by a common denominator: decomposing brain function into fundamental constituents of time, space, and information. Whereas unconsciousness increases structure-function coupling across scales, psychedelics may decouple brain function from structure. Convergent effects also emerge: anaesthetics, psychedelics, and disorders of consciousness can exhibit similar reconfigurations of the brain's unimodal-transmodal functional axis. Decomposition approaches reveal the potential to translate discoveries across species, with computational modelling providing a path towards mechanistic integration.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, QC, Canada; St John's College, University of Cambridge, Cambridge, UK; Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
| | - Fernando E Rosas
- Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Informatics, University of Sussex, Brighton, UK; Center for Psychedelic Research, Imperial College London, London, UK
| | | | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium; National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Bolam J, Diaz JA, Andrews M, Coats RO, Philiastides MG, Astill SL, Delis I. A drift diffusion model analysis of age-related impact on multisensory decision-making processes. Sci Rep 2024; 14:14895. [PMID: 38942761 PMCID: PMC11213863 DOI: 10.1038/s41598-024-65549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/20/2024] [Indexed: 06/30/2024] Open
Abstract
Older adults (OAs) are typically slower and/or less accurate in forming perceptual choices relative to younger adults. Despite perceptual deficits, OAs gain from integrating information across senses, yielding multisensory benefits. However, the cognitive processes underlying these seemingly discrepant ageing effects remain unclear. To address this knowledge gap, 212 participants (18-90 years old) performed an online object categorisation paradigm, whereby age-related differences in Reaction Times (RTs) and choice accuracy between audiovisual (AV), visual (V), and auditory (A) conditions could be assessed. Whereas OAs were slower and less accurate across sensory conditions, they exhibited greater RT decreases between AV and V conditions, showing a larger multisensory benefit towards decisional speed. Hierarchical Drift Diffusion Modelling (HDDM) was fitted to participants' behaviour to probe age-related impacts on the latent multisensory decision formation processes. For OAs, HDDM demonstrated slower evidence accumulation rates across sensory conditions coupled with increased response caution for AV trials of higher difficulty. Notably, for trials of lower difficulty we found multisensory benefits in evidence accumulation that increased with age, but not for trials of higher difficulty, in which increased response caution was instead evident. Together, our findings reconcile age-related impacts on multisensory decision-making, indicating greater multisensory evidence accumulation benefits with age underlying enhanced decisional speed.
Collapse
Affiliation(s)
- Joshua Bolam
- School of Biomedical Sciences, University of Leeds, West Yorkshire, LS2 9JT, UK.
- Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PX31, Ireland.
| | - Jessica A Diaz
- School of Biomedical Sciences, University of Leeds, West Yorkshire, LS2 9JT, UK
- School of Social Sciences, Birmingham City University, West Midlands, B15 3HE, UK
| | - Mark Andrews
- School of Social Sciences, Nottingham Trent University, Nottinghamshire, NG1 4FQ, UK
| | - Rachel O Coats
- School of Psychology, University of Leeds, West Yorkshire, LS2 9JT, UK
| | - Marios G Philiastides
- School of Neuroscience and Psychology, University of Glasgow, Lanarkshire, G12 8QB, UK
| | - Sarah L Astill
- School of Biomedical Sciences, University of Leeds, West Yorkshire, LS2 9JT, UK
| | - Ioannis Delis
- School of Biomedical Sciences, University of Leeds, West Yorkshire, LS2 9JT, UK.
