1
|
Shahzad I, Occelli V, Giraudet E, Azañón E, Longo MR, Mouraux A, Collignon O. How visual experience shapes body representation. Cognition 2024; 254:105980. [PMID: 39418855 DOI: 10.1016/j.cognition.2024.105980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
We do not have a veridical representation of our body in our mind. For instance, tactile distances of equal measure along the medial-lateral axis of our limbs are generally perceived as larger than those running along the proximal-distal axis. This anisotropy in tactile distances reflects distortions in body-shape representation, such that the body parts are perceived as wider than they are. While the origin of such anisotropy remains unknown, it has been suggested that visual experience could partially play a role in its manifestation. To causally test the role of visual experience on body shape representation, we investigated tactile distance perception in sighted and early blind individuals comparing medial-lateral and proximal-distal tactile distances of stimuli presented on the ventral and dorsal part of the forearm, wrist, and hand. Overestimation of distances in the medial-lateral over proximal-distal body axes were found in both sighted and blind people, but the magnitude of the anisotropy was significantly reduced in the forearms of blind people. We conclude that vision does not drive the emergence of tactile distance anisotropies, but visual experience can however modulate its expression on some specific body parts.
Collapse
Affiliation(s)
- Iqra Shahzad
- Institute of Neuroscience (IoNS), Université Catholique de Louvain, Belgium; Institute for Research in Psychological Sciences (IPSY), Université Catholique de Louvain, Belgium.
| | - Valeria Occelli
- Department of Psychology, Edge Hill University, United Kingdom; Center of Mind/Brain Sciences, University of Trento, Italy
| | - Eléonore Giraudet
- Institute for Research in Psychological Sciences (IPSY), Université Catholique de Louvain, Belgium
| | - Elena Azañón
- Otto von Guericke University, Medical Faculty, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Magdeburg, Germany
| | - Matthew R Longo
- School of Psychological Sciences, Birkbeck, University of London, United Kingdom
| | - André Mouraux
- Institute of Neuroscience (IoNS), Université Catholique de Louvain, Belgium
| | - Olivier Collignon
- Institute of Neuroscience (IoNS), Université Catholique de Louvain, Belgium; Institute for Research in Psychological Sciences (IPSY), Université Catholique de Louvain, Belgium; HES-SO Valais-Wallis, The Sense Innovation and Research Center, Switzerland.
| |
Collapse
|
2
|
Ahulló-Fuster MA, Sánchez-Sánchez ML, Varela-Donoso E, Ortiz T. Early attentional processing and cortical remapping strategies of tactile stimuli in adults with an early and late-onset visual impairment: A cross-sectional study. PLoS One 2024; 19:e0306478. [PMID: 38980866 PMCID: PMC11232978 DOI: 10.1371/journal.pone.0306478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
Neuroplastic changes appear in people with visual impairment (VI) and they show greater tactile abilities. Improvements in performance could be associated with the development of enhanced early attentional processes based on neuroplasticity. Currently, the various early attentional and cortical remapping strategies that are utilized by people with early (EB) and late-onset blindness (LB) remain unclear. Thus, more research is required to develop effective rehabilitation programs and substitution devices. Our objective was to explore the differences in spatial tactile brain processing in adults with EB, LB and a sighted control group (CG). In this cross-sectional study 27 participants with VI were categorized into EB (n = 14) and LB (n = 13) groups. They were then compared with a CG (n = 15). A vibrotactile device and event-related potentials (ERPs) were utilized while participants performed a spatial tactile line recognition task. The P100 latency and cortical areas of maximal activity were analyzed during the task. The three groups had no statistical differences in P100 latency (p>0.05). All subjects showed significant activation in the right superior frontal areas. Only individuals with VI activated the left superior frontal regions. In EB subjects, a higher activation was found in the mid-frontal and occipital areas. A higher activation of the mid-frontal, anterior cingulate cortex and orbitofrontal zones was observed in LB participants. Compared to the CG, LB individuals showed greater activity in the left orbitofrontal zone, while EB exhibited greater activity in the right superior parietal cortex. The EB had greater activity in the left orbitofrontal region compared to the LB. People with VI may not have faster early attentional processing. EB subjects activate the occipital lobe and right superior parietal cortex during tactile stimulation because of an early lack of visual stimuli and a multimodal information processing. In individuals with LB and EB the orbitofrontal area is activated, suggesting greater emotional processing.
