1
|
Li S, Li X, Lu M, Chen Q, Yao D, Yu X, Li Z, Ge W, Wang N, Jin J, Wang Y, Liao Y, Luo F, Yan J, Chen X, Jiang C, Yue F, Gao D, Tang X, Guo H, Wang Y, Chen X, Xia J, Xu M, Ren S, He C, Hu Z. Homeostatic Shrinkage of Dendritic Spines Requires Melatonin Type 3 Receptor Activation During Sleep. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400253. [PMID: 39119847 PMCID: PMC11481193 DOI: 10.1002/advs.202400253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/25/2024] [Indexed: 08/10/2024]
Abstract
High-frequency oscillatory activity in cognition-related neural circuits during wakefulness consistently induces the growth of dendritic spines and axonal terminals. Although these structural changes are essential for cognitive functions, it is hypothesized that if these newly expanded structures fail to establish functional connections, they may become superfluous. Sleep is believed to facilitate the reduction of such redundant structures to maintain neural homeostasis. However, the mechanisms underlying this pruning process during sleep remain poorly understood. In this study, that melatonin type 3 receptors (MT3Rs) are selectively expressed in the stellate neurons of the medial entorhinal cortex (MEC) is demonstrated, an area where high melatonin levels are detected during sleep. Activation of MT3Rs during sleep initiates the shrinkage of dendritic spines in stellate neurons by downregulating neural network activity and dephosphorylating synaptic proteins in the MEC. This process is disrupted when MT3R expression is knocked down or when MT3Rs are blocked during sleep. Notably, interference with MT3Rs in the MEC during sleep impairs the acquisition of spatial memory but does not affect object memory acquisition following sleep. These findings reveal novel molecular mechanisms involving melatonin and MT3Rs in the regulation of dendritic spine shrinkage during sleep, which is crucial for the acquisition and consolidation of spatial memory.
Collapse
Affiliation(s)
- Shiyin Li
- Department of PhysiologyInstitute of Brain and IntelligenceThird Military Medical UniversityChongqing400038China
| | - Xin Li
- Department of PhysiologyInstitute of Brain and IntelligenceThird Military Medical UniversityChongqing400038China
- School of Basic Medical Sciences and IDG/McGovern Institute for Brain ResearchTsinghua UniversityBeijing100084China
| | - Minmin Lu
- Department of PhysiologyInstitute of Brain and IntelligenceThird Military Medical UniversityChongqing400038China
| | - Quanhui Chen
- Department of PhysiologyInstitute of Brain and IntelligenceThird Military Medical UniversityChongqing400038China
| | - Di Yao
- School of Basic Medical SciencesCapital Medical UniversityBeijing100069China
- Chinese Institute for Brain ResearchBeijing102206China
| | - Xiaoqian Yu
- Chinese Institute for Brain ResearchBeijing102206China
| | - Zhen Li
- Chinese Institute for Brain ResearchBeijing102206China
| | - Woo‐ping Ge
- Chinese Institute for Brain ResearchBeijing102206China
| | - Na Wang
- Department of PhysiologyInstitute of Brain and IntelligenceThird Military Medical UniversityChongqing400038China
| | - Jiehua Jin
- Department of PhysiologyInstitute of Brain and IntelligenceThird Military Medical UniversityChongqing400038China
| | - Yaling Wang
- Department of PhysiologyInstitute of Brain and IntelligenceThird Military Medical UniversityChongqing400038China
| | - Yixiang Liao
- Department of PhysiologyInstitute of Brain and IntelligenceThird Military Medical UniversityChongqing400038China
| | - Fenlan Luo
- Department of PhysiologyInstitute of Brain and IntelligenceThird Military Medical UniversityChongqing400038China
| | - Jie Yan
- Department of PhysiologyInstitute of Brain and IntelligenceThird Military Medical UniversityChongqing400038China
| | - Xuedan Chen
- Department of Medical GeneticsCollege of Basic Medical SciencesThird Military Medical UniversityChongqing400038China
| | - Chenggang Jiang
- Department of Sleep and PsychologyChongqing Health Center for Women and ChildrenChongqing401147China
| | - Faguo Yue
- Sleep and Psychology CenterBishan Hospital of Chongqing Medical UniversityChongqing402760China
| | - Dong Gao
- Department of Sleep and PsychologyThe Fifth People's Hospital of ChongqingChongqing400062China
| | - Xiangdong Tang
- Sleep Medicine CenterLaboratory of Anaesthesia and Critical Care MedicineTranslational Neuroscience CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Hong Guo
- Department of Medical GeneticsCollege of Basic Medical SciencesThird Military Medical UniversityChongqing400038China
| | - Yanjiang Wang
- Department of NeurologyDaping HospitalThird Military Medical UniversityChongqing400042China
- Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqing400064China
| | - Xiaowei Chen
- Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqing400064China
