1
|
Tarchick MJ, Clute DA, Renna JM. Modeling cholinergic retinal waves: starburst amacrine cells shape wave generation, propagation, and direction bias. Sci Rep 2023; 13:2834. [PMID: 36808155 PMCID: PMC9938278 DOI: 10.1038/s41598-023-29572-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Stage II cholinergic retinal waves are one of the first instances of neural activity in the visual system as they are present at a developmental timepoint in which light-evoked activity remains largely undetectable. These waves of spontaneous neural activity sweeping across the developing retina are generated by starburst amacrine cells, depolarize retinal ganglion cells, and drive the refinement of retinofugal projections to numerous visual centers in the brain. Building from several well-established models, we assemble a spatial computational model of starburst amacrine cell-mediated wave generation and wave propagation that includes three significant advancements. First, we model the intrinsic spontaneous bursting of the starburst amacrine cells, including the slow afterhyperpolarization, which shapes the stochastic process of wave generation. Second, we establish a mechanism of wave propagation using reciprocal acetylcholine release, synchronizing the bursting activity of neighboring starburst amacrine cells. Third, we model the additional starburst amacrine cell release of GABA, changing the spatial propagation of retinal waves and in certain instances, the directional bias of the retinal wave front. In total, these advancements comprise a now more comprehensive model of wave generation, propagation, and direction bias.
Collapse
Affiliation(s)
| | - Dustin A Clute
- Department of Biology, University of Akron, Akron, OH, 44325-3908, USA
| | - Jordan M Renna
- Department of Biology, University of Akron, Akron, OH, 44325-3908, USA.
| |
Collapse
|
2
|
Luo Z, Chang KC, Wu S, Sun C, Xia X, Nahmou M, Bian M, Wen RR, Zhu Y, Shah S, Tanasa B, Wernig M, Goldberg JL. Directly induced human retinal ganglion cells mimic fetal RGCs and are neuroprotective after transplantation in vivo. Stem Cell Reports 2022; 17:2690-2703. [PMID: 36368332 PMCID: PMC9768574 DOI: 10.1016/j.stemcr.2022.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Retinal ganglion cell (RGC) replacement therapy could restore vision in glaucoma and other optic neuropathies. We developed a rapid protocol for directly induced RGC (iRGC) differentiation from human stem cells, leveraging overexpression of NGN2. Neuronal morphology and neurite growth were observed within 1 week of induction; characteristic RGC-specific gene expression confirmed identity. Calcium imaging demonstrated γ-aminobutyric acid (GABA)-induced excitation characteristic of immature RGCs. Single-cell RNA sequencing showed more similarities between iRGCs and early-stage fetal human RGCs than retinal organoid-derived RGCs. Intravitreally transplanted iRGCs survived and migrated into host retinas independent of prior optic nerve trauma, but iRGCs protected host RGCs from neurodegeneration. These data demonstrate rapid iRGC generation in vitro into an immature cell with high similarity to human fetal RGCs and capacity for retinal integration after transplantation and neuroprotective function after optic nerve injury. The simplicity of this system may benefit translational studies on human RGCs.
Collapse
Affiliation(s)
- Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Kun-Che Chang
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA,Department of Ophthalmology and Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Suqian Wu
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA,Shanghai Key Laboratory of Visual Impairment and Restoration, Department of Ophthalmology and Vision Science, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai 200031, China
| | - Catalina Sun
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Xin Xia
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Michael Nahmou
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Minjuan Bian
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Rain R. Wen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Ying Zhu
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sahil Shah
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Bogdan Tanasa
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Marius Wernig
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Jeffrey L. Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA,Corresponding author
| |
Collapse
|
3
|
Tworig JM, Coate C, Feller MB. Excitatory neurotransmission activates compartmentalized calcium transients in Müller glia without affecting lateral process motility. eLife 2021; 10:73202. [PMID: 34913435 PMCID: PMC8806189 DOI: 10.7554/elife.73202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Neural activity has been implicated in the motility and outgrowth of glial cell processes throughout the central nervous system. Here, we explore this phenomenon in Müller glia, which are specialized radial astroglia that are the predominant glial type of the vertebrate retina. Müller glia extend fine filopodia-like processes into retinal synaptic layers, in similar fashion to brain astrocytes and radial glia that exhibit perisynaptic processes. Using two-photon volumetric imaging, we found that during the second postnatal week, Müller glial processes were highly dynamic, with rapid extensions and retractions that were mediated by cytoskeletal rearrangements. During this same stage of development, retinal waves led to increases in cytosolic calcium within Müller glial lateral processes and stalks. These regions comprised distinct calcium compartments, distinguished by variable participation in waves, timing, and sensitivity to an M1 muscarinic acetylcholine receptor antagonist. However, we found that motility of lateral processes was unaffected by the presence of pharmacological agents that enhanced or blocked wave-associated calcium transients. Finally, we found that mice lacking normal cholinergic waves in the first postnatal week also exhibited normal Müller glial process morphology. Hence, outgrowth of Müller glial lateral processes into synaptic layers is determined by factors that are independent of neuronal activity. When it comes to studying the nervous system, neurons often steal the limelight; yet, they can only work properly thanks to an ensemble cast of cell types whose roles are only just emerging. For example, ‘glial cells’ – their name derives from the Greek word for glue – were once thought to play only a passive, supporting function in nervous tissues. Now, growing evidence shows that they are, in fact, integrated into neural circuits: their activity is influenced by neurons, and, in turn, they help neurons to function properly. The role of glial cells is becoming clear in the retina, the thin, light-sensitive layer that lines the back of the eye and relays visual information to the brain. There, beautifully intricate Müller glial cells display fine protrusions (or ‘processes') that intermingle with synapses, the busy space between neurons where chemical messengers are exchanged. These messengers can act on Müller cells, triggering cascades of molecular events that may influence the structure and function of glia. This is of particular interest during development: as Müller cells mature, they are exposed to chemicals released by more fully formed retinal neurons. Tworig et al. explored how neuronal messengers can influence the way Müller cells grow their processes. To do so, they tracked mouse retinal glial cells ‘live’ during development, showing that they were growing fine, highly dynamic processes in a region rich in synapses just as neurons and glia increased their communication. However, using drugs to disrupt this messaging for a short period did not seem to impact how the processes grew. Extending the blockade over a longer timeframe also did not change the way Müller cells developed, with the cells still acquiring their characteristic elaborate process networks. Taken together, these results suggest that the structural maturation of Müller glial cells is not impacted by neuronal signaling, giving a more refined understanding of how glia form in the retina and potentially in the brain.
Collapse
Affiliation(s)
- Joshua M Tworig
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Chandler Coate
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
4
|
Miao Y, Chen X, You F, Jia M, Li T, Tang P, Shi R, Hu S, Zhang L, Chen JF, Gao Y. Adenosine A 2A receptor modulates microglia-mediated synaptic pruning of the retinogeniculate pathway during postnatal development. Neuropharmacology 2021; 200:108806. [PMID: 34562441 DOI: 10.1016/j.neuropharm.2021.108806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/07/2023]
Abstract
Synapse pruning is essential not only for the developmental establishment of synaptic connections in the brain but also for the pathogenesis of neurodevelopmental and neurodegenerative disorders. However, there are no effective pharmacological means to regulate synaptic pruning during early development. Using the eye-specific segregation of the dorsal lateral geniculate nucleus (dLGN) as a model of synaptic pruning coupled with adenosine A2A receptor (A2AR) antagonism and knockout, we demonstrated while genetic deletion of the A2AR throughout the development attenuated eye-specific segregation with the attenuated microglial phagocytosis at postnatal day 5 (P5), selective treatment with the A2AR antagonist KW6002 at P2-P4 facilitated synaptic pruning of visual pathway with microglial activation, increased lysosomal activity in microglia and increased microglial engulfment of retinal ganglion cell (RGC) inputs in the dLGN at P5 (but not P10). Furthermore, KW6002-mediated facilitation of synaptic pruning was activity-dependent since tetrodotoxin (TTX) treatment abolished the KW6002 facilitation. Moreover, the A2AR antagonist also modulated postsynaptic proteins and synaptic density at early postnatal stages as revealed by the reduced immunoreactivity of postsynaptic proteins (Homer1 and metabotropic glutamate receptor 5) and colocalization of presynaptic VGlut2 and postsynaptic Homer1 puncta in the dLGN. These findings suggest that A2AR can control pruning by multiple actions involving the retinal wave, microglia engulfment, and postsynaptic stability. Thus, A2AR antagonists may represent a novel pharmacological strategy to modulate microglia-mediated synaptic pruning and treatment of neurodevelopmental disorders associated with dysfunctional pruning.