| |
Collapse
|
4
|
Luppi AI, Rosas FE, Mediano PAM, Menon DK, Stamatakis EA. Information decomposition and the informational architecture of the brain. Trends Cogn Sci 2024; 28:352-368. [PMID: 38199949 DOI: 10.1016/j.tics.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 01/12/2024]
Abstract
To explain how the brain orchestrates information-processing for cognition, we must understand information itself. Importantly, information is not a monolithic entity. Information decomposition techniques provide a way to split information into its constituent elements: unique, redundant, and synergistic information. We review how disentangling synergistic and redundant interactions is redefining our understanding of integrative brain function and its neural organisation. To explain how the brain navigates the trade-offs between redundancy and synergy, we review converging evidence integrating the structural, molecular, and functional underpinnings of synergy and redundancy; their roles in cognition and computation; and how they might arise over evolution and development. Overall, disentangling synergistic and redundant information provides a guiding principle for understanding the informational architecture of the brain and cognition.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK; Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK; Centre for Complexity Science, Imperial College London, London, UK; Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - David K Menon
- Department of Medicine, University of Cambridge, Cambridge, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Narasimhan S, Schriver BJ, Wang Q. Adaptive decision-making depends on pupil-linked arousal in rats performing tactile discrimination tasks. J Neurophysiol 2023; 130:1541-1551. [PMID: 37964751 PMCID: PMC11068411 DOI: 10.1152/jn.00309.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Perceptual decision-making is a dynamic cognitive process and is shaped by many factors, including behavioral state, reward contingency, and sensory environment. To understand the extent to which adaptive behavior in decision-making is dependent on pupil-linked arousal, we trained head-fixed rats to perform perceptual decision-making tasks and systematically manipulated the probability of Go and No-go stimuli while simultaneously measuring their pupil size in the tasks. Our data demonstrated that the animals adaptively modified their behavior in response to the changes in the sensory environment. The response probability to both Go and No-go stimuli decreased as the probability of the Go stimulus being presented decreased. Analyses within the signal detection theory framework showed that while the animals' perceptual sensitivity was invariant, their decision criterion increased as the probability of the Go stimulus decreased. Simulation results indicated that the adaptive increase in the decision criterion will increase possible water rewards during the task. Moreover, the adaptive decision-making is dependent on pupil-linked arousal as the increase in the decision criterion was the largest during low pupil-linked arousal periods. Taken together, our results demonstrated that the rats were able to adjust their decision-making to maximize rewards in the tasks, and that adaptive behavior in perceptual decision-making is dependent on pupil-linked arousal.NEW & NOTEWORTHY Perceptual decision-making is a dynamic cognitive process and is shaped by many factors. However, the extent to which changes in sensory environment result in adaptive decision-making remains poorly understood. Our data provided new experimental evidence demonstrating that the rats were able to adaptively modify their decision criterion to maximize water reward in response to changes in the statistics of the sensory environment. Furthermore, the adaptive decision-making is dependent on pupil-linked arousal.
Collapse
Affiliation(s)
- Shreya Narasimhan
- Department of Biomedical Engineering, Columbia University, New York City, New York, United States
| | - Brian J Schriver
- Department of Biomedical Engineering, Columbia University, New York City, New York, United States
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York City, New York, United States
| |
Collapse
|
6
|
Zhao L, Zhao Y, Su D, Lv Z, Xie F, Hu P, Porter KLA, Mazzei I, Chin JD, Wang Y, Fang Y. Cognitive Functions in Patients with Moderate-to-Severe Obstructive Sleep Apnea Syndrome with Emphasis on Executive Functions and Decision-Making. Brain Sci 2023; 13:1436. [PMID: 37891804 PMCID: PMC10605234 DOI: 10.3390/brainsci13101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/16/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Patients with obstructive sleep apnea syndrome (OSAS) have cognitive dysfunction in many aspects, however, these patients' decision-making function remains unclear. In this study, the Game of Dice Task (GDT) was used to investigate the function of decision making in patients with OSAS. METHODS 30 participants with moderate to severe OSAS and 27 participants with no or mild OSAS diagnosed by sleep breathing monitor were selected from June 2021 to March 2022. Risky decision making was tested through the GDT with known risk probability. General demographic information and background cognitive functions, such as the overall cognitive functioning and executive functioning, were tested to establish baseline data. RESULTS There were no significant differences in gender, age, and years of education between the two groups. During the GDT, the moderate to severe OSAS group opted for the safety option at a statistically significant lower rate when compared to the no or mild OSAS group (7.53 ± 4.43 vs. 10.26 ± 4.26, p = 0.022). The moderate to severe OSAS group utilized the higher risk option than the group with no or mild OSAS (10.47 ± 4.43 vs. 7.74 ± 4.26, p = 0.022). The utilization rate of negative feedback in the moderate and severe OSAS group was lower than that in the no or mild OSAS group (7.50, 52.50 vs. 28.57, 100.00, p = 0.001). At the end of the GDT, the moderate and severe OSAS group was more likely to have negative total assets than the patients with no or mild OSAS (-1846.67 ± 2587.20 vs. 300.00 ± 1509.97, p < 0.001). Multiple linear regression analysis shows that there is a negative correlation between the selection of risk options and negative feedback utilization in the GDT. CONCLUSION Patients with moderate and severe OSAS displayed impaired decision-making throughout the study. Impaired decision-making is related to executive processes and may be caused by diminished prefrontal cortex functioning. However, the functions of memory, attention, language, abstraction, and orientation are relatively retained.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Respiratory Medicine, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Heifei 230011, China; (L.Z.); (Y.Z.); (D.S.); (Z.L.)
