1
|
Petrican R, Fornito A, Boyland E. Lifestyle Factors Counteract the Neurodevelopmental Impact of Genetic Risk for Accelerated Brain Aging in Adolescence. Biol Psychiatry 2024; 95:453-464. [PMID: 37393046 DOI: 10.1016/j.biopsych.2023.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND The transition from childhood to adolescence is characterized by enhanced neural plasticity and a consequent susceptibility to both beneficial and adverse aspects of one's milieu. METHODS To understand the implications of the interplay between protective and risk-enhancing factors, we analyzed longitudinal data from the Adolescent Brain Cognitive Development (ABCD) Study (n = 834; 394 female). We probed the maturational correlates of positive lifestyle variables (friendships, parental warmth, school engagement, physical exercise, healthy nutrition) and genetic vulnerability to neuropsychiatric disorders (major depressive disorder, Alzheimer's disease, anxiety disorders, bipolar disorder, schizophrenia) and sought to further elucidate their implications for psychological well-being. RESULTS Genetic risk factors and lifestyle buffers showed divergent relationships with later attentional and interpersonal problems. These effects were mediated by distinguishable functional neurodevelopmental deviations spanning the limbic, default mode, visual, and control systems. More specifically, greater genetic vulnerability was associated with alterations in the normative maturation of areas rich in dopamine (D2), glutamate, and serotonin receptors and of areas with stronger expression of astrocytic and microglial genes, a molecular signature implicated in the brain disorders discussed here. Greater availability of lifestyle buffers predicted deviations in the normative functional development of higher density GABAergic (gamma-aminobutyric acidergic) receptor regions. The two profiles of neurodevelopmental alterations showed complementary roles in protection against psychopathology, which varied with environmental stress levels. CONCLUSIONS Our results underscore the importance of educational involvement and healthy nutrition in attenuating the neurodevelopmental sequelae of genetic risk factors. They also underscore the importance of characterizing early-life biomarkers associated with adult-onset pathologies.
Collapse
Affiliation(s)
- Raluca Petrican
- Institute of Population Health, Department of Psychology, University of Liverpool, Liverpool, United Kingdom.
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Emma Boyland
- Institute of Population Health, Department of Psychology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Li Y, Lu J, Zhang J, Gui W, Xie W. Molecular insights into enriched environments and behavioral improvements in autism: a systematic review and meta-analysis. Front Psychiatry 2024; 15:1328240. [PMID: 38362032 PMCID: PMC10867156 DOI: 10.3389/fpsyt.2024.1328240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Aims Autism is a multifaceted developmental disorder of the nervous system, that necessitates novel therapeutic approaches beyond traditional medications and psychosomatic therapy, such as appropriate sensory integration training. This systematic mapping review aims to synthesize existing knowledge on enriching environmental interventions as an alternative avenue for improving autism, guiding future research and practice. Method A comprehensive search using the terms ASD and Enriched Environment was conducted across PubMed, EMBASE, ISI, Cochrane, and OVID databases. Most of the literature included in this review was derived from animal model experiments, with a particular focus on assessing the effect of EE on autism-like behavior, along with related pathways and molecular mechanisms. Following extensive group discussion and screening, a total of 19 studies were included for analysis. Results Enriched environmental interventions exhibited the potential to induce both behavioral and biochemical changes, ameliorating autism-like behaviors in animal models. These improvements were attributed to the targeting of BDNF-related pathways, enhanced neurogenesis, and the regulation of glial inflammation. Conclusion This paper underscores the positive impact of enriched environmental interventions on autism through a review of existing literature. The findings contribute to a deeper understanding of the underlying brain mechanisms associated with this intervention.