Collapse
Affiliation(s)
- Mónica-Alba Ahulló-Fuster
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, Complutense University of Madrid, Madrid, Spain
| | - M. Luz Sánchez-Sánchez
- Physiotherapy in Motion, Multispeciality Research Group (PTinMOTION), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Enrique Varela-Donoso
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, Complutense University of Madrid, Madrid, Spain
| | - Tomás Ortiz
- Department of Legal Medicine, Psychiatry and Pathology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Brown RE. Measuring the replicability of our own research. J Neurosci Methods 2024; 406:110111. [PMID: 38521128 DOI: 10.1016/j.jneumeth.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
In the study of transgenic mouse models of neurodevelopmental and neurodegenerative disorders, we use batteries of tests to measure deficits in behaviour and from the results of these tests, we make inferences about the mental states of the mice that we interpret as deficits in "learning", "memory", "anxiety", "depression", etc. This paper discusses the problems of determining whether a particular transgenic mouse is a valid mouse model of disease X, the problem of background strains, and the question of whether our behavioural tests are measuring what we say they are. The problem of the reliability of results is then discussed: are they replicable between labs and can we replicate our results in our own lab? This involves the study of intra- and inter- experimenter reliability. The variables that influence replicability and the importance of conducting a complete behavioural phenotype: sensory, motor, cognitive and social emotional behaviour are discussed. Then the thorny question of failure to replicate is examined: Is it a curse or a blessing? Finally, the role of failure in research and what it tells us about our research paradigms is examined.
Collapse
Affiliation(s)
- Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
4
|
Radziun D, Korczyk M, Szwed M, Ehrsson HH. Are blind individuals immune to bodily illusions? Somatic rubber hand illusion in the blind revisited. Behav Brain Res 2024; 460:114818. [PMID: 38135190 DOI: 10.1016/j.bbr.2023.114818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Multisensory awareness of one's own body relies on the integration of signals from various sensory modalities such as vision, touch, and proprioception. But how do blind individuals perceive their bodies without visual cues, and does the brain of a blind person integrate bodily senses differently from a sighted person? To address this question, we aimed to replicate the only two previous studies on this topic, which claimed that blind individuals do not experience the somatic rubber hand illusion, a bodily illusion triggered by the integration of correlated tactile and proprioceptive signals from the two hands. We used a larger sample size than the previous studies and added Bayesian analyses to examine statistical evidence in favor of the lack of an illusion effect. Moreover, we employed tests to investigate whether enhanced tactile acuity and cardiac interoceptive accuracy in blind individuals could also explain the weaker illusion. We tested 36 blind individuals and 36 age- and sex-matched sighted volunteers. The results show that blind individuals do not experience the somatic rubber hand illusion based on questionnaire ratings and behavioral measures that assessed changes in hand position sense toward the location of the rubber hand. This conclusion is supported by Bayesian evidence in favor of the null hypothesis. The findings confirm that blind individuals do not experience the somatic rubber hand illusion, indicating that lack of visual experience leads to permanent changes in multisensory bodily perception. In summary, our study suggests that changes in multisensory integration of tactile and proprioceptive signals may explain why blind individuals are "immune" to the nonvisual version of the rubber hand illusion.
Collapse
Affiliation(s)
- Dominika Radziun
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | | | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Klautke J, Foster C, Medendorp WP, Heed T. Dynamic spatial coding in parietal cortex mediates tactile-motor transformation. Nat Commun 2023; 14:4532. [PMID: 37500625 PMCID: PMC10374589 DOI: 10.1038/s41467-023-39959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Movements towards touch on the body require integrating tactile location and body posture information. Tactile processing and movement planning both rely on posterior parietal cortex (PPC) but their interplay is not understood. Here, human participants received tactile stimuli on their crossed and uncrossed feet, dissociating stimulus location relative to anatomy versus external space. Participants pointed to the touch or the equivalent location on the other foot, which dissociates sensory and motor locations. Multi-voxel pattern analysis of concurrently recorded fMRI signals revealed that tactile location was coded anatomically in anterior PPC but spatially in posterior PPC during sensory processing. After movement instructions were specified, PPC exclusively represented the movement goal in space, in regions associated with visuo-motor planning and with regional overlap for sensory, rule-related, and movement coding. Thus, PPC flexibly updates its spatial codes to accommodate rule-based transformation of sensory input to generate movement to environment and own body alike.