- Brain Research CenterInstitute of Brain and IntelligenceThird Military Medical UniversityChongqing400038China
| | - Jianxia Xia
- Department of PhysiologyInstitute of Brain and IntelligenceThird Military Medical UniversityChongqing400038China
| | - Min Xu
- Institute of Neuroscience,Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Shuancheng Ren
- Department of PhysiologyInstitute of Brain and IntelligenceThird Military Medical UniversityChongqing400038China
| | - Chao He
- Department of PhysiologyInstitute of Brain and IntelligenceThird Military Medical UniversityChongqing400038China
| | - Zhian Hu
- Department of PhysiologyInstitute of Brain and IntelligenceThird Military Medical UniversityChongqing400038China
- Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqing400064China
| |
Collapse
|
2
|
Bedini A, Boutin JA, Legros C, Zlotos DP, Spadoni G. Industrial and academic approaches to the search for alternative melatonin receptor ligands: An historical survey. J Pineal Res 2024; 76:e12953. [PMID: 38682544 DOI: 10.1111/jpi.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 05/01/2024]
Abstract
The search for melatonin receptor agonists formed the main part of melatonin medicinal chemistry programs for the last three decades. In this short review, we summarize the two main aspects of these programs: the development of all the necessary tools to characterize the newly synthesized ligands at the two melatonin receptors MT1 and MT2, and the medicinal chemist's approaches to find chemically diverse ligands at these receptors. Both strategies are described. It turns out that the main source of tools were industrial laboratories, while the medicinal chemistry was mainly carried out in academia. Such complete accounts are interesting, as they delineate the spirits in which the teams were working demonstrating their strength and innovative character. Most of the programs were focused on nonselective agonists and few of them reached the market. In contrast, discovery of MT1-selective agonists and melatonergic antagonists with proven in vivo activity and MT1 or MT2-selectivity is still in its infancy, despite the considerable interest that subtype selective compounds may bring in the domain, as the physiological respective roles of the two subtypes of melatonin receptors, is still poorly understood. Poly-pharmacology applications and multitarget ligands have also been considered.
Collapse
MESH Headings
- Ligands
- Humans
- Animals
- Receptor, Melatonin, MT2/metabolism
- Receptor, Melatonin, MT2/agonists
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/antagonists & inhibitors
- Receptors, Melatonin/metabolism
- Receptors, Melatonin/agonists
- Melatonin/metabolism
- History, 20th Century
Collapse
Affiliation(s)
- Annalida Bedini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | - Jean A Boutin
- Laboratory of Neuroendocrine Endocrine and Germinal Differentiation and Communication (NorDiC), Univ Rouen Normandie, Inserm, NorDiC, Rouen, France
| | | | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Egypt
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
3
|
Vallucci M, Boutin JA, Janda E, Blandel F, Musgrove R, Di Monte D, Ferry G, Michel PP, Hirsch EC. The specific NQO2 inhibitor, S29434, only marginally improves the survival of dopamine neurons in MPTP-intoxicated mice. J Neural Transm (Vienna) 2024; 131:1-11. [PMID: 37851107 DOI: 10.1007/s00702-023-02709-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Over the years, evidence has accumulated on a possible contributive role of the cytosolic quinone reductase NQO2 in models of dopamine neuron degeneration induced by parkinsonian toxin, but most of the data have been obtained in vitro. For this reason, we asked the question whether NQO2 is involved in the in vivo toxicity of MPTP, a neurotoxin classically used to model Parkinson disease-induced neurodegeneration. First, we show that NQO2 is expressed in mouse substantia nigra dopaminergic cell bodies and in human dopaminergic SH-SY5Y cells as well. A highly specific NQO2 inhibitor, S29434, was able to reduce MPTP-induced cell death in a co-culture system of SH-SY5Y cells with astrocytoma U373 cells but was inactive in SH-SY5Y monocultures. We found that S29434 only marginally prevents substantia nigra tyrosine hydroxylase+ cell loss after MPTP intoxication in vivo. The compound produced a slight increase of dopaminergic cell survival at day 7 and 21 following MPTP treatment, especially with 1.5 and 3 mg/kg dosage regimen. The rescue effect did not reach statistical significance (except for one experiment at day 7) and tended to decrease with the 4.5 mg/kg dose, at the latest time point. Despite the lack of robust protective activity of the inhibitor of NQO2 in the mouse MPTP model, we cannot rule out a possible role of the enzyme in parkinsonian degeneration, particularly because it is substantially expressed in dopaminergic neurons.