Collapse
Affiliation(s)
- Yaxin Miao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Xuhao Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Feng You
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Manli Jia
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Ting Li
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Ping Tang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Ruyi Shi
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Shisi Hu
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Liping Zhang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Ying Gao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
5
|
Li Q, Jin R, Zhang S, Sun X, Wu J. Transient receptor potential vanilloid four channels modulate inhibitory inputs through differential regulation of GABA and glycine receptors in rat retinal ganglion cells. FASEB J 2020; 34:14521-14538. [PMID: 32892440 DOI: 10.1096/fj.201902937rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 01/06/2023]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) channel is widely distributed in the retina. Activation of the TRPV4 channel enhances excitatory signaling from bipolar cells to retinal ganglion cells (RGCs), thereby increasing RGC firing rate and membrane excitability. In this study, we investigated the effect of TRPV4 channel activation on the miniature inhibitory postsynaptic current (mIPSC) in rat RGCs. Our results showed that perfusion with HC-067047, a TRPV4-channel antagonist, significantly reduced the amplitude of RGC mIPSCs. Extracellular application of the TRPV4 channel agonist GSK1016790A (GSK101) enhanced the frequency and amplitude of mIPSCs in ON- and OFF-type RGCs; pre-application of HC-067047 blocked the effect of GSK101 on mIPSCs. Furthermore, TRPV4 channels were able to enhance the frequency and amplitude of glycine receptor (GlyR)-mediated mIPSCs and inhibit the frequency of type A γ-aminobutyric acid receptor (GABAA R)-mediated mIPSCs. Upon intracellular administration or intravitreal injection of GSK101, TRPV4 channel activation reduced the release of presynaptic glycine and enhanced the function and expression of postsynaptic GlyRs; however, it inhibited presynaptic release of GABA, but did not affect postsynaptic GABAA Rs. Our study results provide insight regarding the effect of TRPV4 channel activation on RGCs and offer a potential interventional target for retinal diseases involving TRPV4 channels.
Collapse
Affiliation(s)
- Qian Li
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ruiri Jin
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shenghai Zhang
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinghuai Sun
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jihong Wu
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
6
|
Glycinergic and GABAergic interneurons shift the location and differentially alter the size of ganglion cell receptive field centers in the mammalian retina. Vision Res 2020; 170:18-24. [PMID: 32217368 DOI: 10.1016/j.visres.2020.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 11/23/2022]
Abstract
By using the multi-electrode array (MEA) recording technique in conjunction with white-noise checkerboard stimuli and reverse correlation methods, we studied modulatory actions of glycinergic and GABAergic interneurons on spatiotemporal profiles of ganglion cells (GCs) in dark-adapted mouse retinas. We found that application of 2 µM strychnine decreased receptive field center radii of GCs by a mean value of 11%, and shifted the GC receptive field (RF) centers by a mean distance of 28.3 µm. On the other hand, 200 µM picrotoxin + 100 µM bicuculline + 50 µM TPMPA increased GC receptive field center radii by a mean value of 19%, and shifted the GC RF centers by a mean distance of 53.7 µm. Glycinergic neurons in the mouse retina are narrow-field amacrine cells that have been shown to mediate ON-OFF crossover inhibitory synapses within the RGs' RF center, therefore they may increase the size and shift the location of GC RF center by synergistic addition to bipolar cell inputs to GCs. GABAergic neurons are wide-field amacrine cells and horizontal cells that are known to mediate antagonistic surround responses of GCs, and thus they decrease the GCs' RF center size. Our results suggest that a major global function of glycinergic and GABAergic interneurons in the mammalian retina is to provide the flexibility for adjusting the size and location of GCs' RF centers. The apparent shifts of GC RF centers suggest that the synergistic addition by GlyACs and the surround inhibition by GABAergic interneurons are not spatially symmetrical within GC RFs.
Collapse
|
7
|
Santiago AR, Madeira MH, Boia R, Aires ID, Rodrigues-Neves AC, Santos PF, Ambrósio AF. Keep an eye on adenosine: Its role in retinal inflammation. Pharmacol Ther 2020; 210:107513. [PMID: 32109489 DOI: 10.1016/j.pharmthera.2020.107513] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenosine is an endogenous purine nucleoside ubiquitously distributed throughout the body that interacts with G protein-coupled receptors, classified in four subtypes: A1R, A2AR, A2BR and A3R. Among the plethora of functions of adenosine, it has been increasingly recognized as a key mediator of the immune response. Neuroinflammation is a feature of chronic neurodegenerative diseases and contributes to the pathophysiology of several retinal degenerative diseases. Animal models of retinal diseases are helping to elucidate the regulatory roles of adenosine receptors in the development and progression of those diseases. Mounting evidence demonstrates that the adenosinergic system is altered in the retina during pathological conditions, compromising retinal physiology. This review focuses on the roles played by adenosine and the elements of the adenosinergic system (receptors, enzymes, transporters) in the neuroinflammatory processes occurring in the retina. An improved understanding of the molecular and cellular mechanisms of the signalling pathways mediated by adenosine underlying the onset and progression of retinal diseases will pave the way towards the identification of new therapeutic approaches.
Collapse
Affiliation(s)
- Ana Raquel Santiago
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal.
| | - Maria H Madeira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Boia
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês Dinis Aires
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Catarina Rodrigues-Neves
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo Fernando Santos
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - António Francisco Ambrósio
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
8
|
Adenosine receptor expression in the adult zebrafish retina. Purinergic Signal 2019; 15:327-342. [PMID: 31273575 DOI: 10.1007/s11302-019-09667-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022] Open
Abstract
Adenosine is an endogenous nucleoside in the central nervous system that acts on adenosine receptors. These are G protein-coupled receptors that have four known subtypes: A1, A2A, A2B, and A3 receptors. In the present study, we aimed to map the location of the adenosine receptor subtypes in adult wild-type zebrafish retina using in situ hybridization and immunohistochemistry. A1R, A2AR, and A2BR mRNA were detected in the ganglion cell layer (GCL), the inner nuclear layer (INL), the outer nuclear layer (ONL), and the outer segment (OS). A3R mRNA was detected in the GCL, ONL, and OS. A1R-immunoreactivity was expressed as puncta in the INL and in the outer plexiform layer (OPL). A1Rs were located within the cone pedicle and contiguous to horizontal cell tips in the OPL. A2AR-immunoreactivity was expressed as puncta in the GCL, inner plexiform layer (IPL), INL, and outer retina. A2AR puncta in the outer retina were situated around the ellipsoids and nuclei of cones, and weakly around the rod nuclei. A1Rs and A2ARs were clustered around ON cone bipolar cell terminals and present in the OFF lamina of the INL but were not expressed on mixed rod/cone response bipolar cell terminals. A2BR-immunoreactivity was mainly localized to the Müller cells, while A3Rs were found to be expressed in retinal ganglion cells of the GCL, INL, ONL, and OS. In summary, all four adenosine receptor subtypes were localized in the zebrafish retina and are in agreement with expression patterns shown in retinas from other species.
Collapse
|
9
|
Presynaptic SNAP-25 regulates retinal waves and retinogeniculate projection via phosphorylation. Proc Natl Acad Sci U S A 2019; 116:3262-3267. [PMID: 30728295 DOI: 10.1073/pnas.1812169116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Patterned spontaneous activity periodically displays in developing retinas termed retinal waves, essential for visual circuit refinement. In neonatal rodents, retinal waves initiate in starburst amacrine cells (SACs), propagating across retinal ganglion cells (RGCs), further through visual centers. Although these waves are shown temporally synchronized with transiently high PKA activity, the downstream PKA target important for regulating the transmission from SACs remains unidentified. A t-SNARE, synaptosome-associated protein of 25 kDa (SNAP-25/SN25), serves as a PKA substrate, implying a potential role of SN25 in regulating retinal development. Here, we examined whether SN25 in SACs could regulate wave properties and retinogeniculate projection during development. In developing SACs, overexpression of wild-type SN25b, but not the PKA-phosphodeficient mutant (SN25b-T138A), decreased the frequency and spatial correlation of wave-associated calcium transients. Overexpressing SN25b, but not SN25b-T138A, in SACs dampened spontaneous, wave-associated, postsynaptic currents in RGCs and decreased the SAC release upon augmenting the cAMP-PKA signaling. These results suggest that SN25b overexpression may inhibit the strength of transmission from SACs via PKA-mediated phosphorylation at T138. Moreover, knockdown of endogenous SN25b increased the frequency of wave-associated calcium transients, supporting the role of SN25 in restraining wave periodicity. Finally, the eye-specific segregation of retinogeniculate projection was impaired by in vivo overexpression of SN25b, but not SN25b-T138A, in SACs. These results suggest that SN25 in developing SACs dampens the spatiotemporal properties of retinal waves and limits visual circuit refinement by phosphorylation at T138. Therefore, SN25 in SACs plays a profound role in regulating visual circuit refinement.