Collapse
Affiliation(s)
- Janina Klautke
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Celia Foster
- Biopsychology & Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany
- Center of Excellence in Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - W Pieter Medendorp
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Tobias Heed
- Biopsychology & Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany.
- Center of Excellence in Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany.
- Cognitive Psychology, Department of Psychology, University of Salzburg, Salzburg, Austria.
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
6
|
Moharramipour A, Takahashi T, Kitazawa S. Distinctive modes of cortical communications in tactile temporal order judgment. Cereb Cortex 2023; 33:2982-2996. [PMID: 35811300 DOI: 10.1093/cercor/bhac255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/12/2022] Open
Abstract
Temporal order judgment of two successive tactile stimuli delivered to our hands is often inverted when we cross our hands. The present study aimed to identify time-frequency profiles of the interactions across the cortical network associated with the crossed-hand tactile temporal order judgment task using magnetoencephalography. We found that the interactions across the cortical network were channeled to a low-frequency band (5-10 Hz) when the hands were uncrossed. However, the interactions became activated in a higher band (12-18 Hz) when the hands were crossed. The participants with fewer inverted judgments relied mainly on the higher band, whereas those with more frequent inverted judgments (reversers) utilized both. Moreover, reversers showed greater cortical interactions in the higher band when their judgment was correct compared to when it was inverted. Overall, the results show that the cortical network communicates in two distinctive frequency modes during the crossed-hand tactile temporal order judgment task. A default mode of communications in the low-frequency band encourages inverted judgments, and correct judgment is robustly achieved by recruiting the high-frequency mode.
Collapse
Affiliation(s)
- Ali Moharramipour
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Laboratory for Consciousness, Center for Brain Science (CBS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0106, Japan
| | - Toshimitsu Takahashi
- Department of Physiology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Shigeru Kitazawa
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Brain Physiology, Graduate School of Medicine, Osaka University, 1-3 Yamakaoka, Suita, Osaka 565-0871, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Radziun D, Crucianelli L, Ehrsson HH. Limits of Cross-modal Plasticity? Short-term Visual Deprivation Does Not Enhance Cardiac Interoception, Thermosensation, or Tactile Spatial Acuity. Biol Psychol 2021; 168:108248. [PMID: 34971758 DOI: 10.1016/j.biopsycho.2021.108248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 01/30/2023]
Abstract
In the present study, we investigated the effect of short-term visual deprivation on discriminative touch, cardiac interoception, and thermosensation by asking 64 healthy volunteers to perform four behavioral tasks. The experimental group contained 32 subjects who were blindfolded and kept in complete darkness for 110minutes, while the control group consisted of 32 volunteers who were not blindfolded but were otherwise kept under identical experimental conditions. Both groups performed the required tasks three times: before and directly after deprivation (or control) and after an additional washout period of 40minutes, in which all participants were exposed to normal light conditions. Our results showed that short-term visual deprivation had no effect on any of the senses tested. This finding suggests that short-term visual deprivation does not modulate basic bodily senses and extends this principle beyond tactile processing to the interoceptive modalities of cardiac and thermal sensations.