Collapse
Affiliation(s)
- Maeva Vallucci
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -ICM, INSERM, CNRS, Paris, France
| | - Jean A Boutin
- Laboratory of Neuroendocrine Endocrine and Germinal Differentiation and Communication (NorDiC), Univ Rouen Normandie, Inserm, NorDiC, UMR 1239, 76000, Rouen, France.
| | - Elzbieta Janda
- Department of Health Sciences, Campus Germaneto, Magna Graecia University, 88100, Catanzaro, Italy
| | - Florence Blandel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -ICM, INSERM, CNRS, Paris, France
| | - Ruth Musgrove
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Donato Di Monte
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Gilles Ferry
- Institut de R&D, Servier Paris-Saclay, 91190, Gif-Sur-Yvette, France
- Gilles Ferry Consulting, Les Issambres, France
| | - Patrick P Michel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -ICM, INSERM, CNRS, Paris, France
| | - Etienne C Hirsch
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -ICM, INSERM, CNRS, Paris, France
| |
Collapse
|
4
|
Gould NL, Scherer GR, Carvalho S, Shurrush K, Kayyal H, Edry E, Elkobi A, David O, Foqara M, Thakar D, Pavesi T, Sharma V, Walker M, Maitland M, Dym O, Albeck S, Peleg Y, Germain N, Babaev I, Sharir H, Lalzar M, Shklyar B, Hazut N, Khamaisy M, Lévesque M, Lajoie G, Avoli M, Amitai G, Lefker B, Subramanyam C, Shilton B, Barr H, Rosenblum K. Specific quinone reductase 2 inhibitors reduce metabolic burden and reverse Alzheimer's disease phenotype in mice. J Clin Invest 2023; 133:e162120. [PMID: 37561584 PMCID: PMC10541198 DOI: 10.1172/jci162120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Biological aging can be described as accumulative, prolonged metabolic stress and is the major risk factor for cognitive decline and Alzheimer's disease (AD). Recently, we identified and described a quinone reductase 2 (QR2) pathway in the brain, in which QR2 acts as a removable memory constraint and metabolic buffer within neurons. QR2 becomes overexpressed with age, and it is possibly a novel contributing factor to age-related metabolic stress and cognitive deficit. We found that, in human cells, genetic removal of QR2 produced a shift in the proteome opposing that found in AD brains while simultaneously reducing oxidative stress. We therefore created highly specific QR2 inhibitors (QR2is) to enable evaluation of chronic QR2 inhibition as a means to reduce biological age-related metabolic stress and cognitive decline. QR2is replicated results obtained by genetic removal of QR2, while local QR2i microinjection improved hippocampal and cortical-dependent learning in rats and mice. Continuous consumption of QR2is in drinking water improved cognition and reduced pathology in the brains of AD-model mice (5xFAD), with a noticeable between-sex effect on treatment duration. These results demonstrate the importance of QR2 activity and pathway function in the healthy and neurodegenerative brain and what we believe to be the great therapeutic potential of QR2is as first-in-class drugs.