Collapse
|
10
|
Abstract
Adenosine is a neuromodulator present in various areas of the central nervous system, including the retina. Adenosine may serve a neuroprotective role in the retina, based on electroretinogram (ERG) recordings from the rat retina. Our purpose was to assess the role of A2A and A3 adenosine receptors in the generation and modulation of the rat ERG. The flash ERG was recorded with corneal electrodes from Sprague Dawley rats. Agonists and antagonists for A2A and A3 receptors, and adenosine were injected (5 µl) into the vitreous. The effects on the components of the single flash scotopic and photopic ERGs were examined, and ERG flicker. Adenosine (0.5 mM) increased the mean amplitudes of the scotopic ERG a-waves (68 ± 8 to 97 ± 14 µV, P = 0.042), and b-waves (236 ± 38 µV to 305 ± 42 µV). A2A agonist CGS21680 (2 mM) reduced the mean amplitude of the ERG b-wave, from 298 ± 21 µV in response to the brightest stimulus to 212 ± 19 µV (P = 0.005), and mean scotopic oscillatory potentials (OPs) from 100 ± 9 µV to 47 ± 11 µV (P = 0.023). ZM241385 [4 mM], an A2A antagonist, decreased the scotopic b-wave of the ERG. A3 agonist 2-CI-IB-MECA (0.5 mM) increased the a-wave, while decreasing the scotopic and photopic ERG b-waves, and the scotopic OPs. A3 antagonist VUF5574 (1 mM) increased the mean amplitude of the scotopic a-wave (66 ± 8 to 140 ± 29 µV, P = 0.046) and b-wave (224 ± 20 to 312 ± 39 µV, P = 0.0037). No significant effects on ERG flicker were found. We conclude that retinal neurons containing A2A and/or A3 adenosine receptors contribute to the generation of the ERG a- and b-waves and OPs.
Collapse
|
11
|
Koren D, Grove JCR, Wei W. Cross-compartmental Modulation of Dendritic Signals for Retinal Direction Selectivity. Neuron 2017; 95:914-927.e4. [PMID: 28781167 DOI: 10.1016/j.neuron.2017.07.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/08/2017] [Accepted: 07/19/2017] [Indexed: 11/19/2022]
Abstract
Compartmentalized signaling in dendritic subdomains is critical for the function of many central neurons. In the retina, individual dendritic sectors of a starburst amacrine cell (SAC) are preferentially activated by different directions of linear motion, indicating limited signal propagation between the sectors. However, the mechanism that regulates this propagation is poorly understood. Here, we find that metabotropic glutamate receptor 2 (mGluR2) signaling, which acts on voltage-gated calcium channels in SACs, selectively restricts cross-sector signal propagation in SACs, but does not affect local dendritic computation within individual sectors. mGluR2 signaling ensures sufficient electrotonic isolation of dendritic sectors to prevent their depolarization during non-preferred motion, yet enables controlled multicompartmental signal integration that enhances responses to preferred motion. Furthermore, mGluR2-mediated dendritic compartmentalization in SACs is important for the functional output of direction-selective ganglion cells (DSGCs). Therefore, our results directly link modulation of dendritic compartmentalization to circuit-level encoding of motion direction in the retina.
Collapse
Affiliation(s)
- David Koren
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA; Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL 60637, USA
| | - James C R Grove
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | - Wei Wei
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
12
|
Trakhtenberg EF, Pita-Thomas W, Fernandez SG, Patel KH, Venugopalan P, Shechter JM, Morkin MI, Galvao J, Liu X, Dombrowski SM, Goldberg JL. Serotonin receptor 2C regulates neurite growth and is necessary for normal retinal processing of visual information. Dev Neurobiol 2016; 77:419-437. [PMID: 26999672 DOI: 10.1002/dneu.22391] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/25/2016] [Accepted: 03/12/2016] [Indexed: 12/21/2022]
Abstract
Serotonin (5HT) is present in a subpopulation of amacrine cells, which form synapses with retinal ganglion cells (RGCs), but little is known about the physiological role of retinal serotonergic circuitry. We found that the 5HT receptor 2C (5HTR2C) is upregulated in RGCs after birth. Amacrine cells generate 5HT and about half of RGCs respond to 5HTR2C agonism with calcium elevation. We found that there are on average 83 5HT+ amacrine cells randomly distributed across the adult mouse retina, all negative for choline acetyltransferase and 90% positive for tyrosine hydroxylase. We also investigated whether 5HTR2C and 5HTR5A affect RGC neurite growth. We found that both suppress neurite growth, and that RGCs from the 5HTR2C knockout (KO) mice grow longer neurites. Furthermore, 5HTR2C is subject to post-transcriptional editing, and we found that only the edited isoform's suppressive effect on neurite growth could be reversed by a 5HTR2C inverse agonist. Next, we investigated the physiological role of 5HTR2C in the retina, and found that 5HTR2C KO mice showed increased amplitude on pattern electroretinogram. Finally, RGC transcriptional profiling and pathways analysis suggested partial developmental compensation for 5HTR2C absence. Taken together, our findings demonstrate that 5HTR2C regulates neurite growth and RGC activity and is necessary for normal amplitude of RGC response to physiologic stimuli, and raise the hypothesis that these functions are modulated by a subset of 5HT+/ChAT-/TH+ amacrine cells as part of retinal serotonergic circuitry. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017.
Collapse
Affiliation(s)
- Ephraim F Trakhtenberg
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts.,Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Wolfgang Pita-Thomas
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida.,Department of Anatomy and Neurobiology, Washington University, St. Louis, Missouri
| | - Stephanie G Fernandez
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Karan H Patel
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Praseeda Venugopalan
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts.,Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jesse M Shechter
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Melina I Morkin
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Joana Galvao
- Shiley Eye Center, University of California, San Diego, California
| | - Xiongfei Liu
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Susan M Dombrowski
- Genomatix Software, Ann Arbor, Michigan.,Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jeffrey L Goldberg
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida.,Shiley Eye Center, University of California, San Diego, California.,Byers Eye Institute, Stanford University, Palo Alto, California
| |
Collapse
|
13
|
Hirasawa H, Contini M, Raviola E. Extrasynaptic release of GABA and dopamine by retinal dopaminergic neurons. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0186. [PMID: 26009765 DOI: 10.1098/rstb.2014.0186] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the mouse retina, dopaminergic amacrine (DA) cells synthesize both dopamine and GABA. Both transmitters are released extrasynaptically and act on neighbouring and distant retinal neurons by volume transmission. In simultaneous recordings of dopamine and GABA release from isolated perikarya of DA cells, a proportion of the events of dopamine and GABA exocytosis were simultaneous, suggesting co-release. In addition, DA cells establish GABAergic synapses onto AII amacrine cells, the neurons that transfer rod bipolar signals to cone bipolars. GABAA but not dopamine receptors are clustered in the postsynaptic membrane. Therefore, dopamine, irrespective of its site of release-synaptic or extrasynaptic-exclusively acts by volume transmission. Dopamine is released upon illumination and sets the gain of retinal neurons for vision in bright light. The GABA released at DA cells' synapses probably prevents signals from the saturated rods from entering the cone pathway when the dark-adapted retina is exposed to bright illumination. The GABA released extrasynaptically by DA and other amacrine cells may set a 'GABAergic tone' in the inner plexiform layer and thus counteract the effects of a spillover of glutamate released at the bipolar cell synapses of adjacent OFF and ON strata, thus preserving segregation of signals between ON and OFF pathways.
