1
|
Li Q, Chen G, Yan J. Transmembrane determinants of voltage-gating differences between BK (Slo1) and Slo3 channels. Biophys J 2024; 123:2154-2166. [PMID: 38637987 PMCID: PMC11309983 DOI: 10.1016/j.bpj.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/01/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Voltage-gated potassium channels are critical in modulating cellular excitability, with Slo (slowpoke) channels forming a unique family characterized by their large conductance and dual regulation by electrical signals and intracellular messengers. Despite their structural and evolutionary similarities, Slo1 and Slo3 channels exhibit significant differences in their voltage-gating properties. This study investigates the molecular determinants that differentiate the voltage-gating properties of human Slo1 and mouse Slo3 channels. Utilizing Slo1/Slo3 chimeras, we pinpointed the selectivity filter region as a key factor in the Slo3 channel's reduced conductance at negative voltages. The S6 transmembrane (TM) segment was identified as pivotal for the Slo3 channel's biphasic deactivation kinetics at these voltages. Additionally, the S4 and S6 TM segments were found to be responsible for the gradual slope in the Slo3 channel's conductance-voltage relationship, while multiple TM regions appear to be involved in the Slo3 channel's requirement of strong depolarization for activation. Mutations in the Slo1's S5 and S6 TM segments revealed three residues (I233, L302, and M304) that likely play a crucial role in the allosteric coupling between the voltage sensors and the pore gate.
Collapse
Affiliation(s)
- Qin Li
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; Molecular & Translational Biology and Neuroscience Programs, MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Guanxing Chen
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; Molecular & Translational Biology and Neuroscience Programs, MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; Molecular & Translational Biology and Neuroscience Programs, MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
2
|
Kallure GS, Pal K, Zhou Y, Lingle CJ, Chowdhury S. High-resolution structures illuminate key principles underlying voltage and LRRC26 regulation of Slo1 channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572542. [PMID: 38187713 PMCID: PMC10769243 DOI: 10.1101/2023.12.20.572542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Multi-modal regulation of Slo1 channels by membrane voltage, intracellular calcium, and auxiliary subunits enables its pleiotropic physiological functions. Our understanding of how voltage impacts Slo1 conformational dynamics and the mechanisms by which auxiliary subunits, particularly of the LRRC (Leucine Rich Repeat containing) family of proteins, modulate its voltage gating remain unresolved. Here, we used single particle cryo-electron microscopy to determine structures of human Slo1 mutants which functionally stabilize the closed pore (F315A) or the activated voltage-sensor (R207A). Our structures, obtained under calcium-free conditions, reveal that a key step in voltage-sensing by Slo1 involves a rotameric flip of the voltage-sensing charges (R210 and R213) moving them by ∼6 Å across a hydrophobic gasket. Next we obtained reconstructions of a complex of human Slo1 with the human LRRC26 (γ1) subunit in absence of calcium. Together with extensive biochemical tests, we show that the extracellular domains of γ1 form a ring of interlocked dominos that stabilizes the quaternary assembly of the complex and biases Slo1:γ1 assembly towards high stoichiometric complexes. The transmembrane helix of γ1 is kinked and tightly packed against the Slo1 voltage-sensor. We hypothesize that γ1 subunits exert relatively small effects on early steps in voltage-gating but structurally stabilize non-S4 helices of Slo1 voltage-sensor which energetically facilitate conformational rearrangements that occur late in voltage stimulated transitions.