Collapse
Affiliation(s)
| | - Gila R. Scherer
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Silvia Carvalho
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Khriesto Shurrush
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Haneen Kayyal
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Efrat Edry
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
- The Centre for Genetic Manipulation in the Brain, University of Haifa, Haifa, Israel
| | - Alina Elkobi
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Orit David
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Maria Foqara
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Darshit Thakar
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Tommaso Pavesi
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Vijendra Sharma
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Matthew Walker
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Matthew Maitland
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Orly Dym
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Albeck
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Peleg
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Nicolas Germain
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Babaev
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Haleli Sharir
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | | | - Boris Shklyar
- Bioimaging Unit, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Neta Hazut
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Mohammad Khamaisy
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Gilles Lajoie
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Gabriel Amitai
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Bruce Lefker
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Chakrapani Subramanyam
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Brian Shilton
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Haim Barr
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
- The Centre for Genetic Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
5
|
Reemst K, Shahin H, Shahar OD. Learning and memory formation in zebrafish: Protein dynamics and molecular tools. Front Cell Dev Biol 2023; 11:1120984. [PMID: 36968211 PMCID: PMC10034119 DOI: 10.3389/fcell.2023.1120984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Research on learning and memory formation at the level of neural networks, as well as at the molecular level, is challenging due to the immense complexity of the brain. The zebrafish as a genetically tractable model organism can overcome many of the current challenges of studying molecular mechanisms of learning and memory formation. Zebrafish have a translucent, smaller and more accessible brain than that of mammals, allowing imaging of the entire brain during behavioral manipulations. Recent years have seen an extensive increase in published brain research describing the use of zebrafish for the study of learning and memory. Nevertheless, due to the complexity of the brain comprising many neural cell types that are difficult to isolate, it has been difficult to elucidate neural networks and molecular mechanisms involved in memory formation in an unbiased manner, even in zebrafish larvae. Therefore, data regarding the identity, location, and intensity of nascent proteins during memory formation is still sparse and our understanding of the molecular networks remains limited, indicating a need for new techniques. Here, we review recent progress in establishing learning paradigms for zebrafish and the development of methods to elucidate neural and molecular networks of learning. We describe various types of learning and highlight directions for future studies, focusing on molecular mechanisms of long-term memory formation and promising state-of-the-art techniques such as cell-type-specific metabolic labeling.
Collapse
Affiliation(s)
- Kitty Reemst
- Migal—Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona, Israel
| | - Heba Shahin
- Migal—Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona, Israel
| | - Or David Shahar
- Migal—Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona, Israel
- *Correspondence: Or David Shahar,
| |
Collapse
|
6
|
Somatostatin Interneurons of the Insula Mediate QR2-Dependent Novel Taste Memory Enhancement. eNeuro 2021; 8:ENEURO.0152-21.2021. [PMID: 34518366 PMCID: PMC8482851 DOI: 10.1523/eneuro.0152-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 11/21/2022] Open
Abstract
Forming long-term memories is crucial for adaptive behavior and survival in changing environments. The molecular consolidation processes which underlie the formation of these long-term memories are dependent on protein synthesis in excitatory and SST-expressing neurons. A centrally important, parallel process to this involves the removal of the memory constraint quinone reductase 2 (QR2), which has been recently shown to enhance memory consolidation for novel experiences in the cortex and hippocampus, via redox modulation. However, it is unknown within which cell type in the cortex removal of QR2 occurs, nor how this affects neuronal function. Here, we use novel taste learning in the mouse anterior insular cortex (aIC) to show that similarly to mRNA translation, QR2 removal occurs in excitatory and SST-expressing neurons. Interestingly, both novel taste and QR2 inhibition reduce excitability specifically within SST, but not excitatory neurons. Furthermore, reducing QR2 expression in SST, but not in PV or excitatory neurons, is sufficient to enhance taste memory. Thus, QR2 mediated intrinsic property changes of SST interneurons in the aIC is a central removable factor to allow novel taste memory formation. This previously unknown involvement of QR2 and SST interneurons in resetting aIC activity hours following learning, describes a molecular mechanism to define cell circuits for novel information. Therefore, the QR2 pathway in SST interneurons provides a fresh new avenue by which to tackle age-related cognitive deficits, while shedding new light onto the functional machinations of long-term memory formation for novel information.
Collapse
|