Collapse
Affiliation(s)
- Hajime Hirasawa
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA Department of Physiology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama 350-0495, Japan
| | - Massimo Contini
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA Dipartimento di Medicina Sperimentale e Clinica, Viale Morgagni, 63, Firenze 50134, Italy
| | - Elio Raviola
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
14
|
Gábriel R, Erdélyi F, Szabó G, Lawrence JJ, Wilhelm M. Ectopic transgene expression in the retina of four transgenic mouse lines. Brain Struct Funct 2015; 221:3729-41. [PMID: 26563404 DOI: 10.1007/s00429-015-1128-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/03/2015] [Indexed: 12/11/2022]
Abstract
Retinal expression of transgenes was examined in four mouse lines. Two constructs were driven by the choline acetyltransferase (ChAT) promoter: green fluorescent protein conjugated to tau protein (tau-GFP) or cytosolic yellow fluorescent protein (YFP) generated through CRE recombinase-induced expression of Rosa26 (ChAT-CRE/Rosa26YFP). Two other constructs targeted inhibitory interneurons: GABAergic horizontal and amacrine cells identified by glutamic acid decarboxylase (GAD65-GFP) or parvalbumin (PV) cells (PV-CRE/Rosa26YFP). Animals were transcardially perfused and retinal sections prepared. Antibodies against PV, calretinin (CALR), calbindin (CALB), and tyrosine hydroxylase (TH) were used to counterstain transgene-expressing cells. In PVxRosa and ChAT-tauGFP constructs, staining appeared in vertically oriented row of processes resembling Müller cells. In the ChATxRosa construct, populations of amacrine cells and neurons in the ganglion cell layer were labeled. Some cones also exhibited GFP fluorescence. CALR, PV and TH were found in none of these cells. Occasionally, we found GFP/CALR and GFP/PV double-stained cells in the ganglion cell layer (GCL). In the GAD65-GFP construct, all layers of the neuroretina were labeled, except photoreceptors. Not all horizontal cells expressed GFP. We did not find GFP/TH double-labeled cells and GFP was rarely present in CALR- and CALB-containing cells. Many PV-positive neurons were also labeled for GFP, including small diameter amacrines. In the GCL, single labeling for GFP and PV was ascertained, as well as several CALR/PV double-stained neurons. In the GCL, cells triple labeled with GFP/CALR/CALB were sparse. In conclusion, only one of the four transgenic constructs exhibited an expression pattern consistent with endogenous retinal protein expression, while the others strongly suggested ectopic gene expression.
Collapse
Affiliation(s)
- Robert Gábriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Ferenc Erdélyi
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1450, Budapest, Hungary
| | - Gábor Szabó
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1450, Budapest, Hungary
| | - J Josh Lawrence
- Center for Structural and Functional Neuroscience, University of Montana, Missoula, MT, USA.,Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, 79430, USA
| | - Márta Wilhelm
- Institute of Sport Sciences and Physical Education, University of Pécs, Ifjúság u. 6., 7624, Pécs, Hungary.
| |
Collapse
|
15
|
Huang PC, Hsiao YT, Kao SY, Chen CF, Chen YC, Chiang CW, Lee CF, Lu JC, Chern Y, Wang CT. Adenosine A(2A) receptor up-regulates retinal wave frequency via starburst amacrine cells in the developing rat retina. PLoS One 2014; 9:e95090. [PMID: 24777042 PMCID: PMC4002430 DOI: 10.1371/journal.pone.0095090] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/23/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Developing retinas display retinal waves, the patterned spontaneous activity essential for circuit refinement. During the first postnatal week in rodents, retinal waves are mediated by synaptic transmission between starburst amacrine cells (SACs) and retinal ganglion cells (RGCs). The neuromodulator adenosine is essential for the generation of retinal waves. However, the cellular basis underlying adenosine's regulation of retinal waves remains elusive. Here, we investigated whether and how the adenosine A(2A) receptor (A(2A)R) regulates retinal waves and whether A(2A)R regulation of retinal waves acts via presynaptic SACs. METHODOLOGY/PRINCIPAL FINDINGS We showed that A(2A)R was expressed in the inner plexiform layer and ganglion cell layer of the developing rat retina. Knockdown of A(2A)R decreased the frequency of spontaneous Ca²⁺ transients, suggesting that endogenous A(2A)R may up-regulate wave frequency. To investigate whether A(2A)R acts via presynaptic SACs, we targeted gene expression to SACs by the metabotropic glutamate receptor type II promoter. Ca²⁺ transient frequency was increased by expressing wild-type A(2A)R (A2AR-WT) in SACs, suggesting that A(2A)R may up-regulate retinal waves via presynaptic SACs. Subsequent patch-clamp recordings on RGCs revealed that presynaptic A(2A)R-WT increased the frequency of wave-associated postsynaptic currents (PSCs) or depolarizations compared to the control, without changing the RGC's excitability, membrane potentials, or PSC charge. These findings suggest that presynaptic A(2A)R may not affect the membrane properties of postsynaptic RGCs. In contrast, by expressing the C-terminal truncated A(2A)R mutant (A(2A)R-ΔC) in SACs, the wave frequency was reduced compared to the A(2A)R-WT, but was similar to the control, suggesting that the full-length A(2A)R in SACs is required for A(2A)R up-regulation of retinal waves. CONCLUSIONS/SIGNIFICANCE A(2A)R up-regulates the frequency of retinal waves via presynaptic SACs, requiring its full-length protein structure. Thus, by coupling with the downstream intracellular signaling, A(2A)R may have a great capacity to modulate patterned spontaneous activity during neural circuit refinement.
Collapse
Affiliation(s)
- Pin-Chien Huang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Yu-Tien Hsiao
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Shao-Yen Kao
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ching-Feng Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Yu-Chieh Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chung-Wei Chiang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chien-fei Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Juu-Chin Lu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Tien Wang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
16
|
Kim HJ, Jeon CJ. Synaptic pattern of nicotinic acetylcholine receptor α7 and β2 subunits on the direction-selective retinal ganglion cells in the postnatal mouse retina. Exp Eye Res 2014; 122:54-64. [PMID: 24631336 DOI: 10.1016/j.exer.2014.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/18/2014] [Accepted: 02/25/2014] [Indexed: 11/26/2022]
Abstract
Direction-selective retinal ganglion cells (DS RGCs) respond strongly to a stimulus that moves in their preferred direction, but respond weakly or do not respond to a stimulus that moves in the opposite or null direction. DS RGCs are sensitive to acetylcholine, and starburst amacrine cells (SACs) make cholinergic synapses on DS RGCs. We studied the distributions of nicotinic acetylcholine receptor (nAChR) α7 and β2 subunits on the dendritic arbors of DS RGCs to search for anisotropies that contribute to the directional preferences of DS RGCs. The DS RGCs from the retinas of postnatal mice (postnatal day P5, P10, and P15) were injected with Lucifer yellow, and injected cells were identified by their dendritic morphology. The dendrites of the DS RGCs were labeled with antibodies for either the nAChR α7 or β2 subunit as well as postsynaptic density protein-95 (PSD-95), visualized by confocal microscopy, and reconstructed from high-resolution confocal images. The distribution of nAChR subunits on the dendritic arbors in both the ON and OFF layers of the RGCs revealed an asymmetrical pattern on early postnatal day P5. However, the distributions of nAChR subunits on the dendritic arbors were not asymmetric on P10 and P15. Our results therefore provide anatomical and developmental evidence suggesting that the nAChR α7 and β2 subunits may involve in the early direction-selectivity formation of DS RGCs in the mouse retina.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Biology, School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Program), College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu 702-701, South Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungpook 790-784, South Korea
| | - Chang Jin Jeon
- Department of Biology, School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Program), College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu 702-701, South Korea.
| |
Collapse
|
17
|
Lee V, Maguire J. The impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain region and cell type. Front Neural Circuits 2014; 8:3. [PMID: 24550784 PMCID: PMC3909947 DOI: 10.3389/fncir.2014.00003] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 01/08/2014] [Indexed: 01/19/2023] Open
Abstract
The diversity of GABAA receptor (GABAAR) subunits and the numerous configurations during subunit assembly give rise to a variety of receptors with different functional properties. This heterogeneity results in variations in GABAergic conductances across numerous brain regions and cell types. Phasic inhibition is mediated by synaptically-localized receptors with a low affinity for GABA and results in a transient, rapidly desensitizing GABAergic conductance; whereas, tonic inhibition is mediated by extrasynaptic receptors with a high affinity for GABA and results in a persistent GABAergic conductance. The specific functions of tonic versus phasic GABAergic inhibition in different cell types and the impact on specific neural circuits are only beginning to be unraveled. Here we review the diversity in the magnitude of tonic GABAergic inhibition in various brain regions and cell types, and highlight the impact on neuronal excitability in different neuronal circuits. Further, we discuss the relevance of tonic inhibition in various physiological and pathological contexts as well as the potential of targeting these receptor subtypes for treatment of diseases, such as epilepsy.