Collapse
Affiliation(s)
- Yutong Li
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jing Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jing Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenxin Gui
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Weijie Xie
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Su J, Huang F, Tian Y, Tian R, Qianqian G, Bello ST, Zeng D, Jendrichovsky P, Lau CG, Xiong W, Yu D, Tortorella M, Chen X, He J. Entorhinohippocampal cholecystokinin modulates spatial learning by facilitating neuroplasticity of hippocampal CA3-CA1 synapses. Cell Rep 2023; 42:113467. [PMID: 37979171 DOI: 10.1016/j.celrep.2023.113467] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/01/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
The hippocampus is broadly impacted by neuromodulations. However, how neuropeptides shape the function of the hippocampus and the related spatial learning and memory remains unclear. Here, we discover the crucial role of cholecystokinin (CCK) in heterosynaptic neuromodulation from the medial entorhinal cortex (MEC) to the hippocampus. Systematic knockout of the CCK gene impairs CA3-CA1 LTP and space-related performance. The MEC provides most of the CCK-positive neurons projecting to the hippocampal region, which potentiates CA3-CA1 long-term plasticity heterosynaptically in a frequency- and NMDA receptor (NMDAR)-dependent manner. Selective inhibition of MEC CCKergic neurons or downregulation of their CCK mRNA levels also impairs CA3-CA1 LTP formation and animals' performance in the water maze. This excitatory extrahippocampal projection releases CCK upon high-frequency excitation and is active during animal exploration. Our results reveal the critical role of entorhinal CCKergic projections in bridging intra- and extrahippocampal circuitry at electrophysiological and behavioral levels.
Collapse
Affiliation(s)
- Junfeng Su
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Fengwen Huang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China.
| | - Yu Tian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Ran Tian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Gao Qianqian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Stephen Temitayo Bello
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China
| | - Dingxaun Zeng
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Peter Jendrichovsky
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - C Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Wenjun Xiong
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Daiguan Yu
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Micky Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China; Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China.
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China.
| |
Collapse
|
4
|
Gonda S, Riedel C, Reiner A, Köhler I, Wahle P. Axons of cortical basket cells originating from dendrites develop higher local complexity than axons emerging from basket cell somata. Development 2023; 150:dev202305. [PMID: 37902086 PMCID: PMC10690106 DOI: 10.1242/dev.202305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Neuronal differentiation is regulated by neuronal activity. Here, we analyzed dendritic and axonal growth of Basket cells (BCs) and non-Basket cells (non-BCs) using sparse transfection of channelrhodopsin-YFP and repetitive optogenetic stimulation in slice cultures of rat visual cortex. Neocortical interneurons often display axon-carrying dendrites (AcDs). We found that the AcDs of BCs and non-BCs were, on average, the most complex dendrites. Further, the AcD configuration had an influence on BC axonal development. Axons originating from an AcD formed denser arborizations with more terminal endings within the dendritic field of the parent cell. Intriguingly, this occurred already in unstimulated BCs, and complexity was not increased further by optogenetic stimulation. However, optogenetic stimulation exerted a growth-promoting effect on axons emerging from BC somata. The axons of non-BCs neither responded to the AcD configuration nor to the optogenetic stimulation. The results suggest that the formation of locally dense BC plexuses is regulated by spontaneous activity. Moreover, in the AcD configuration, the AcD and the axon it carries mutually support each other's growth.
