1
|
Vilkhu RS, Vasireddy PK, Kish KE, Gogliettino AR, Lotlikar A, Hottowy P, Dabrowski W, Sher A, Litke AM, Mitra S, Chichilnisky EJ. Understanding responses to multi-electrode epiretinal stimulation using a biophysical model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608829. [PMID: 39229196 PMCID: PMC11370456 DOI: 10.1101/2024.08.20.608829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Objective Neural interfaces are designed to evoke specific patterns of electrical activity in populations of neurons by stimulating with many electrodes. However, currents passed simultaneously through multiple electrodes often combine nonlinearly to drive neural responses, making evoked responses difficult to predict and control. This response nonlinearity could arise from the interaction of many excitable sites in each cell, any of which can produce a spike. However, this multi-site activation hypothesis is difficult to verify experimentally. Approach We developed a biophysical model to study retinal ganglion cell (RGC) responses to multi-electrode stimulation and validated it using data collected from ex vivo preparations of the macaque retina using a microelectrode array (512 electrodes; 30µm pitch; 10µm diameter). Results First, the model was validated by using it to reproduce essential empirical findings from single-electrode recording and stimulation, including recorded spike voltage waveforms at multiple locations and sigmoidal responses to injected current. Then, stimulation with two electrodes was modeled to test how the positioning of the electrodes relative to the cell affected the degree of response nonlinearity. Currents passed through pairs of electrodes positioned near the cell body or far from the axon (>40 µm) exhibited approximately linear summation in evoking spikes. Currents passed through pairs of electrodes close to the axon summed linearly when their locations along the axon were similar, and nonlinearly otherwise. Over a range of electrode placements, several distinct, localized spike initiation sites were observed, and the number of these sites covaried with the degree of response nonlinearity. Similar trends were observed for three-electrode stimuli. All of these trends in the simulation were consistent with experimental observations. Significance . These findings support the multi-site activation hypothesis for nonlinear activation of neurons, providing a biophysical interpretation of previous experimental results and potentially enabling more efficient use of multi-electrode stimuli in future neural implants.
Collapse
|
2
|
Shokri M, Gogliettino AR, Hottowy P, Sher A, Litke AM, Chichilnisky EJ, Pequito S, Muratore D. Spike sorting in the presence of stimulation artifacts: a dynamical control systems approach. J Neural Eng 2024; 21:016022. [PMID: 38271715 PMCID: PMC10853761 DOI: 10.1088/1741-2552/ad228f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/08/2023] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
Objective. Bi-directional electronic neural interfaces, capable of both electrical recording and stimulation, communicate with the nervous system to permit precise calibration of electrical inputs by capturing the evoked neural responses. However, one significant challenge is that stimulation artifacts often mask the actual neural signals. To address this issue, we introduce a novel approach that employs dynamical control systems to detect and decipher electrically evoked neural activity despite the presence of electrical artifacts.Approach. Our proposed method leverages the unique spatiotemporal patterns of neural activity and electrical artifacts to distinguish and identify individual neural spikes. We designed distinctive dynamical models for both the stimulation artifact and each neuron observed during spontaneous neural activity. We can estimate which neurons were active by analyzing the recorded voltage responses across multiple electrodes post-stimulation. This technique also allows us to exclude signals from electrodes heavily affected by stimulation artifacts, such as the stimulating electrode itself, yet still accurately differentiate between evoked spikes and electrical artifacts.Main results. We applied our method to high-density multi-electrode recordings from the primate retina in anex vivosetup, using a grid of 512 electrodes. Through repeated electrical stimulations at varying amplitudes, we were able to construct activation curves for each neuron. The curves obtained with our method closely resembled those derived from manual spike sorting. Additionally, the stimulation thresholds we estimated strongly agreed with those determined through manual analysis, demonstrating high reliability (R2=0.951for human 1 andR2=0.944for human 2).Significance. Our method can effectively separate evoked neural spikes from stimulation artifacts by exploiting the distinct spatiotemporal propagation patterns captured by a dense, large-scale multi-electrode array. This technique holds promise for future applications in real-time closed-loop stimulation systems and for managing multi-channel stimulation strategies.