Collapse
Affiliation(s)
- Vallent Lee
- Medical Scientist Training Program and Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University Boston, MA, USA
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine Boston, MA, USA
| |
Collapse
|
18
|
Maccione A, Hennig MH, Gandolfo M, Muthmann O, van Coppenhagen J, Eglen SJ, Berdondini L, Sernagor E. Following the ontogeny of retinal waves: pan-retinal recordings of population dynamics in the neonatal mouse. J Physiol 2013; 592:1545-63. [PMID: 24366261 PMCID: PMC3979611 DOI: 10.1113/jphysiol.2013.262840] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The immature retina generates spontaneous waves of spiking activity that sweep across the ganglion cell layer during a limited period of development before the onset of visual experience. The spatiotemporal patterns encoded in the waves are believed to be instructive for the wiring of functional connections throughout the visual system. However, the ontogeny of retinal waves is still poorly documented as a result of the relatively low resolution of conventional recording techniques. Here, we characterize the spatiotemporal features of mouse retinal waves from birth until eye opening in unprecedented detail using a large-scale, dense, 4096-channel multielectrode array that allowed us to record from the entire neonatal retina at near cellular resolution. We found that early cholinergic waves propagate with random trajectories over large areas with low ganglion cell recruitment. They become slower, smaller and denser when GABAA signalling matures, as occurs beyond postnatal day (P) 7. Glutamatergic influences dominate from P10, coinciding with profound changes in activity dynamics. At this time, waves cease to be random and begin to show repetitive trajectories confined to a few localized hotspots. These hotspots gradually tile the retina with time, and disappear after eye opening. Our observations demonstrate that retinal waves undergo major spatiotemporal changes during ontogeny. Our results support the hypotheses that cholinergic waves guide the refinement of retinal targets and that glutamatergic waves may also support the wiring of retinal receptive fields.
Collapse
Affiliation(s)
- Alessandro Maccione
- Institute of Neuroscience, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Throughout development, the nervous system produces patterned spontaneous activity. Research over the past two decades has revealed a core group of mechanisms that mediate spontaneous activity in diverse circuits. Many circuits engage several of these mechanisms sequentially to accommodate developmental changes in connectivity. In addition to shared mechanisms, activity propagates through developing circuits and neuronal pathways (i.e., linked circuits in different brain areas) in stereotypic patterns. Increasing evidence suggests that spontaneous network activity shapes synaptic development in vivo Variations in activity-dependent plasticity may explain how similar mechanisms and patterns of activity can be employed to establish diverse circuits. Here, I will review common mechanisms and patterns of spontaneous activity in emerging neural networks and discuss recent insights into their contribution to synaptic development.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, USA Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO, USA Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
20
|
Toychiev AH, Yee CW, Sagdullaev BT. Correlated spontaneous activity persists in adult retina and is suppressed by inhibitory inputs. PLoS One 2013; 8:e77658. [PMID: 24204906 PMCID: PMC3812233 DOI: 10.1371/journal.pone.0077658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/04/2013] [Indexed: 11/29/2022] Open
Abstract
Spontaneous rhythmic activity is a hallmark feature of the developing retina, where propagating retinal waves instruct axonal targeting and synapse formation. Retinal waves cease around the time of eye-opening; however, the fate of the underlying synaptic circuitry is unknown. Whether retinal waves are unique to the developing retina or if they can be induced in adulthood is not known. Combining patch-clamp techniques with calcium imaging, we demonstrate that propagative events persist in adult mouse retina when it is deprived of inhibitory input. This activity originates in bipolar cells, resembling glutamatergic stage III retinal waves. We find that, as it develops, the network interactions progressively curtail this activity. Together, this provides evidence that the correlated propagative neuronal activity can be induced in adult retina following the blockade of inhibitory interactions.
Collapse
Affiliation(s)
- Abduqodir H Toychiev
- Department of Neurology, Weill Medical College of Cornell University, New York, New York, United States of America ; Department of Ophthalmology, Weill Medical College of Cornell University, New York, New York, United States of America
| | | | | |
Collapse
|
21
|
GABAA receptor-mediated tonic depolarization in developing neural circuits. Mol Neurobiol 2013; 49:702-23. [PMID: 24022163 DOI: 10.1007/s12035-013-8548-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
The activation of GABAA receptors (the type A receptors for γ-aminobutyric acid) produces two distinct forms of responses, phasic (i.e., transient) and tonic (i.e., persistent), that are mediated by synaptic and extrasynaptic GABAA receptors, respectively. During development, the intracellular chloride levels are high so activation of these receptors causes a net outward flow of anions that leads to neuronal depolarization rather than hyperpolarization. Therefore, in developing neural circuits, tonic activation of GABAA receptors may provide persistent depolarization. Recently, it became evident that GABAA receptor-mediated tonic depolarization alters the structure of patterned spontaneous activity, a feature that is common in developing neural circuits and is important for neural circuit refinement. Thus, this persistent depolarization may lead to a long-lasting increase in intracellular calcium level that modulates network properties via calcium-dependent signaling cascades. This article highlights the features of GABAA receptor-mediated tonic depolarization, summarizes the principles for discovery, reviews the current findings in diverse developing circuits, examines the underlying molecular mechanisms and modulation systems, and discusses their functional specializations for each developing neural circuit.
Collapse
|
22
|
Ford KJ, Arroyo DA, Kay JN, Lloyd EE, Bryan RM, Sanes JR, Feller MB. A role for TREK1 in generating the slow afterhyperpolarization in developing starburst amacrine cells. J Neurophysiol 2013; 109:2250-9. [PMID: 23390312 DOI: 10.1152/jn.01085.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Slow afterhyperpolarizations (sAHPs) play an important role in establishing the firing pattern of neurons that in turn influence network activity. sAHPs are mediated by calcium-activated potassium channels. However, the molecular identity of these channels and the mechanism linking calcium entry to their activation are still unknown. Here we present several lines of evidence suggesting that the sAHPs in developing starburst amacrine cells (SACs) are mediated by two-pore potassium channels. First, we use whole cell and perforated patch voltage clamp recordings to characterize the sAHP conductance under different pharmacological conditions. We find that this conductance was calcium dependent, reversed at EK, blocked by barium, insensitive to apamin and TEA, and activated by arachidonic acid. In addition, pharmacological inhibition of calcium-activated phosphodiesterase reduced the sAHP. Second, we performed gene profiling on isolated SACs and found that they showed strong preferential expression of the two-pore channel gene kcnk2 that encodes TREK1. Third, we demonstrated that TREK1 knockout animals exhibited an altered frequency of retinal waves, a frequency that is set by the sAHPs in SACs. With these results, we propose a model in which depolarization-induced decreases in cAMP lead to disinhibition of the two-pore potassium channels and in which the kinetics of this biochemical pathway dictate the slow activation and deactivation of the sAHP conductance. Our model offers a novel pathway for the activation of a conductance that is physiologically important.
Collapse
Affiliation(s)
- Kevin J Ford
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Firl A, Sack GS, Newman ZL, Tani H, Feller MB. Extrasynaptic glutamate and inhibitory neurotransmission modulate ganglion cell participation during glutamatergic retinal waves. J Neurophysiol 2013; 109:1969-78. [PMID: 23343894 DOI: 10.1152/jn.00039.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During the first 2 wk of mouse postnatal development, transient retinal circuits give rise to the spontaneous initiation and lateral propagation of depolarizations across the ganglion cell layer (GCL). Glutamatergic retinal waves occur during the second postnatal week, when GCL depolarizations are mediated by ionotropic glutamate receptors. Bipolar cells are the primary source of glutamate in the inner retina, indicating that the propagation of waves depends on their activation. Using the fluorescence resonance energy transfer-based optical sensor of glutamate FLII81E-1μ, we found that retinal waves are accompanied by a large transient increase in extrasynaptic glutamate throughout the inner plexiform layer. Using two-photon Ca(2+) imaging to record spontaneous Ca(2+) transients in large populations of cells, we found that despite this spatially diffuse source of depolarization, only a subset of neurons in the GCL and inner nuclear layer (INL) are robustly depolarized during retinal waves. Application of the glutamate transporter blocker dl-threo-β-benzyloxyaspartate (25 μM) led to a significant increase in cell participation in both layers, indicating that the concentration of extrasynaptic glutamate affects cell participation in both the INL and GCL. In contrast, blocking inhibitory transmission with the GABAA receptor antagonist gabazine and the glycine receptor antagonist strychnine increased cell participation in the GCL without significantly affecting the INL. These data indicate that during development, glutamate spillover provides a spatially diffuse source of depolarization, but that inhibitory circuits dictate which neurons within the GCL participate in retinal waves.