| | - Yanyan Zhao
- Department of Respiratory Medicine, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Heifei 230011, China; (L.Z.); (Y.Z.); (D.S.); (Z.L.)
| | - Dongmei Su
- Department of Respiratory Medicine, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Heifei 230011, China; (L.Z.); (Y.Z.); (D.S.); (Z.L.)
| | - Zhi Lv
- Department of Respiratory Medicine, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Heifei 230011, China; (L.Z.); (Y.Z.); (D.S.); (Z.L.)
| | - Fei Xie
- Neurology Department of Neurology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Heifei 230011, China;
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Heifei 230022, China;
| | - Kierstin L. A. Porter
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA; (K.L.A.P.); (I.M.); (J.D.C.)
| | - Isabella Mazzei
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA; (K.L.A.P.); (I.M.); (J.D.C.)
| | - Jaeson D. Chin
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA; (K.L.A.P.); (I.M.); (J.D.C.)
| | - Yongsheng Wang
- Department of Respiratory Medicine, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Heifei 230011, China; (L.Z.); (Y.Z.); (D.S.); (Z.L.)
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA; (K.L.A.P.); (I.M.); (J.D.C.)
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
7
|
Weiss E, Kann M, Wang Q. Neuromodulation of Neural Oscillations in Health and Disease. BIOLOGY 2023; 12:371. [PMID: 36979063 PMCID: PMC10045166 DOI: 10.3390/biology12030371] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Using EEG and local field potentials (LFPs) as an index of large-scale neural activities, research has been able to associate neural oscillations in different frequency bands with markers of cognitive functions, goal-directed behavior, and various neurological disorders. While this gives us a glimpse into how neurons communicate throughout the brain, the causality of these synchronized network activities remains poorly understood. Moreover, the effect of the major neuromodulatory systems (e.g., noradrenergic, cholinergic, and dopaminergic) on brain oscillations has drawn much attention. More recent studies have suggested that cross-frequency coupling (CFC) is heavily responsible for mediating network-wide communication across subcortical and cortical brain structures, implicating the importance of neurotransmitters in shaping coordinated actions. By bringing to light the role each neuromodulatory system plays in regulating brain-wide neural oscillations, we hope to paint a clearer picture of the pivotal role neural oscillations play in a variety of cognitive functions and neurological disorders, and how neuromodulation techniques can be optimized as a means of controlling neural network dynamics. The aim of this review is to showcase the important role that neuromodulatory systems play in large-scale neural network dynamics, informing future studies to pay close attention to their involvement in specific features of neural oscillations and associated behaviors.
Collapse
Affiliation(s)
| | | | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA
| |
Collapse
|
8
|
Pastore A, Tomassini A, Delis I, Dolfini E, Fadiga L, D'Ausilio A. Speech listening entails neural encoding of invisible articulatory features. Neuroimage 2022; 264:119724. [PMID: 36328272 DOI: 10.1016/j.neuroimage.2022.119724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Speech processing entails a complex interplay between bottom-up and top-down computations. The former is reflected in the neural entrainment to the quasi-rhythmic properties of speech acoustics while the latter is supposed to guide the selection of the most relevant input subspace. Top-down signals are believed to originate mainly from motor regions, yet similar activities have been shown to tune attentional cycles also for simpler, non-speech stimuli. Here we examined whether, during speech listening, the brain reconstructs articulatory patterns associated to speech production. We measured electroencephalographic (EEG) data while participants listened to sentences during the production of which articulatory kinematics of lips, jaws and tongue were also recorded (via Electro-Magnetic Articulography, EMA). We captured the patterns of articulatory coordination through Principal Component Analysis (PCA) and used Partial Information Decomposition (PID) to identify whether the speech envelope and each of the kinematic components provided unique, synergistic and/or redundant information regarding the EEG signals. Interestingly, tongue movements contain both unique as well as synergistic information with the envelope that are encoded in the listener's brain activity. This demonstrates that during speech listening the brain retrieves highly specific and unique motor information that is never accessible through vision, thus leveraging audio-motor maps that arise most likely from the acquisition of speech production during development.