Collapse
Affiliation(s)
- Steffen Gonda
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Christian Riedel
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Andreas Reiner
- Cellular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ina Köhler
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
5
|
El-Demerdash N, Pan T, Choi O, Saraswati M, Koehler RC, Robertson CL, Savonenko A. Importance of Control Groups for Evaluating Long-Term Behavioral and Cognitive Outcomes of Controlled Cortical Impact in Immature Rats. J Neurotrauma 2023; 40:1197-1215. [PMID: 36416234 PMCID: PMC10259614 DOI: 10.1089/neu.2021.0376] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Therapies are limited for pediatric traumatic brain injury (TBI), especially for the very young who can experience long-term consequences to learning, memory, and social behavior. Animal models of pediatric TBI have yielded mechanistic insights, but demonstration of clinically relevant long-term behavioral and/or cognitive deficits has been challenging. We characterized short- and long-term outcomes in a controlled cortical impact (CCI) model of pediatric TBI using a panel of tests between 2 weeks and ∼4 months after injury. Male rats with CCI at postnatal Day (PND) 10 were compared with three control groups: Naïve, Anesthesia, and Craniotomy. Motor testing (PND 25-33), novel object recognition (NOR; PND 40-50), and multiple tasks in water maze (WM; PND 65-100) were followed by social interaction tests (PND 120-140). Anesthesia rats performed the same as Naïve rats in all tasks. TBI rats, when compared with Naïve controls, had functional impairments across most tests studied. The most sensitive cognitive processes affected by TBI included those that required fast one-trial learning (NOR, WM), flexibility of acquired memory traces (reversals in WM), response strategies (WM), or recognition memory in the setting of reciprocal social interactions. Both TBI and Craniotomy groups demonstrated increased rates of decision making across several WM tasks, suggesting disinhibition of motor responses. When the TBI group was compared with the Craniotomy group, however, deficits were detected in a limited number of outcomes. The latter included learning speed (WM), cognitive flexibility (WM), and social recognition memory. Notably, effects of craniotomy, when compared with Naïve controls, spanned across multiple tasks, and in some tasks, could reach the effect sizes observed in TBI. These results highlight the importance of appropriate control groups in pediatric CCI models. In addition, the study demonstrates the high sensitivity of comprehensive cognitive testing to detect long-term effects of early-age craniotomy and TBI and provides a template for future testing of experimental therapies.
Collapse
Affiliation(s)
- Nagat El-Demerdash
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Tiffany Pan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Olivia Choi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Manda Saraswati
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Courtney L. Robertson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Ramsaran AI, Wang Y, Golbabaei A, Aleshin S, de Snoo ML, Yeung BRA, Rashid AJ, Awasthi A, Lau J, Tran LM, Ko SY, Abegg A, Duan LC, McKenzie C, Gallucci J, Ahmed M, Kaushik R, Dityatev A, Josselyn SA, Frankland PW. A shift in the mechanisms controlling hippocampal engram formation during brain maturation. Science 2023; 380:543-551. [PMID: 37141366 DOI: 10.1126/science.ade6530] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The ability to form precise, episodic memories develops with age, with young children only able to form gist-like memories that lack precision. The cellular and molecular events in the developing hippocampus that underlie the emergence of precise, episodic-like memory are unclear. In mice, the absence of a competitive neuronal engram allocation process in the immature hippocampus precluded the formation of sparse engrams and precise memories until the fourth postnatal week, when inhibitory circuits in the hippocampus mature. This age-dependent shift in precision of episodic-like memories involved the functional maturation of parvalbumin-expressing interneurons in subfield CA1 through assembly of extracellular perineuronal nets, which is necessary and sufficient for the onset of competitive neuronal allocation, sparse engram formation, and memory precision.
Collapse
Affiliation(s)
- Adam I Ramsaran
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Ying Wang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Ali Golbabaei
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Stepan Aleshin
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Mitchell L de Snoo
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Bi-Ru Amy Yeung
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Asim J Rashid
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ankit Awasthi
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jocelyn Lau
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Lina M Tran
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Sangyoon Y Ko
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Andrin Abegg
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Lana Chunan Duan
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Cory McKenzie
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Julia Gallucci
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Moriam Ahmed
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rahul Kaushik
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Sheena A Josselyn
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Brain, Mind, & Consciousness Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Paul W Frankland
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Child & Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Wen L, Yang X, Wu Z, Fu S, Zhan Y, Chen Z, Bi D, Shen Y. The complement inhibitor CD59 is required for GABAergic synaptic transmission in the dentate gyrus. Cell Rep 2023; 42:112349. [PMID: 37027303 DOI: 10.1016/j.celrep.2023.112349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Complement-dependent microglia pruning of excitatory synapses has been widely reported in physiological and pathological conditions, with few reports concerning pruning of inhibitory synapses or direct regulation of synaptic transmission by complement components. Here, we report that loss of CD59, an important endogenous inhibitor of the complement system, leads to compromised spatial memory performance. Furthermore, CD59 deficiency impairs GABAergic synaptic transmission in the hippocampal dentate gyrus (DG). This depends on regulation of GABA release triggered by Ca2+ influx through voltage-gated calcium channels (VGCCs) rather than inhibitory synaptic pruning by microglia. Notably, CD59 colocalizes with inhibitory pre-synaptic terminals and regulates SNARE complex assembly. Together, these results demonstrate that the complement regulator CD59 plays an important role in normal hippocampal function.