Collapse
Affiliation(s)
- Alana Firl
- Vision Sciences Graduate Program, Department of Optometry, University of California, Berkeley, CA, USA
| | | | | | | | | |
Collapse
|
24
|
McDonough MJ, Allen CE, Ng-Sui-Hing NKLA, Rabe BA, Lewis BB, Saha MS. Dissection, culture, and analysis of Xenopus laevis embryonic retinal tissue. J Vis Exp 2012:4377. [PMID: 23287809 DOI: 10.3791/4377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The process by which the anterior region of the neural plate gives rise to the vertebrate retina continues to be a major focus of both clinical and basic research. In addition to the obvious medical relevance for understanding and treating retinal disease, the development of the vertebrate retina continues to serve as an important and elegant model system for understanding neuronal cell type determination and differentiation(1-16). The neural retina consists of six discrete cell types (ganglion, amacrine, horizontal, photoreceptors, bipolar cells, and Müller glial cells) arranged in stereotypical layers, a pattern that is largely conserved among all vertebrates (12,14-18). While studying the retina in the intact developing embryo is clearly required for understanding how this complex organ develops from a protrusion of the forebrain into a layered structure, there are many questions that benefit from employing approaches using primary cell culture of presumptive retinal cells (7,19-23). For example, analyzing cells from tissues removed and dissociated at different stages allows one to discern the state of specification of individual cells at different developmental stages, that is, the fate of the cells in the absence of interactions with neighboring tissues (8,19-22,24-33). Primary cell culture also allows the investigator to treat the culture with specific reagents and analyze the results on a single cell level (5,8,21,24,27-30,33-39). Xenopus laevis, a classic model system for the study of early neural development (19,27,29,31-32,40-42), serves as a particularly suitable system for retinal primary cell culture (10,38,43-45). Presumptive retinal tissue is accessible from the earliest stages of development, immediately following neural induction (25,38,43). In addition, given that each cell in the embryo contains a supply of yolk, retinal cells can be cultured in a very simple defined media consisting of a buffered salt solution, thus removing the confounding effects of incubation or other sera-based products (10,24,44-45). However, the isolation of the retinal tissue from surrounding tissues and the subsequent processing is challenging. Here, we present a method for the dissection and dissociation of retinal cells in Xenopus laevis that will be used to prepare primary cell cultures that will, in turn, be analyzed for calcium activity and gene expression at the resolution of single cells. While the topic presented in this paper is the analysis of spontaneous calcium transients, the technique is broadly applicable to a wide array of research questions and approaches (Figure 1).
Collapse
|
25
|
Chabrol F, Eglen S, Sernagor E. GABAergic control of retinal ganglion cell dendritic development. Neuroscience 2012; 227:30-43. [DOI: 10.1016/j.neuroscience.2012.09.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/15/2012] [Accepted: 09/19/2012] [Indexed: 11/17/2022]
|
26
|
Chiang CW, Chen YC, Lu JC, Hsiao YT, Chang CW, Huang PC, Chang YT, Chang PY, Wang CT. Synaptotagmin I regulates patterned spontaneous activity in the developing rat retina via calcium binding to the C2AB domains. PLoS One 2012; 7:e47465. [PMID: 23091625 PMCID: PMC3472990 DOI: 10.1371/journal.pone.0047465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/12/2012] [Indexed: 12/24/2022] Open
Abstract
Background In neonatal binocular animals, the developing retina displays patterned spontaneous activity termed retinal waves, which are initiated by a single class of interneurons (starburst amacrine cells, SACs) that release neurotransmitters. Although SACs are shown to regulate wave dynamics, little is known regarding how altering the proteins involved in neurotransmitter release may affect wave dynamics. Synaptotagmin (Syt) family harbors two Ca2+-binding domains (C2A and C2B) which serve as Ca2+ sensors in neurotransmitter release. However, it remains unclear whether SACs express any specific Syt isoform mediating retinal waves. Moreover, it is unknown how Ca2+ binding to C2A and C2B of Syt affects wave dynamics. Here, we investigated the expression of Syt I in the neonatal rat retina and examined the roles of C2A and C2B in regulating wave dynamics. Methodology/Principal Findings Immunostaining and confocal microscopy showed that Syt I was expressed in neonatal rat SACs and cholinergic synapses, consistent with its potential role as a Ca2+ sensor mediating retinal waves. By combining a horizontal electroporation strategy with the SAC-specific promoter, we specifically expressed Syt I mutants with weakened Ca2+-binding ability in C2A or C2B in SACs. Subsequent live Ca2+ imaging was used to monitor the effects of these molecular perturbations on wave-associated spontaneous Ca2+ transients. We found that targeted expression of Syt I C2A or C2B mutants in SACs significantly reduced the frequency, duration, and amplitude of wave-associated Ca2+ transients, suggesting that both C2 domains regulate wave temporal properties. In contrast, these C2 mutants had relatively minor effects on pairwise correlations over distance for wave-associated Ca2+ transients. Conclusions/Significance Through Ca2+ binding to C2A or C2B, the Ca2+ sensor Syt I in SACs may regulate patterned spontaneous activity to shape network activity during development. Hence, modulating the releasing machinery in presynaptic neurons (SACs) alters wave dynamics.
Collapse
Affiliation(s)
- Chung-Wei Chiang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Chieh Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Juu-Chin Lu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Yu-Tien Hsiao
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Che-Wei Chang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Pin-Chien Huang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Yu-Tzu Chang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Payne Y. Chang
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Chih-Tien Wang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Abstract
Before vision, a transient network of recurrently connected cholinergic interneurons, called starburst amacrine cells (SACs), generates spontaneous retinal waves. Despite an absence of robust inhibition, cholinergic retinal waves initiate infrequently and propagate within finite boundaries. Here, we combine a variety of electrophysiological and imaging techniques and computational modeling to elucidate the mechanisms underlying these spatial and temporal properties of waves in developing mouse retina. Waves initiate via rare spontaneous depolarizations of SACs. Waves propagate through recurrent cholinergic connections between SACs and volume release of ACh as demonstrated using paired recordings and a cell-based ACh optical sensor. Perforated-patch recordings and two-photon calcium imaging reveal that individual SACs have slow afterhyperpolarizations that induce SACs to have variable depolarizations during sequential waves. Using a computational model in which the properties of SACs are based on these physiological measurements, we reproduce the slow frequency, speed, and finite size of recorded waves. This study represents a detailed description of the circuit that mediates cholinergic retinal waves and indicates that variability of the interneurons that generate this network activity may be critical for the robustness of waves across different species and stages of development.
Collapse
|
28
|
Age-dependent homeostatic plasticity of GABAergic signaling in developing retinal networks. J Neurosci 2011; 31:12159-64. [PMID: 21865458 DOI: 10.1523/jneurosci.3112-11.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Developing retinal ganglion cells fire in correlated spontaneous bursts, resulting in propagating waves with robust spatiotemporal features preserved across development and species. Here we investigate the effects of homeostatic adaptation on the circuits controlling retinal waves. Mouse retinal waves were recorded in vitro for up to 35 h with a multielectrode array in presence of the GABA(A) antagonist bicuculline, allowing us to obtain a precise, time-resolved characterization of homeostatic effects in this preparation. Experiments were performed at P4-P6, when GABA(A) signaling is depolarizing in ganglion cells, and at P7-P10, when GABA(A) signaling is hyperpolarizing. At all ages, bicuculline initially increased the wave sizes and other activity metrics. At P5-P6, wave sizes decreased toward control levels within a few hours while firing remained strong, but this ability to compensate disappeared entirely from P7 onwards. This demonstrates that homeostatic control of spontaneous retinal activity maintains specific network dynamic properties in an age-dependent manner, and suggests that the underlying mechanism is linked to GABA(A) signaling.
Collapse
|
29
|
Abstract
In the few weeks prior to the onset of vision, the retina undergoes a dramatic transformation. Neurons migrate into position and target appropriate synaptic partners to assemble the circuits that mediate vision. During this period of development, the retina is not silent but rather assembles and disassembles a series of transient circuits that use distinct mechanisms to generate spontaneous correlated activity called retinal waves. During the first postnatal week, this transient circuit is comprised of reciprocal cholinergic connections between starburst amacrine cells. A few days before the eyes open, these cholinergic connections are eliminated as the glutamatergic circuits involved in processing visual information are formed. Here, we discuss the assembly and disassembly of this transient cholinergic network and the role it plays in various aspects of retinal development.