Collapse
|
3
|
Nordquist E, Zhang G, Barethiya S, Ji N, White KM, Han L, Jia Z, Shi J, Cui J, Chen J. Incorporating physics to overcome data scarcity in predictive modeling of protein function: A case study of BK channels. PLoS Comput Biol 2023; 19:e1011460. [PMID: 37713443 PMCID: PMC10529646 DOI: 10.1371/journal.pcbi.1011460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/27/2023] [Accepted: 08/24/2023] [Indexed: 09/17/2023] Open
Abstract
Machine learning has played transformative roles in numerous chemical and biophysical problems such as protein folding where large amount of data exists. Nonetheless, many important problems remain challenging for data-driven machine learning approaches due to the limitation of data scarcity. One approach to overcome data scarcity is to incorporate physical principles such as through molecular modeling and simulation. Here, we focus on the big potassium (BK) channels that play important roles in cardiovascular and neural systems. Many mutants of BK channel are associated with various neurological and cardiovascular diseases, but the molecular effects are unknown. The voltage gating properties of BK channels have been characterized for 473 site-specific mutations experimentally over the last three decades; yet, these functional data by themselves remain far too sparse to derive a predictive model of BK channel voltage gating. Using physics-based modeling, we quantify the energetic effects of all single mutations on both open and closed states of the channel. Together with dynamic properties derived from atomistic simulations, these physical descriptors allow the training of random forest models that could reproduce unseen experimentally measured shifts in gating voltage, ∆V1/2, with a RMSE ~ 32 mV and correlation coefficient of R ~ 0.7. Importantly, the model appears capable of uncovering nontrivial physical principles underlying the gating of the channel, including a central role of hydrophobic gating. The model was further evaluated using four novel mutations of L235 and V236 on the S5 helix, mutations of which are predicted to have opposing effects on V1/2 and suggest a key role of S5 in mediating voltage sensor-pore coupling. The measured ∆V1/2 agree quantitatively with prediction for all four mutations, with a high correlation of R = 0.92 and RMSE = 18 mV. Therefore, the model can capture nontrivial voltage gating properties in regions where few mutations are known. The success of predictive modeling of BK voltage gating demonstrates the potential of combining physics and statistical learning for overcoming data scarcity in nontrivial protein function prediction.
Collapse
Affiliation(s)
- Erik Nordquist
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Guohui Zhang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Shrishti Barethiya
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Nathan Ji
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Kelli M. White
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Lu Han
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
4
|
Nordquist E, Zhang G, Barethiya S, Ji N, White KM, Han L, Jia Z, Shi J, Cui J, Chen J. Incorporating physics to overcome data scarcity in predictive modeling of protein function: a case study of BK channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.24.546384. [PMID: 37425916 PMCID: PMC10327070 DOI: 10.1101/2023.06.24.546384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Machine learning has played transformative roles in numerous chemical and biophysical problems such as protein folding where large amount of data exists. Nonetheless, many important problems remain challenging for data-driven machine learning approaches due to the limitation of data scarcity. One approach to overcome data scarcity is to incorporate physical principles such as through molecular modeling and simulation. Here, we focus on the big potassium (BK) channels that play important roles in cardiovascular and neural systems. Many mutants of BK channel are associated with various neurological and cardiovascular diseases, but the molecular effects are unknown. The voltage gating properties of BK channels have been characterized for 473 site-specific mutations experimentally over the last three decades; yet, these functional data by themselves remain far too sparse to derive a predictive model of BK channel voltage gating. Using physics-based modeling, we quantify the energetic effects of all single mutations on both open and closed states of the channel. Together with dynamic properties derived from atomistic simulations, these physical descriptors allow the training of random forest models that could reproduce unseen experimentally measured shifts in gating voltage, ΔV 1/2 , with a RMSE ∼ 32 mV and correlation coefficient of R ∼ 0.7. Importantly, the model appears capable of uncovering nontrivial physical principles underlying the gating of the channel, including a central role of hydrophobic gating. The model was further evaluated using four novel mutations of L235 and V236 on the S5 helix, mutations of which are predicted to have opposing effects on V 1/2 and suggest a key role of S5 in mediating voltage sensor-pore coupling. The measured ΔV 1/2 agree quantitatively with prediction for all four mutations, with a high correlation of R = 0.92 and RMSE = 18 mV. Therefore, the model can capture nontrivial voltage gating properties in regions where few mutations are known. The success of predictive modeling of BK voltage gating demonstrates the potential of combining physics and statistical learning for overcoming data scarcity in nontrivial protein function prediction. Author Summary Deep machine learning has brought many exciting breakthroughs in chemistry, physics and biology. These models require large amount of training data and struggle when the data is scarce. The latter is true for predictive modeling of the function of complex proteins such as ion channels, where only hundreds of mutational data may be available. Using the big potassium (BK) channel as a biologically important model system, we demonstrate that a reliable predictive model of its voltage gating property could be derived from only 473 mutational data by incorporating physics-derived features, which include dynamic properties from molecular dynamics simulations and energetic quantities from Rosetta mutation calculations. We show that the final random forest model captures key trends and hotspots in mutational effects of BK voltage gating, such as the important role of pore hydrophobicity. A particularly curious prediction is that mutations of two adjacent residues on the S5 helix would always have opposite effects on the gating voltage, which was confirmed by experimental characterization of four novel mutations. The current work demonstrates the importance and effectiveness of incorporating physics in predictive modeling of protein function with scarce data.