Collapse
Affiliation(s)
- Dominika Radziun
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Laura Crucianelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Different mechanisms of magnitude and spatial representation for tactile and auditory modalities. Exp Brain Res 2021; 239:3123-3132. [PMID: 34415367 PMCID: PMC8536643 DOI: 10.1007/s00221-021-06196-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/11/2021] [Indexed: 11/04/2022]
Abstract
The human brain creates an external world representation based on magnitude judgments by estimating distance, numerosity, or size. The magnitude and spatial representation are hypothesized to rely on common mechanisms shared by different sensory modalities. We explored the relationship between magnitude and spatial representation using two different sensory systems. We hypothesize that the interaction between space and magnitude is combined differently depending on sensory modalities. Furthermore, we aimed to understand the role of the spatial reference frame in magnitude representation. We used stimulus–response compatibility (SRC) to investigate these processes assuming that performance is improved if stimulus and response share common features. We designed an auditory and tactile SRC task with conflicting spatial and magnitude mapping. Our results showed that sensory modality modulates the relationship between space and magnitude. A larger effect of magnitude over spatial congruency occurred in a tactile task. However, magnitude and space showed similar weight in the auditory task, with neither spatial congruency nor magnitude congruency having a significant effect. Moreover, we observed that the spatial frame activated during tasks was elicited by the sensory inputs. The participants' performance was reversed in the tactile task between uncrossed and crossed hands posture, suggesting an internal coordinate system. In contrast, crossing the hands did not alter performance (i.e., using an allocentric frame of reference). Overall, these results suggest that space and magnitude interaction differ in auditory and tactile modalities, supporting the idea that these sensory modalities use different magnitude and spatial representation mechanisms.
Collapse
|
9
|
Abstract
This study demonstrates evidence for a foundational process underlying active vision in older infants during object play. Using head-mounted eye-tracking and motion capture, looks to an object are shown to be tightly linked to and synchronous with a stilled head, regardless of the duration of gaze, for infants 12 to 24 months of age. Despite being a developmental period of rapid and marked changes in motor abilities, the dynamic coordination of head stabilization and sustained gaze to a visual target is developmentally invariant during the examined age range. The findings indicate that looking with an aligned head and eyes is a fundamental property of human vision and highlights the importance of studying looking behavior in freely moving perceivers in everyday contexts, opening new questions about the role of body movement in both typical and atypical development of visual attention.
Collapse
Affiliation(s)
- Jeremy I Borjon
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.,
| | - Drew H Abney
- Department of Psychology, University of Georgia, Athens, GA, USA.,
| | - Chen Yu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.,Department of Psychology, University of Texas, Austin, TX, USA.,
| | - Linda B Smith
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.,School of Psychology, University of East Anglia, East Anglia, UK.,
| |
Collapse
|
10
|
Moharramipour A, Kitazawa S. What Underlies a Greater Reversal in Tactile Temporal Order Judgment When the Hands Are Crossed? A Structural MRI Study. Cereb Cortex Commun 2021; 2:tgab025. [PMID: 34296170 PMCID: PMC8152922 DOI: 10.1093/texcom/tgab025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 02/02/2023] Open
Abstract
Our subjective temporal order of two successive tactile stimuli, delivered one to each hand, is often inverted when our hands are crossed. However, there is great variability among different individuals. We addressed the question of why some show almost complete reversal, but others show little reversal. To this end, we obtained structural magnetic resonance imaging data from 42 participants who also participated in the tactile temporal order judgment (TOJ) task. We extracted the cortical thickness and the convoluted surface area as cortical characteristics in 68 regions. We found that the participants with a thinner, larger, and more convoluted cerebral cortex in 10 regions, including the right pars-orbitalis, right and left postcentral gyri, left precuneus, left superior parietal lobule, right middle temporal gyrus, left superior temporal gyrus, right cuneus, left supramarginal gyrus, and right rostral middle frontal gyrus, showed a smaller degree of judgment reversal. In light of major theoretical accounts, we suggest that cortical elaboration in the aforementioned regions improve the crossed-hand TOJ performance through better integration of the tactile stimuli with the correct spatial representations in the left parietal regions, better representation of spatial information in the postcentral gyrus, or improvement of top-down inhibitory control by the right pars-orbitalis.