Collapse
|
30
|
Development of asymmetric inhibition underlying direction selectivity in the retina. Nature 2010; 469:402-6. [PMID: 21131947 DOI: 10.1038/nature09600] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 10/13/2010] [Indexed: 11/08/2022]
Abstract
Establishing precise synaptic connections is crucial to the development of functional neural circuits. The direction-selective circuit in the retina relies upon highly selective wiring of inhibitory inputs from starburst amacrine cells (SACs) onto four subtypes of ON-OFF direction-selective ganglion cells (DSGCs), each preferring motion in one of four cardinal directions. It has been reported in rabbit that the SACs on the 'null' sides of DSGCs form functional GABA (γ-aminobutyric acid)-mediated synapses, whereas those on the preferred sides do not. However, it is not known how the asymmetric wiring between SACs and DSGCs is established during development. Here we report that in transgenic mice with cell-type-specific labelling, the synaptic connections from SACs to DSGCs were of equal strength during the first postnatal week, regardless of whether the SAC was located on the preferred or null side of the DSGC. However, by the end of the second postnatal week, the strength of the synapses made from SACs on the null side of a DSGC significantly increased whereas those made from SACs located on the preferred side remained constant. Blocking retinal activity by intraocular injections of muscimol or gabazine during this period did not alter the development of direction selectivity. Hence, the asymmetric inhibition between the SACs and DSGCs is achieved by a developmental program that specifically strengthens the GABA-mediated inputs from SACs located on the null side, in a manner not dependent on neural activity.
Collapse
|
31
|
Direction-selective ganglion cells show symmetric participation in retinal waves during development. J Neurosci 2010; 30:11197-201. [PMID: 20720127 DOI: 10.1523/jneurosci.2302-10.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Direction-selective ganglion cells (DSGCs) fire robustly for stimuli moving along one direction of motion and are strongly inhibited by stimuli moving in the opposite, or null, direction. In contrast to direction-selective neurons in primary visual cortex, a role for neural activity in the development of direction-selective retinal circuits has not been established. Direction-selective responses are detected at eye opening, before which spontaneous correlated activity known as retinal waves provide directional input to ganglion cells. Indeed, we observed a significant bias in wave propagation along the nasal over temporal direction. Using simultaneous calcium imaging and cell-attached recordings from three genetically labeled DSGC types in mice, we observed that all three DSGC types fire action potentials during retinal waves. However, we found that the direction of wave propagation did not influence DSGC spiking. These results indicate that the mechanisms guiding the formation of the asymmetric inhibition underlying direction selectivity in the retina are not dependent upon the directional properties of retinal waves.
Collapse
|
32
|
Zhang RW, Wei HP, Xia YM, Du JL. Development of light response and GABAergic excitation-to-inhibition switch in zebrafish retinal ganglion cells. J Physiol 2010; 588:2557-69. [PMID: 20498234 PMCID: PMC2916988 DOI: 10.1113/jphysiol.2010.187088] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 05/17/2010] [Indexed: 01/02/2023] Open
Abstract
The zebrafish retina has been an important model for studying morphological development of neural circuits in vivo. However, its functional development is not yet well understood. To investigate the functional development of zebrafish retina, we developed an in vivo patch-clamp whole-cell recording technique in intact zebrafish larvae. We first examined the developmental profile of light-evoked responses (LERs) in retinal ganglion cells (RGCs) from 2 to 9 days post-fertilization (dpf). Unstable LERs were first observed at 2.5 dpf. By 4 dpf, RGCs exhibited reliable light responses. As the GABAergic system is critical for retinal development, we then performed in vivo gramicidin perforated-patch whole-cell recording to characterize the developmental change of GABAergic action in RGCs. The reversal potential of GABA-induced currents (E(GABA)) in RGCs gradually shifted from depolarized to hyperpolarized levels during 2-4 dpf and the excitation-to-inhibition (E-I) switch of GABAergic action occurred at around 2.5 dpf when RGCs became light sensitive. Meanwhile, GABAergic transmission upstream to RGCs also became inhibitory by 2.5 dpf. Furthermore, down-regulation of the K(+)/Cl() co-transporter (KCC2) by the morpholino oligonucleotide-based knockdown approach, which shifted RGC E(GABA) towards a more depolarized level and thus delayed the E-I switch by one day, postponed the appearance of RGC LERs by one day. In addition, RGCs exhibited correlated giant inward current (GICs) during 2.5-3.5 dpf. The period of GICs was shifted to 3-4.5 dpf by KCC2 knockdown. Taken together, the GABAergic E-I switch occurs coincidently with the emergence of light responses and GICs in zebrafish RGCs, and may contribute to the functional development of retinal circuits.
Collapse
Affiliation(s)
- Rong-wei Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | | | | | | |
Collapse
|
33
|
Permanent functional reorganization of retinal circuits induced by early long-term visual deprivation. J Neurosci 2009; 29:13691-701. [PMID: 19864581 DOI: 10.1523/jneurosci.3854-09.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Early sensory experience shapes the functional and anatomical connectivity of neuronal networks. Light deprivation alters synaptic transmission and modifies light response properties in the visual system, from retinal circuits to higher visual centers. These effects are more pronounced during a critical period in juvenile life and are mostly reversed by restoring normal light conditions. Here we show that complete light deprivation, from birth to periods beyond the critical period, permanently modifies the receptive field properties of retinal ganglion cells. Visual deprivation reduced both the strength of light responses in ganglion cells and their receptive field size. Light deprivation produced an imbalance in the ratio of inhibitory to excitatory inputs, with a shift toward larger inhibitory conductances. Ganglion cell receptive fields in visually deprived animals showed a spatial mismatch of inhibitory and excitatory inputs and inhibitory inputs were highly scattered over the receptive field. These results indicate that visual experience early in life is critical for the refinement of retinal circuits and for appropriate signaling of the spatiotemporal properties of visual stimuli, thus influencing the response properties of neurons in higher visual centers and their processing of visual information.
Collapse
|
34
|
Blankenship AG, Feller MB. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat Rev Neurosci 2009; 11:18-29. [PMID: 19953103 DOI: 10.1038/nrn2759] [Citation(s) in RCA: 518] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Patterned, spontaneous activity occurs in many developing neural circuits, including the retina, the cochlea, the spinal cord, the cerebellum and the hippocampus, where it provides signals that are important for the development of neurons and their connections. Despite there being differences in adult architecture and output across these various circuits, the patterns of spontaneous network activity and the mechanisms that generate it are remarkably similar. The mechanisms can include a depolarizing action of GABA (gamma-aminobutyric acid), transient synaptic connections, extrasynaptic transmission, gap junction coupling and the presence of pacemaker-like neurons. Interestingly, spontaneous activity is robust; if one element of a circuit is disrupted another will generate similar activity. This research suggests that developing neural circuits exhibit transient and tunable features that maintain a source of correlated activity during crucial stages of development.
Collapse
Affiliation(s)
- Aaron G Blankenship
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
35
|
Neuroligin 2 controls the maturation of GABAergic synapses and information processing in the retina. J Neurosci 2009; 29:8039-50. [PMID: 19553444 DOI: 10.1523/jneurosci.0534-09.2009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In the present study, we investigated the role of Neuroligin 2 (NL2) in synaptic transmission and network function using the mouse retina as a model circuit. We show that NL2 is preferentially located at GABAergic rather than glycinergic or glutamatergic postsynapses. The absence of NL2 from the retina resulted in a severe reduction of GABA(A) receptor clustering, and in subtle alterations of the retinal circuitry. Light processing was impaired accordingly, and retinal ganglion cells, the output neurons of the retina, showed increased basal activity and altered coding of visual information. Together, our data indicate that NL2 is essential for the functional integrity of GABAergic signaling and as a consequence, for information processing in the retina.