Collapse
Affiliation(s)
- Erik Nordquist
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Guohui Zhang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shrishti Barethiya
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Nathan Ji
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Kelli M White
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lu Han
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
5
|
Sun L, Horrigan FT. A gating lever and molecular logic gate that couple voltage and calcium sensor activation to opening in BK potassium channels. SCIENCE ADVANCES 2022; 8:eabq5772. [PMID: 36516264 PMCID: PMC9750137 DOI: 10.1126/sciadv.abq5772] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
BK channels uniquely integrate voltage and calcium signaling in diverse cell types through allosteric activation of their K+-conducting pore by structurally distinct V and Ca2+ sensor domains. Here, we define mechanisms and interaction pathways that link V sensors to the pore by analyzing effects on allosteric coupling of point mutations in the context of Slo1 BK channel structure. A gating lever, mediated by S4/S5 segment interaction within the transmembrane domain, rotates to engage and stabilize the open conformation of the S6 inner pore helix upon V sensor activation. In addition, an indirect pathway, mediated by the carboxyl-terminal cytosolic domain (CTD) and C-linker that connects the CTD to S6, stabilizes the closed conformation when V sensors are at rest. Unexpectedly, this mechanism, which bypasses the covalent connections of C-linker to CTD and pore, also transduces Ca2+-dependent coupling in a manner that is completely nonadditive with voltage, analogous to the function of a digital logic (OR) gate.
Collapse
Affiliation(s)
- Liang Sun
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Frank T. Horrigan
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Zhang G, Xu X, Jia Z, Geng Y, Liang H, Shi J, Marras M, Abella C, Magleby KL, Silva JR, Chen J, Zou X, Cui J. An allosteric modulator activates BK channels by perturbing coupling between Ca 2+ binding and pore opening. Nat Commun 2022; 13:6784. [PMID: 36351900 PMCID: PMC9646747 DOI: 10.1038/s41467-022-34359-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
BK type Ca2+-activated K+ channels activate in response to both voltage and Ca2+. The membrane-spanning voltage sensor domain (VSD) activation and Ca2+ binding to the cytosolic tail domain (CTD) open the pore across the membrane, but the mechanisms that couple VSD activation and Ca2+ binding to pore opening are not clear. Here we show that a compound, BC5, identified from in silico screening, interacts with the CTD-VSD interface and specifically modulates the Ca2+ dependent activation mechanism. BC5 activates the channel in the absence of Ca2+ binding but Ca2+ binding inhibits BC5 effects. Thus, BC5 perturbs a pathway that couples Ca2+ binding to pore opening to allosterically affect both, which is further supported by atomistic simulations and mutagenesis. The results suggest that the CTD-VSD interaction makes a major contribution to the mechanism of Ca2+ dependent activation and is an important site for allosteric agonists to modulate BK channel activation.