Collapse
Affiliation(s)
- Ali Moharramipour
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Shigeru Kitazawa
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Department of Brain Physiology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Manfron L, Vanderclausen C, Legrain V. No Evidence for an Effect of the Distance Between the Hands on Tactile Temporal Order Judgments. Perception 2021; 50:294-307. [PMID: 33653176 DOI: 10.1177/0301006621998877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Localizing somatosensory stimuli is an important process, as it allows us to spatially guide our actions toward the object entering in contact with the body. Accordingly, the positions of tactile inputs are coded according to both somatotopic and spatiotopic representations, the latter one considering the position of the stimulated limbs in external space. The spatiotopic representation has often been evidenced by means of temporal order judgment (TOJ) tasks. Participants' judgments about the order of appearance of two successive somatosensory stimuli are less accurate when the hands are crossed over the body midline than uncrossed but also when participants' hands are placed close together when compared with farther away. Moreover, these postural effects might depend on the vision of the stimulated limbs. The aim of this study was to test the influence of seeing the hands, on the modulation of tactile TOJ by the spatial distance between the stimulated limbs. The results showed no influence of the distance between the stimulated hands on TOJ performance and prevent us from concluding whether vision of the hands affects TOJ performance, or whether these variables interact. The reliability of such distance effect to investigate the spatial representations of tactile inputs is questioned.
Collapse
|
12
|
Röder B, Kekunnaya R, Guerreiro MJS. Neural mechanisms of visual sensitive periods in humans. Neurosci Biobehav Rev 2020; 120:86-99. [PMID: 33242562 DOI: 10.1016/j.neubiorev.2020.10.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/08/2020] [Indexed: 01/18/2023]
Abstract
Sensitive periods in brain development are phases of enhanced susceptibility to experience. Here we discuss research from human and non-human neuroscience studies which have demonstrated a) differences in the way infants vs. adults learn; b) how the brain adapts to atypical conditions, in particular a congenital vs. a late onset blindness (sensitive periods for atypical brain development); and c) the extent to which neural systems are capable of acquiring a typical brain organization after sight restoration following a congenital vs. late phase of pattern vision deprivation (sensitive periods for typical brain development). By integrating these three lines of research, we propose neural mechanisms characteristic of sensitive periods vs. adult neuroplasticity and learning.
Collapse
Affiliation(s)
- Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, Germany.
| | - Ramesh Kekunnaya
- Jasti V Ramanamma Children's Eye Care Center, LV Prasad Eye Institute, Hyderabad, India
| | | |
Collapse
|
13
|
Crollen V, Collignon O. How visual is the « number sense »? Insights from the blind. Neurosci Biobehav Rev 2020; 118:290-297. [PMID: 32711006 DOI: 10.1016/j.neubiorev.2020.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/18/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Is vision a necessary building block for the foundations of mathematical cognition? A straightforward model to test the causal role visual experience plays in the development of numerical abilities is to study people born without sight. In this review we will demonstrate that congenitally blind people can develop numerical abilities that equal or even surpass those of sighted individuals, despite representing numbers using a qualitatively different representational format. We will also show that numerical thinking in blind people maps onto regions typically involved in visuo-spatial processing in the sighted, highlighting how intrinsic computational biases may constrain the reorganization of numerical networks in case of early visual deprivation. More generally, we will illustrate how the study of arithmetic abilities in congenitally blind people represents a compelling model to understand how sensory experience scaffolds the development of higher-level cognitive representations.
Collapse
Affiliation(s)
- Virginie Crollen
- Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348 Louvain-la-Neuve, Belgium.
| | - Olivier Collignon
- Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348 Louvain-la-Neuve, Belgium; Center for Mind/Brain Sciences, University of Trento, Trento, Italy.
| |
Collapse
|
14
|
Gaglianese A, Branco MP, Groen IIA, Benson NC, Vansteensel MJ, Murray MM, Petridou N, Ramsey NF. Electrocorticography Evidence of Tactile Responses in Visual Cortices. Brain Topogr 2020; 33:559-570. [PMID: 32661933 PMCID: PMC7429547 DOI: 10.1007/s10548-020-00783-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/28/2020] [Indexed: 01/30/2023]
Abstract
There is ongoing debate regarding the extent to which human cortices are specialized for processing a given sensory input versus a given type of information, independently of the sensory source. Many neuroimaging and electrophysiological studies have reported that primary and extrastriate visual cortices respond to tactile and auditory stimulation, in addition to visual inputs, suggesting these cortices are intrinsically multisensory. In particular for tactile responses, few studies have proven neuronal processes in visual cortex in humans. Here, we assessed tactile responses in both low-level and extrastriate visual cortices using electrocorticography recordings in a human participant. Specifically, we observed significant spectral power increases in the high frequency band (30-100 Hz) in response to tactile stimuli, reportedly associated with spiking neuronal activity, in both low-level visual cortex (i.e. V2) and in the anterior part of the lateral occipital-temporal cortex. These sites were both involved in processing tactile information and responsive to visual stimulation. More generally, the present results add to a mounting literature in support of task-sensitive and sensory-independent mechanisms underlying functions like spatial, motion, and self-processing in the brain and extending from higher-level as well as to low-level cortices.