Collapse
Affiliation(s)
- Lang Wen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoli Yang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zujun Wu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shumei Fu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yaxi Zhan
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zuolong Chen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215000, China
| | - Danlei Bi
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yong Shen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
8
|
Li Z, Chen L, Xu C, Chen Z, Wang Y. Non-invasive sensory neuromodulation in epilepsy: Updates and future perspectives. Neurobiol Dis 2023; 179:106049. [PMID: 36813206 DOI: 10.1016/j.nbd.2023.106049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Epilepsy, one of the most common neurological disorders, often is not well controlled by current pharmacological and surgical treatments. Sensory neuromodulation, including multi-sensory stimulation, auditory stimulation, olfactory stimulation, is a kind of novel noninvasive mind-body intervention and receives continued attention as complementary safe treatment of epilepsy. In this review, we summarize the recent advances of sensory neuromodulation, including enriched environment therapy, music therapy, olfactory therapy, other mind-body interventions, for the treatment of epilepsy based on the evidence from both clinical and preclinical studies. We also discuss their possible anti-epileptic mechanisms on neural circuit level and propose perspectives on possible research directions for future studies.
Collapse
Affiliation(s)
- Zhongxia Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liying Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
9
|
Rukundo P, Feng T, Pham V, Pieraut S. Moderate effect of early-life experience on dentate gyrus function. Mol Brain 2022; 15:92. [PMID: 36411441 PMCID: PMC9677655 DOI: 10.1186/s13041-022-00980-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/06/2022] [Indexed: 11/22/2022] Open
Abstract
The development, maturation, and plasticity of neural circuits are strongly influenced by experience and the interaction of an individual with their environment can have a long-lasting effect on cognitive function. Using an enriched environment (EE) paradigm, we have recently demonstrated that enhancing social, physical, and sensory activity during the pre-weaning time in mice led to an increase of inhibitory and excitatory synapses in the dentate gyrus (DG) of the hippocampus. The structural plasticity induced by experience may affect information processing in the circuit. The DG performs pattern separation, a computation that enables the encoding of very similar and overlapping inputs into dissimilar outputs. In the presented study, we have tested the hypothesis that an EE in juvenile mice will affect DG's functions that are relevant for pattern separation: the decorrelation of the inputs from the entorhinal cortex (EC) and the recruitment of the principal excitatory granule cell (GC) during behavior. First, using a novel slice electrophysiology protocol, we found that the transformation of the incoming signal from the EC afferents by individual GC is moderately affected by EE. We further show that EE does not affect behaviorally induced recruitment of principal excitatory GC. Lastly, using the novel object recognition task, a hippocampus-dependent memory test, we show that the ontogeny of this discrimination task was similar among the EE mice and the controls. Taken together, our work demonstrates that pre-weaning enrichment moderately affects DG function.