Collapse
Affiliation(s)
- Guohui Zhang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, USA
| | - Xianjin Xu
- Dalton Cardiovascular Research Center, University of Missouri - Columbia, Columbia, MO, USA.,Department of Physics and Astronomy, University of Missouri - Columbia, Columbia, MO, USA.,Department of Biochemistry, University of Missouri - Columbia, Columbia, MO, USA.,Institute for Data Science and Informatics, University of Missouri - Columbia, Columbia, MO, USA
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA.,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Yanyan Geng
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hongwu Liang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, USA
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, USA
| | - Martina Marras
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, USA
| | - Carlota Abella
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, USA
| | - Karl L Magleby
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonathan R Silva
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, USA.
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA. .,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA.
| | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, University of Missouri - Columbia, Columbia, MO, USA. .,Department of Physics and Astronomy, University of Missouri - Columbia, Columbia, MO, USA. .,Department of Biochemistry, University of Missouri - Columbia, Columbia, MO, USA. .,Institute for Data Science and Informatics, University of Missouri - Columbia, Columbia, MO, USA.
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, USA.
| |
Collapse
|
7
|
Carrasquel-Ursulaez W, Segura I, Díaz-Franulic I, Márquez-Miranda V, Echeverría F, Lorenzo-Ceballos Y, Espinoza N, Rojas M, Garate JA, Perozo E, Alvarez O, Gonzalez-Nilo FD, Latorre R. Mechanism of voltage sensing in Ca 2+- and voltage-activated K + (BK) channels. Proc Natl Acad Sci U S A 2022; 119:e2204620119. [PMID: 35704760 PMCID: PMC9231616 DOI: 10.1073/pnas.2204620119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
In neurosecretion, allosteric communication between voltage sensors and Ca2+ binding in BK channels is crucially involved in damping excitatory stimuli. Nevertheless, the voltage-sensing mechanism of BK channels is still under debate. Here, based on gating current measurements, we demonstrate that two arginines in the transmembrane segment S4 (R210 and R213) function as the BK gating charges. Significantly, the energy landscape of the gating particles is electrostatically tuned by a network of salt bridges contained in the voltage sensor domain (VSD). Molecular dynamics simulations and proton transport experiments in the hyperpolarization-activated R210H mutant suggest that the electric field drops off within a narrow septum whose boundaries are defined by the gating charges. Unlike Kv channels, the charge movement in BK appears to be limited to a small displacement of the guanidinium moieties of R210 and R213, without significant movement of the S4.
Collapse
Affiliation(s)
- Willy Carrasquel-Ursulaez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ignacio Segura
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ignacio Díaz-Franulic
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Valeria Márquez-Miranda
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Santiago, Chile, 8580745
| | - Felipe Echeverría
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Yenisleidy Lorenzo-Ceballos
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Nicolás Espinoza
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Maximiliano Rojas
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Jose Antonio Garate
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Millennium Nucleus in NanoBioPhysics, Valparaíso 2340000, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7810000, Chile
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637
| | - Osvaldo Alvarez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7810000, Chile
| | - Fernando D. Gonzalez-Nilo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Ramón Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
8
|
Cui J. BK Channel Gating Mechanisms: Progresses Toward a Better Understanding of Variants Linked Neurological Diseases. Front Physiol 2021; 12:762175. [PMID: 34744799 PMCID: PMC8567085 DOI: 10.3389/fphys.2021.762175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/01/2021] [Indexed: 12/21/2022] Open
Abstract
The large conductance Ca2+-activated potassium (BK) channel is activated by both membrane potential depolarization and intracellular Ca2+ with distinct mechanisms. Neural physiology is sensitive to the function of BK channels, which is shown by the discoveries of neurological disorders that are associated with BK channel mutations. This article reviews the molecular mechanisms of BK channel activation in response to voltage and Ca2+ binding, including the recent progress since the publication of the atomistic structure of the whole BK channel protein, and the neurological disorders associated with BK channel mutations. These results demonstrate the unique mechanisms of BK channel activation and that these mechanisms are important factors in linking BK channel mutations to neurological disorders.