Collapse
Affiliation(s)
- Anna Gaglianese
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, University Hospital Center, University of Lausanne, Rue Centrale 7, Lausanne, 1003, Switzerland.
- Department of Neurosurgery and Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Mariana P Branco
- Department of Neurosurgery and Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Iris I A Groen
- Department of Psychology, New York University, Washington Place 6, New York, 10003, NY, USA
| | - Noah C Benson
- Department of Psychology, New York University, Washington Place 6, New York, 10003, NY, USA
- eScience Institute, University of Washington, 15th Ave NE, Seattle, 98195, WA, USA
| | - Mariska J Vansteensel
- Department of Neurosurgery and Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Micah M Murray
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, University Hospital Center, University of Lausanne, Rue Centrale 7, Lausanne, 1003, Switzerland
- Sensory, Perceptual and Cognitive Neuroscience Section, Center for Biomedical Imaging (CIBM), Station 6, Lausanne, 1015, Switzerland
- Ophthalmology Service, Fondation Asile des aveugles and University of Lausanne, Avenue de France 15, Lausanne, 1004, Switzerland
- Department of Hearing and Speech Sciences, Vanderbilt University, 21st Avenue South 1215, Nashville, 37232, TN, USA
| | - Natalia Petridou
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Nick F Ramsey
- Department of Neurosurgery and Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
15
|
Battal C, Occelli V, Bertonati G, Falagiarda F, Collignon O. General Enhancement of Spatial Hearing in Congenitally Blind People. Psychol Sci 2020; 31:1129-1139. [PMID: 32846109 DOI: 10.1177/0956797620935584] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vision is thought to support the development of spatial abilities in the other senses. If this is true, how does spatial hearing develop in people lacking visual experience? We comprehensively addressed this question by investigating auditory-localization abilities in 17 congenitally blind and 17 sighted individuals using a psychophysical minimum-audible-angle task that lacked sensorimotor confounds. Participants were asked to compare the relative position of two sound sources located in central and peripheral, horizontal and vertical, or frontal and rear spaces. We observed unequivocal enhancement of spatial-hearing abilities in congenitally blind people, irrespective of the field of space that was assessed. Our results conclusively demonstrate that visual experience is not a prerequisite for developing optimal spatial-hearing abilities and that, in striking contrast, the lack of vision leads to a general enhancement of auditory-spatial skills.
Collapse
Affiliation(s)
- Ceren Battal
- Institute for Research in Psychology, Institute of Neuroscience, Université Catholique de Louvain.,Center for Mind/Brain Sciences, University of Trento
| | | | | | - Federica Falagiarda
- Institute for Research in Psychology, Institute of Neuroscience, Université Catholique de Louvain
| | - Olivier Collignon
- Institute for Research in Psychology, Institute of Neuroscience, Université Catholique de Louvain.,Center for Mind/Brain Sciences, University of Trento
| |
Collapse
|
16
|
Testing the exteroceptive function of nociception: The role of visual experience in shaping the spatial representations of nociceptive inputs. Cortex 2020; 126:26-38. [PMID: 32062141 DOI: 10.1016/j.cortex.2019.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/21/2019] [Accepted: 12/14/2019] [Indexed: 01/30/2023]
Abstract
Adequately localizing pain is crucial to protect the body against physical damage and react to the stimulus in external space having caused such damage. Accordingly, it is hypothesized that nociceptive inputs are remapped from a somatotopic reference frame, representing the skin surface, towards a spatiotopic frame, representing the body parts in external space. This ability is thought to be developed and shaped by early visual experience. To test this hypothesis, normally sighted and early blind participants performed temporal order judgment tasks during which they judged which of two nociceptive stimuli applied on each hand's dorsum was perceived as first delivered. Crucially, tasks were performed with the hands either in an uncrossed posture or crossed over body midline. While early blinds were not affected by the posture, performances of the normally sighted participants decreased in the crossed condition relative to the uncrossed condition. This indicates that nociceptive stimuli were automatically remapped into a spatiotopic representation that interfered with somatotopy in normally sighted individuals, whereas early blinds seemed to mostly rely on a somatotopic representation to localize nociceptive inputs. Accordingly, the plasticity of the nociceptive system would not purely depend on bodily experiences but also on crossmodal interactions between nociception and vision during early sensory experience.