Collapse
Affiliation(s)
- Pacifique Rukundo
- grid.266818.30000 0004 1936 914XDepartment of Biology, University of Nevada, Reno, NV 89557 USA
| | - Ting Feng
- grid.266818.30000 0004 1936 914XDepartment of Biology, University of Nevada, Reno, NV 89557 USA
| | - Vincent Pham
- grid.266818.30000 0004 1936 914XDepartment of Biology, University of Nevada, Reno, NV 89557 USA
| | - Simon Pieraut
- grid.266818.30000 0004 1936 914XDepartment of Biology, University of Nevada, Reno, NV 89557 USA
| |
Collapse
|
10
|
Han Y, Yuan M, Guo YS, Shen XY, Gao ZK, Bi X. The role of enriched environment in neural development and repair. Front Cell Neurosci 2022; 16:890666. [PMID: 35936498 PMCID: PMC9350910 DOI: 10.3389/fncel.2022.890666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
In addition to genetic information, environmental factors play an important role in the structure and function of nervous system and the occurrence and development of some nervous system diseases. Enriched environment (EE) can not only promote normal neural development through enhancing neuroplasticity but also play a nerve repair role in restoring functional activities during CNS injury by morphological and cellular and molecular adaptations in the brain. Different stages of development after birth respond to the environment to varying degrees. Therefore, we systematically review the pro-developmental and anti-stress value of EE during pregnancy, pre-weaning, and “adolescence” and analyze the difference in the effects of EE and its sub-components, especially with physical exercise. In our exploration of potential mechanisms that promote neurodevelopment, we have found that not all sub-components exert maximum value throughout the developmental phase, such as animals that do not respond to physical activity before weaning, and that EE is not superior to its sub-components in all respects. EE affects the developing and adult brain, resulting in some neuroplastic changes in the microscopic and macroscopic anatomy, finally contributing to enhanced learning and memory capacity. These positive promoting influences are particularly prominent regarding neural repair after neurobiological disorders. Taking cerebral ischemia as an example, we analyzed the molecular mediators of EE promoting repair from various dimensions. We found that EE does not always lead to positive effects on nerve repair, such as infarct size. In view of the classic issues such as standardization and relativity of EE have been thoroughly discussed, we finally focus on analyzing the essentiality of the time window of EE action and clinical translation in order to devote to the future research direction of EE and rapid and reasonable clinical application.
Collapse
Affiliation(s)
- Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Mei Yuan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yi-Sha Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- *Correspondence: Xia Bi
| |
Collapse
|
11
|
Santos-Terra J, Deckmann I, Schwingel GB, Paz AVC, Gama CS, Bambini-Junior V, Fontes-Dutra M, Gottfried C. Resveratrol prevents long-term structural hippocampal alterations and modulates interneuron organization in an animal model of ASD. Brain Res 2021; 1768:147593. [PMID: 34331907 DOI: 10.1016/j.brainres.2021.147593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 02/07/2023]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by impairments in both communication and social interaction, besides repetitive or stereotyped behavior. Although the etiology is unknown, environmental factors such as valproic acid (VPA) increase the risk of ASD onset. Resveratrol (RSV), a neuroprotective molecule, has been shown to counteract the effects of intrauterine exposure to VPA. We aimed to evaluate histological parameters related to hippocampal morphology and to the distribution of parvalbumin- (PV), calbindin- (CB), and somatostatin-positive (SOM) interneurons sub-populations, in addition to evaluate the total/phosphorylation levels of PTEN, AKT, GSK3β and total CK2 in the animal model of autism induced by VPA, as well as addressing the potential protective effect of RSV. On postnatal day 120, histological analysis showed a loss in total neurons in the dentate gyrus (DG) and decreased CB+ neurons in DG and CA1 in VPA animals, both prevented by RSV. In addition, PV+ neurons were diminished in CA1, CA2, and CA3, and SOM+ were interestingly increased in DG (prevented by RSV) and decreased in CA1 and CA2. A hippocampal lesion similar to sclerosis was also observed in the samples from the VPA group. Besides that, VPA reduced AKT and PTEN immunocontent, and VPA increased CK2 immunocontent. Thus, this work demonstrated long-term effects of prenatal exposure to ASD in different sub-populations of interneurons, structural damage of hippocampus, and also alteration in proteins associated with pivotal cell signaling pathways, highlighting the role of RSV as a tool for understanding the pathophysiology of ASD.
Collapse
Affiliation(s)
- Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Brazil.
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Brazil
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Brazil
| | - André Vinicius Contri Paz
- Laboratory of Molecular Psychiatry, National Science and Technology Institute for Translational Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Clarissa S Gama
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Laboratory of Molecular Psychiatry, National Science and Technology Institute for Translational Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Postgraduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Brazil; School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Brazil
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Brazil.
| |
Collapse
|