Collapse
Affiliation(s)
- Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, United States
| |
Collapse
|
9
|
Yazdani M, Zhang G, Jia Z, Shi J, Cui J, Chen J. Aromatic interactions with membrane modulate human BK channel activation. eLife 2020; 9:55571. [PMID: 32597752 PMCID: PMC7371421 DOI: 10.7554/elife.55571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/28/2020] [Indexed: 12/22/2022] Open
Abstract
Large-conductance potassium (BK) channels are transmembrane (TM) proteins that can be synergistically and independently activated by membrane voltage and intracellular Ca2+. The only covalent connection between the cytosolic Ca2+ sensing domain and the TM pore and voltage sensing domains is a 15-residue ‘C-linker’. To determine the linker’s role in human BK activation, we designed a series of linker sequence scrambling mutants to suppress potential complex interplay of specific interactions with the rest of the protein. The results revealed a surprising sensitivity of BK activation to the linker sequence. Combining atomistic simulations and further mutagenesis experiments, we demonstrated that nonspecific interactions of the linker with membrane alone could directly modulate BK activation. The C-linker thus plays more direct roles in mediating allosteric coupling between BK domains than previously assumed. Our results suggest that covalent linkers could directly modulate TM protein function and should be considered an integral component of the sensing apparatus.
Collapse
Affiliation(s)
- Mahdieh Yazdani
- Department of Chemistry, University of Massachusetts, Amherst, United States
| | - Guohui Zhang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St Louis, United States
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts, Amherst, United States
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St Louis, United States
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St Louis, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, United States.,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| |
Collapse
|
10
|
Large-conductance Ca 2+- and voltage-gated K + channels form and break interactions with membrane lipids during each gating cycle. Proc Natl Acad Sci U S A 2019; 116:8591-8596. [PMID: 30967508 DOI: 10.1073/pnas.1901381116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane depolarization and intracellular Ca2+ promote activation of the large-conductance Ca2+- and voltage-gated (Slo1) big potassium (BK) channel. We examined the physical interactions that stabilize the closed and open conformations of the ion conduction gate of the human Slo1 channel using electrophysiological and computational approaches. The results show that the closed conformation is stabilized by intersubunit ion-ion interactions involving negative residues (E321 and E324) and positive residues (329RKK331) at the cytoplasmic ends of the transmembrane S6 segments ("RKK ring"). When the channel gate is open, the RKK ring is broken and the positive residues instead make electrostatic interactions with nearby membrane lipid oxygen atoms. E321 and E324 are stabilized by water. When the 329RKK331 residues are mutated to hydrophobic amino acids, these residues form even stronger hydrophobic interactions with the lipid tails to promote the open conformation, shifting the voltage dependence of activation to the negative direction by up to 400 mV and stabilizing the selectivity filter region. Thus, the RKK segment forms electrostatic interactions with oxygen atoms from two sources, other amino acid residues (E321/E324), and membrane lipids, depending on the gate status. Each time the channel opens and closes, the aforementioned interactions are formed and broken. This lipid-dependent Slo1 gating may explain how amphipathic signaling molecules and pharmacologically active agents influence the channel activity, and a similar mechanism may be operative in other ion channels.
Collapse
|
11
|
Miranda P, Holmgren M, Giraldez T. Voltage-dependent dynamics of the BK channel cytosolic gating ring are coupled to the membrane-embedded voltage sensor. eLife 2018; 7:40664. [PMID: 30526860 PMCID: PMC6301790 DOI: 10.7554/elife.40664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
In humans, large conductance voltage- and calcium-dependent potassium (BK) channels are regulated allosterically by transmembrane voltage and intracellular Ca2+. Divalent cation binding sites reside within the gating ring formed by two Regulator of Conductance of Potassium (RCK) domains per subunit. Using patch-clamp fluorometry, we show that Ca2+ binding to the RCK1 domain triggers gating ring rearrangements that depend on transmembrane voltage. Because the gating ring is outside the electric field, this voltage sensitivity must originate from coupling to the voltage-dependent channel opening, the voltage sensor or both. Here we demonstrate that alterations of the voltage sensor, either by mutagenesis or regulation by auxiliary subunits, are paralleled by changes in the voltage dependence of the gating ring movements, whereas modifications of the relative open probability are not. These results strongly suggest that conformational changes of RCK1 domains are specifically coupled to the voltage sensor function during allosteric modulation of BK channels.