Collapse
|
17
|
The influence of visual experience and cognitive goals on the spatial representations of nociceptive stimuli. Pain 2019; 161:328-337. [DOI: 10.1097/j.pain.0000000000001721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Rinaldi L, Merabet LB, Vecchi T, Cattaneo Z. The spatial representation of number, time, and serial order following sensory deprivation: A systematic review. Neurosci Biobehav Rev 2018; 90:371-380. [PMID: 29746876 DOI: 10.1016/j.neubiorev.2018.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 03/15/2018] [Accepted: 04/27/2018] [Indexed: 11/16/2022]
Abstract
The spatial representation of numerical and temporal information is thought to be rooted in our multisensory experiences. Accordingly, we may expect visual or auditory deprivation to affect the way we represent numerical magnitude and time spatially. Here, we systematically review recent findings on how blind and deaf individuals represent abstract concepts such as magnitude and time (e.g., past/future, serial order of events) in a spatial format. Interestingly, available evidence suggests that sensory deprivation does not prevent the spatial "re-mapping" of abstract information, but differences compared to normally sighted and hearing individuals may emerge depending on the specific dimension considered (i.e., numerical magnitude, time as past/future, serial order). Herein we discuss how the study of sensory deprived populations may shed light on the specific, and possibly distinct, mechanisms subserving the spatial representation of these concepts. Furthermore, we pinpoint unresolved issues that need to be addressed by future studies to grasp a full understanding of the spatial representation of abstract information associated with visual and auditory deprivation.
Collapse
Affiliation(s)
- Luca Rinaldi
- Department of Psychology, University of Milano-Bicocca, Milano, Italy; NeuroMI, Milan Center for Neuroscience, Milano, Italy.
| | - Lotfi B Merabet
- The Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, USA
| | - Tomaso Vecchi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, Milano, Italy; IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
19
|
Legrain V, Manfron L, Garcia M, Filbrich L. Does Body Perception Shape Visuospatial Perception? Perception 2018; 47:507-520. [DOI: 10.1177/0301006618763269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
How we perceive our body is shaped by sensory experiences with our surrounding environment, as witnessed by poor performance in tasks during which participants judge with their hands crossed the temporal order between two somatosensory stimuli, one applied on each hand. This suggests that somatosensory stimuli are not only processed according to a somatotopic representation but also a spatiotopic representation of the body. We investigated whether the perception of stimuli occurring in external space, such as visual stimuli, can also be influenced by the body posture and somatosensory stimuli. Participants performed temporal order judgements on pairs of visual stimuli, one in each side of space, with their hands uncrossed or crossed. In Experiment 1, participants’ hands were placed either near or far from the visual stimuli. In Experiment 2, the visual stimuli were preceded, either by 60 ms or 360 ms, by tactile stimuli applied on the hands placed near the visual stimuli. Manipulating the time interval was intended to activate either a somatotopic or a spatiotopic representation of somatic inputs. We did not obtain any evidence for an influence of body posture on visual temporal order judgment, suggesting that body perception is less relevant for processing extrabody stimuli than the reverse.
Collapse
Affiliation(s)
- Valéry Legrain
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Louise Manfron
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Marynn Garcia
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Lieve Filbrich
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|