Collapse
Affiliation(s)
- A Pastore
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Department of Neuroscience and Rehabilitation, Università di Ferrara, Ferrara, Italy.
| | - A Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - I Delis
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - E Dolfini
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Department of Neuroscience and Rehabilitation, Università di Ferrara, Ferrara, Italy
| | - L Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Department of Neuroscience and Rehabilitation, Università di Ferrara, Ferrara, Italy
| | - A D'Ausilio
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Department of Neuroscience and Rehabilitation, Università di Ferrara, Ferrara, Italy.
| |
Collapse
|
9
|
Herzog R, Rosas FE, Whelan R, Fittipaldi S, Santamaria-Garcia H, Cruzat J, Birba A, Moguilner S, Tagliazucchi E, Prado P, Ibanez A. Genuine high-order interactions in brain networks and neurodegeneration. Neurobiol Dis 2022; 175:105918. [PMID: 36375407 PMCID: PMC11195446 DOI: 10.1016/j.nbd.2022.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Brain functional networks have been traditionally studied considering only interactions between pairs of regions, neglecting the richer information encoded in higher orders of interactions. In consequence, most of the connectivity studies in neurodegeneration and dementia use standard pairwise metrics. Here, we developed a genuine high-order functional connectivity (HOFC) approach that captures interactions between 3 or more regions across spatiotemporal scales, delivering a more biologically plausible characterization of the pathophysiology of neurodegeneration. We applied HOFC to multimodal (electroencephalography [EEG], and functional magnetic resonance imaging [fMRI]) data from patients diagnosed with behavioral variant of frontotemporal dementia (bvFTD), Alzheimer's disease (AD), and healthy controls. HOFC revealed large effect sizes, which, in comparison to standard pairwise metrics, provided a more accurate and parsimonious characterization of neurodegeneration. The multimodal characterization of neurodegeneration revealed hypo and hyperconnectivity on medium to large-scale brain networks, with a larger contribution of the former. Regions as the amygdala, the insula, and frontal gyrus were associated with both effects, suggesting potential compensatory processes in hub regions. fMRI revealed hypoconnectivity in AD between regions of the default mode, salience, visual, and auditory networks, while in bvFTD between regions of the default mode, salience, and somatomotor networks. EEG revealed hypoconnectivity in the γ band between frontal, limbic, and sensory regions in AD, and in the δ band between frontal, temporal, parietal and posterior areas in bvFTD, suggesting additional pathophysiological processes that fMRI alone can not capture. Classification accuracy was comparable with standard biomarkers and robust against confounders such as sample size, age, education, and motor artifacts (from fMRI and EEG). We conclude that high-order interactions provide a detailed, EEG- and fMRI compatible, biologically plausible, and psychopathological-specific characterization of different neurodegenerative conditions.
Collapse
Affiliation(s)
- Rubén Herzog
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Fundación para el Estudio de la Conciencia Humana (EcoH), Chile
| | - Fernando E Rosas
- Fundación para el Estudio de la Conciencia Humana (EcoH), Chile; Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, UK; Data Science Institute, Imperial College London, UK; Centre for Complexity Science, Imperial College London, UK; Department of Informatics, University of Sussex, Brighton, UK
| | - Robert Whelan
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin 2, Ireland
| | - Sol Fittipaldi
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin 2, Ireland; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
| | | | - Josephine Cruzat
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Fundación para el Estudio de la Conciencia Humana (EcoH), Chile
| | - Agustina Birba
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
| | - Sebastian Moguilner
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Enzo Tagliazucchi
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
| | - Pavel Prado
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
| | - Agustin Ibanez
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin 2, Ireland; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), CA, USA.
| |
Collapse
|
10
|
Intermodulation from Unisensory to Multisensory Perception: A Review. Brain Sci 2022; 12:brainsci12121617. [PMID: 36552077 PMCID: PMC9775412 DOI: 10.3390/brainsci12121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Previous intermodulation (IM) studies have employed two (or more) temporal modulations of a stimulus, with different local elements of the stimulus being modulated by different frequencies. Brain activities of IM obtained mainly from electroencephalograms (EEG) have been analyzed in the frequency domain. As a powerful tool, IM, which can provide a direct and objective physiological measure of neural interaction, has emerged as a promising method to decipher neural interactions in visual perception, and reveal the underlying different perceptual processing levels. In this review, we summarize the recent applications of IM in visual perception, detail the protocols and types of IM, and extend its utility and potential applications to the multisensory domain. We propose that using IM could prevail in partially revealing the potential hierarchical processing of multisensory information and contribute to a deeper understanding of the underlying brain dynamics.
Collapse
|