Collapse
Affiliation(s)
- Pablo Miranda
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Miguel Holmgren
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Teresa Giraldez
- Departamento de Ciencias Medicas Basicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain.,Instituto de Tecnologias Biomedicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
12
|
Zhou Y, Yang H, Cui J, Lingle CJ. Threading the biophysics of mammalian Slo1 channels onto structures of an invertebrate Slo1 channel. J Gen Physiol 2017; 149:985-1007. [PMID: 29025867 PMCID: PMC5677106 DOI: 10.1085/jgp.201711845] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/20/2017] [Indexed: 11/24/2022] Open
Abstract
Zhou et al. consider the biophysics of large-conductance Ca2+-activated Slo1 channels in the context of Aplysia Slo1 structures. For those interested in the machinery of ion channel gating, the Ca2+ and voltage-activated BK K+ channel provides a compelling topic for investigation, by virtue of its dual allosteric regulation by both voltage and intracellular Ca2+ and because its large-single channel conductance facilitates detailed kinetic analysis. Over the years, biophysical analyses have illuminated details of the allosteric regulation of BK channels and revealed insights into the mechanism of BK gating, e.g., inner cavity size and accessibility and voltage sensor-pore coupling. Now the publication of two structures of an Aplysia californica BK channel—one liganded and one metal free—promises to reinvigorate functional studies and interpretation of biophysical results. The new structures confirm some of the previous functional inferences but also suggest new perspectives regarding cooperativity between Ca2+-binding sites and the relationship between voltage- and Ca2+-dependent gating. Here we consider the extent to which the two structures explain previous functional data on pore-domain properties, voltage-sensor motions, and divalent cation binding and activation of the channel.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Anesthesiology, Washington University School of Medicine, St. Louis MO
| | - Huanghe Yang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University, St. Louis, MO
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis MO
| |
Collapse
|
13
|
The temperature dependence of the BK channel activity – kinetics, thermodynamics, and long-range correlations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1805-1814. [DOI: 10.1016/j.bbamem.2017.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/16/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
|
14
|
Sedwick C. Gating ring strengthens marriage of BK channel voltage sensing to pore opening. J Gen Physiol 2017; 149:295. [PMID: 28202492 PMCID: PMC5339516 DOI: 10.1085/jgp.201711768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new JGP study shows that the gating ring helps the voltage-sensing domain open the BK channel's pore.
Collapse
|
15
|
Zhang G, Geng Y, Jin Y, Shi J, McFarland K, Magleby KL, Salkoff L, Cui J. Deletion of cytosolic gating ring decreases gate and voltage sensor coupling in BK channels. J Gen Physiol 2017; 149:373-387. [PMID: 28196879 PMCID: PMC5339509 DOI: 10.1085/jgp.201611646] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/28/2016] [Accepted: 12/28/2016] [Indexed: 12/26/2022] Open
Abstract
Both cellular depolarization and intracellular Ca2+ can gate open large conductance Ca2+-activated K+ channels. Zhang et al. show that the intracellular gating ring, which forms the Ca2+-sensing machinery of the channel, is also required for activated voltage sensors to effectively gate open the pore. Large conductance Ca2+-activated K+ channels (BK channels) gate open in response to both membrane voltage and intracellular Ca2+. The channel is formed by a central pore-gate domain (PGD), which spans the membrane, plus transmembrane voltage sensors and a cytoplasmic gating ring that acts as a Ca2+ sensor. How these voltage and Ca2+ sensors influence the common activation gate, and interact with each other, is unclear. A previous study showed that a BK channel core lacking the entire cytoplasmic gating ring (Core-MT) was devoid of Ca2+ activation but retained voltage sensitivity (Budelli et al. 2013. Proc. Natl. Acad. Sci. USA. http://dx.doi.org/10.1073/pnas.1313433110). In this study, we measure voltage sensor activation and pore opening in this Core-MT channel over a wide range of voltages. We record gating currents and find that voltage sensor activation in this truncated channel is similar to WT but that the coupling between voltage sensor activation and gating of the pore is reduced. These results suggest that the gating ring, in addition to being the Ca2+ sensor, enhances the effective coupling between voltage sensors and the PGD. We also find that removal of the gating ring alters modulation of the channels by the BK channel’s β1 and β2 subunits.