Collapse
Affiliation(s)
- Mohammad Shokri
- Delft Center for Systems and Control, Delft University of Technology, Delft 2628 CN, The Netherlands
| | - Alex R Gogliettino
- Neurosciences PhD Program, Stanford University, Stanford, CA 94305, United States of America
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, United States of America
| | - Paweł Hottowy
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA, United States of America
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA, United States of America
| | - E J Chichilnisky
- Departments of Neurosurgery and Ophthalmology, Stanford University, Stanford, CA 94305, United States of America
| | - Sérgio Pequito
- Division of Systems and Control, Department of Information Technology, Uppsala University, 751 05 Uppsala, Sweden
| | - Dante Muratore
- Microelectronics Department, Delft University of Technology, Delft 2628 CN, The Netherlands
| |
Collapse
|
3
|
Gogliettino AR, Madugula SS, Grosberg LE, Vilkhu RS, Brown J, Nguyen H, Kling A, Hottowy P, Dąbrowski W, Sher A, Litke AM, Chichilnisky EJ. High-Fidelity Reproduction of Visual Signals by Electrical Stimulation in the Central Primate Retina. J Neurosci 2023; 43:4625-4641. [PMID: 37188516 PMCID: PMC10286946 DOI: 10.1523/jneurosci.1091-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
Electrical stimulation of retinal ganglion cells (RGCs) with electronic implants provides rudimentary artificial vision to people blinded by retinal degeneration. However, current devices stimulate indiscriminately and therefore cannot reproduce the intricate neural code of the retina. Recent work has demonstrated more precise activation of RGCs using focal electrical stimulation with multielectrode arrays in the peripheral macaque retina, but it is unclear how effective this can be in the central retina, which is required for high-resolution vision. This work probes the neural code and effectiveness of focal epiretinal stimulation in the central macaque retina, using large-scale electrical recording and stimulation ex vivo The functional organization, light response properties, and electrical properties of the major RGC types in the central retina were mostly similar to the peripheral retina, with some notable differences in density, kinetics, linearity, spiking statistics, and correlations. The major RGC types could be distinguished by their intrinsic electrical properties. Electrical stimulation targeting parasol cells revealed similar activation thresholds and reduced axon bundle activation in the central retina, but lower stimulation selectivity. Quantitative evaluation of the potential for image reconstruction from electrically evoked parasol cell signals revealed higher overall expected image quality in the central retina. An exploration of inadvertent midget cell activation suggested that it could contribute high spatial frequency noise to the visual signal carried by parasol cells. These results support the possibility of reproducing high-acuity visual signals in the central retina with an epiretinal implant.SIGNIFICANCE STATEMENT Artificial restoration of vision with retinal implants is a major treatment for blindness. However, present-day implants do not provide high-resolution visual perception, in part because they do not reproduce the natural neural code of the retina. Here, we demonstrate the level of visual signal reproduction that is possible with a future implant by examining how accurately responses to electrical stimulation of parasol retinal ganglion cells can convey visual signals. Although the precision of electrical stimulation in the central retina was diminished relative to the peripheral retina, the quality of expected visual signal reconstruction in parasol cells was greater. These findings suggest that visual signals could be restored with high fidelity in the central retina using a future retinal implant.
Collapse
Affiliation(s)
- Alex R Gogliettino
- Neurosciences PhD Program, Stanford University, Stanford, California 94305
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
| | - Sasidhar S Madugula
- Neurosciences PhD Program, Stanford University, Stanford, California 94305
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Stanford School of Medicine, Stanford University, Stanford, California 94305
| | - Lauren E Grosberg
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
| | - Ramandeep S Vilkhu
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Electrical Engineering, Stanford University, Stanford, California 94305
| | - Jeff Brown
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
- Department of Electrical Engineering, Stanford University, Stanford, California 94305
| | - Huy Nguyen
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
| | - Alexandra Kling
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
| | - Paweł Hottowy
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059, Kraków, Poland
| | - Władysław Dąbrowski
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059, Kraków, Poland
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California 95064
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California 95064
| | - E J Chichilnisky
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
- Department of Electrical Engineering, Stanford University, Stanford, California 94305
- Department of Ophthalmology, Stanford University, Stanford, California 94305
| |
Collapse
|