Collapse
Affiliation(s)
- Guohui Zhang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130
| | - Yanyan Geng
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Yakang Jin
- Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou 215123, China
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130
| | - Kelli McFarland
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130
| | - Karl L Magleby
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Lawrence Salkoff
- Department of Anatomy and Neurobiology (Department of Neuroscience), Washington University School of Medicine in St. Louis, St. Louis, MO 63110.,Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130 .,Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou 215123, China
| |
Collapse
|
16
|
Yan Z, Hu B, Huang Z, Zhong L, Guo X, Weng A, Xiao F, Zeng W, Zhang Y, Ding J, Hou P. Single Channel Recordings Reveal Differential β2 Subunit Modulations Between Mammalian and Drosophila BKCa(β2) Channels. PLoS One 2016; 11:e0163308. [PMID: 27755549 PMCID: PMC5068790 DOI: 10.1371/journal.pone.0163308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 09/07/2016] [Indexed: 12/23/2022] Open
Abstract
Large-conductance Ca2+- and voltage-activated potassium (BK) channels are widely expressed in tissues. As a voltage and calcium sensor, BK channels play significant roles in regulating the action potential frequency, neurotransmitter release, and smooth muscle contraction. After associating with the auxiliary β2 subunit, mammalian BK(β2) channels (mouse or human Slo1/β2) exhibit enhanced activation and complete inactivation. However, how the β2 subunit modulates the Drosophila Slo1 channel remains elusive. In this study, by comparing the different functional effects on heterogeneous BK(β2) channel, we found that Drosophila Slo1/β2 channel exhibits “paralyzed”-like and incomplete inactivation as well as slow activation. Further, we determined three different modulations between mammalian and Drosophila BK(β2) channels: 1) dSlo1/β2 doesn’t have complete inactivation. 2) β2(K33,R34,K35) delays the dSlo1/Δ3-β2 channel activation. 3) dSlo1/β2 channel has enhanced pre-inactivation than mSlo1/β2 channel. The results in our study provide insights into the different modulations of β2 subunit between mammalian and Drosophila Slo1/β2 channels and structural basis underlie the activation and pre-inactivation of other BK(β) complexes.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Bin Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhigang Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ling Zhong
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, 63130, United States
| | - Xiying Guo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Anxi Weng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Feng Xiao
- Key Laboratory of Image Processing and Intelligent Control, Huazhong University of Science and Technology, Ministry of Education, Department of Biomedical Engineering, College of Life Science and Technology, Wuhan, Hubei, China
| | - Wenping Zeng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yan Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiuping Ding
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- * E-mail: (PH); (JD)
| | - Panpan Hou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, 63130, United States
- * E-mail: (PH); (JD)
| |
Collapse
|
17
|
Two Ca(2+)-Binding Sites Cooperatively Couple Together in TMEM16A Channel. J Membr Biol 2015; 249:57-63. [PMID: 26708576 DOI: 10.1007/s00232-015-9846-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023]
Abstract
TMEM16A is the molecular basis of calcium-activated chloride channels and shows Ca(2+)-dependent gating. It is critical to understand how the Ca(2+) sensors dynamically control the gate of TMEM16A. However, the detailed mechanism by which the calcium ions bind and open the channel is still obscure. In this study, the authors confirmed that there are two Ca(2+) sensors which cooperatively couple together in TMEM16A. Our data show that mutations at both Ca(2+)-sensitive domains, E447Y and E702Q-E705Q, weaken the Ca(2+) affinity for TMEM16A channel. The EC50 for WT, E447Y, and E702Q-E705Q are 0.53 ± 0.11, 14.5 ± 0.3, and 26.5 ± 3.6 μM, respectively. The triple mutation, including both of the Ca(2+) sensors, E447Y-E702Q-E705Q, with EC50 as 55.6 ± 5.1 μM, results in much further right-shifted dose response curve than the single sensor's mutations (E447Y, E702Q-E705Q) do, which indicates that there is a cooperation between the two Ca(2+)-sensitive domains. We also found that the divalent cations, both Ca(2+) and Sr(2+), share common mechanism of gating the TMEM16A.
Collapse
|
18
|
Leo A, Citraro R, Constanti A, De Sarro G, Russo E. Are big potassium-type Ca2+-activated potassium channels a viable target for the treatment of epilepsy? Expert Opin Ther Targets 2015; 19:911-26. [DOI: 10.1517/14728222.2015.1026258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Yang H, Zhang G, Cui J. BK channels: multiple sensors, one activation gate. Front Physiol 2015; 6:29. [PMID: 25705194 PMCID: PMC4319557 DOI: 10.3389/fphys.2015.00029] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/19/2015] [Indexed: 01/01/2023] Open
Abstract
Ion transport across cell membranes is essential to cell communication and signaling. Passive ion transport is mediated by ion channels, membrane proteins that create ion conducting pores across cell membrane to allow ion flux down electrochemical gradient. Under physiological conditions, majority of ion channel pores are not constitutively open. Instead, structural region(s) within these pores breaks the continuity of the aqueous ion pathway, thereby serves as activation gate(s) to control ions flow in and out. To achieve spatially and temporally regulated ion flux in cells, many ion channels have evolved sensors to detect various environmental stimuli or the metabolic states of the cell and trigger global conformational changes, thereby dynamically operate the opening and closing of their activation gate. The sensors of ion channels can be broadly categorized as chemical sensors and physical sensors to respond to chemical (such as neural transmitters, nucleotides and ions) and physical (such as voltage, mechanical force and temperature) signals, respectively. With the rapidly growing structural and functional information of different types of ion channels, it is now critical to understand how ion channel sensors dynamically control their gates at molecular and atomic level. The voltage and Ca2+ activated BK channels, a K+ channel with an electrical sensor and multiple chemical sensors, provide a unique model system for us to understand how physical and chemical energy synergistically operate its activation gate.
Collapse
Affiliation(s)
- Huanghe Yang
- Ion Channel Research Unit, Duke University Medical Center Durham, NC, USA ; Department of Biochemistry, Duke University Medical Center Durham, NC, USA
| | - Guohui Zhang
- Department of Biomedical Engineering, Washington University in Saint Louis St. Louis, MO, USA
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University in Saint Louis St. Louis, MO, USA ; Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis St. Louis, MO, USA ; Center for The Investigation of Membrane Excitability Disorders, Washington University in Saint Louis St. Louis, MO, USA
| |
Collapse
|
20
|
Geng Y, Magleby KL. Single-channel kinetics of BK (Slo1) channels. Front Physiol 2015; 5:532. [PMID: 25653620 PMCID: PMC4300911 DOI: 10.3389/fphys.2014.00532] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/31/2014] [Indexed: 11/16/2022] Open
Abstract
Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1) channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM) models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD) attached to four surrounding transmembrane voltage sensing domains (VSD) and a large intracellular cytosolic domain (CTD), also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with five closed states on the upper tier and five open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states) to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states.
Collapse
Affiliation(s)
- Yanyan Geng
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine Miami, FL, USA
| | - Karl L Magleby
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine Miami, FL, USA ; Neuroscience Program, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|