Collapse
|
36
|
Delgado LM, Vielma AH, Kähne T, Palacios AG, Schmachtenberg O. The GABAergic system in the retina of neonate and adult Octodon degus, studied by immunohistochemistry and electroretinography. J Comp Neurol 2009; 514:459-72. [PMID: 19350652 DOI: 10.1002/cne.22023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
UNLABELLED In the vertebrate retina, gamma-aminobutyric acid (GABA) mediates inhibitory processes that shape the visual response and is also thought to have neurotrophic functions during retinal development. To investigate the role of GABAergic signaling at the beginning of visual experience, we used immunohistochemistry to compare the distribution of GABA, the two isoforms of glutamic acid decarboxylase GAD65/67, and the GABA receptor types A, B, and C, in neonate versus adult Octodon degus, a native South American rodent with diurnal-crepuscular activity and a high cone-to-rod ratio. In parallel, we used electroretinography to evaluate retinal functionality and to test the contribution of fast GABAergic transmission to light responses at both developmental stages. Neonate O. degus opened their eyes on postnatal day (P)0 and displayed an adult-like retinal morphology at this time. GABA, its biosynthetic sources, and receptors had a similar cellular distribution in neonates and adults, but labeling of the outer plexiform layer and of certain amacrine and ganglion cells was more conspicuous at P0. In neonates, retinal sensitivity was 10 times lower than in adults, responses to ultraviolet light could not be detected, and oscillatory potentials were reduced or absent. Blockade of GABA(A/C) receptors by bicuculline and TPMPA had no noticeable effect in neonates, while it significantly altered the electroretinogram response in adults. CONCLUSION In spite of modest differences regarding retinal morphology and GABAergic expression, overall light response properties and GABAergic signaling are undeveloped in neonate O. degus compared to adults, suggesting that full retinal functionality requires a period of neural refinement under visual experience.
Collapse
Affiliation(s)
- Luz M Delgado
- Centro de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | | | | | | | | |
Collapse
|
37
|
Hirasawa H, Puopolo M, Raviola E. Extrasynaptic release of GABA by retinal dopaminergic neurons. J Neurophysiol 2009; 102:146-58. [PMID: 19403749 DOI: 10.1152/jn.00130.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABA release by dopaminergic amacrine (DA) cells of the mouse retina was detected by measuring Cl- currents generated by isolated perikarya in response to their own neurotransmitter. The possibility that the Cl- currents were caused by GABA release from synaptic endings that had survived the dissociation of the retina was ruled out by examining confocal Z series of the surface of dissociated tyrosine hydroxylase-positive perikarya after staining with antibodies to pre and postsynaptic markers. GABA release was caused by exocytosis because 1) the current events were transient on the millisecond time scale and thus resembled miniature synaptic currents; 2) they were abolished by treatment with a blocker of the vesicular proton pump, bafilomycin A1; and 3) their frequency was controlled by the intracellular Ca2+ concentration. Because DA cell perikarya do not contain presynaptic active zones, release was by necessity extrasynaptic. A range of depolarizing stimuli caused GABA exocytosis, showing that extrasynaptic release of GABA is controlled by DA cell electrical activity. With all modalities of stimulation, including long-lasting square pulses, segments of pacemaker activity delivered by the action-potential-clamp method and high-frequency trains of ramps, discharge of GABAergic currents exhibited considerable variability in latency and duration, suggesting that coupling between Ca2+ influx and transmitter exocytosis is extremely loose in comparison with the synapse. Paracrine signaling based on extrasynaptic release of GABA by DA cells and other GABAergic amacrines may participate in controlling the excitability of the neuronal processes that interact synaptically in the inner plexiform layer.
Collapse
Affiliation(s)
- Hajime Hirasawa
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
38
|
Early-stage waves in the retinal network emerge close to a critical state transition between local and global functional connectivity. J Neurosci 2009; 29:1077-86. [PMID: 19176816 DOI: 10.1523/jneurosci.4880-08.2009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A novel, biophysically realistic model for early-stage, acetylcholine-mediated retinal waves is presented. In this model, neural excitability is regulated through a slow after-hyperpolarization (sAHP) operating on two different temporal scales. As a result, the simulated network exhibits competition between a desynchronizing effect of spontaneous, cell-intrinsic bursts, and the synchronizing effect of synaptic transmission during retinal waves. Cell-intrinsic bursts decouple the retinal network through activation of the sAHP current, and we show that the network is capable of operating at a transition point between purely local and global functional connectedness, which corresponds to a percolation phase transition. Multielectrode array recordings show that, at this point, the properties of retinal waves are reliably predicted by the model. These results indicate that early spontaneous activity in the developing retina is regulated according to a very specific principle, which maximizes randomness and variability in the resulting activity patterns.
Collapse
|
39
|
Does the brain connect before the periphery can direct? A comparison of three sensory systems in mice. Brain Res 2009; 1277:115-29. [PMID: 19272365 DOI: 10.1016/j.brainres.2009.02.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/15/2009] [Accepted: 02/23/2009] [Indexed: 12/13/2022]
Abstract
The development of peripheral to central neural connections within the auditory, visual, and olfactory systems of mice is reviewed to address whether peripheral signaling may play an instructive role during initial synapse formation. For each sensory system, developmental times of histogenesis and the earliest ages of innervation and function are considered for peripheral and selected central relays. For the auditory and visual system, anatomical and functional reports indicate that central connections may form prior to synapse formation in the periphery. However, evidence from the olfactory system suggests that the peripheral olfactory sensory neurons form synaptic connections before more central olfactory connections are established. We find that significant gaps in knowledge exist for embryonic development of these systems in mice and that genetic tools have not yet been systematically directed to address these issues.
Collapse
|
40
|
Haverkamp S, Inta D, Monyer H, Wässle H. Expression analysis of green fluorescent protein in retinal neurons of four transgenic mouse lines. Neuroscience 2009; 160:126-39. [PMID: 19232378 DOI: 10.1016/j.neuroscience.2009.01.081] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 01/14/2009] [Accepted: 01/22/2009] [Indexed: 11/30/2022]
Abstract
Transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of a cell-specific promoter have been used with great success to identify and label specific cell types of the retina. We studied the expression of EGFP in the retina of mice making use of four transgenic mouse lines. Expression of EGFP driven by the calretinin promoter was found in amacrine, displaced amacrine and ganglion cells. Comparison of the EGFP expression and calretinin immunolabeling showed that many but not all cells appear to be double labeled. Expression of EGFP under the control of the choline acetyltransferase promoter was found in amacrine cells; however, the cells did not correspond to the well known cholinergic (starburst) cells of the mouse retina. The expression of EGFP under the control of the parvalbumin promoter was restricted to amacrine cells of the inner nuclear layer and to cells of the ganglion cell layer (displaced amacrine cells and ganglion cells). Most of the cells were also immunoreactive for parvalbumin, however, differences in labeling intensity were observed. The expression of EGFP driven by the promoter for the 5-HT3 A receptor (5-HTR3A) was restricted to type 5 bipolar cells. In contrast, immunostaining for 5-HTR3A was found in synaptic hot spots in sublamina 1 of the inner plexiform layer and was not related to type 5 bipolar cells. The results show that these transgenic mice are very useful for future electrophysiological studies of specific types of amacrine and bipolar cells that express EGFP and thus permit directed microelectrode targeting under microscopic control.
Collapse
Affiliation(s)
- S Haverkamp
- Department of Neuroanatomy, Max Planck Institute for Brain Research, Deutschordenstr. 46, D-60528 Frankfurt/Main, Germany.
| | | | | | | |
Collapse
|
41
|
Guo C, Stella SL, Hirano AA, Brecha NC. Plasmalemmal and vesicular gamma-aminobutyric acid transporter expression in the developing mouse retina. J Comp Neurol 2009; 512:6-26. [PMID: 18975268 DOI: 10.1002/cne.21846] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasmalemmal and vesicular gamma-aminobutyric acid (GABA) transporters influence neurotransmission by regulating high-affinity GABA uptake and GABA release into the synaptic cleft and extracellular space. Postnatal expression of the plasmalemmal GABA transporter-1 (GAT-1), GAT-3, and the vesicular GABA/glycine transporter (VGAT) were evaluated in the developing mouse retina by using immunohistochemistry with affinity-purified antibodies. Weak transporter immunoreactivity was observed in the inner retina at postnatal day 0 (P0). GAT-1 immunostaining at P0 and at older ages was in amacrine and displaced amacrine cells in the inner nuclear layer (INL) and ganglion cell layer (GCL), respectively, and in their processes in the inner plexiform layer (IPL). At P10, weak GAT-1 immunostaining was in Müller cell processes. GAT-3 immunostaining at P0 and older ages was in amacrine cells and their processes, as well as in Müller cells and their processes that extended radially across the retina. At P10, Müller cell somata were observed in the middle of the INL. VGAT immunostaining was present at P0 and older ages in amacrine cells in the INL as well as processes in the IPL. At P5, weak VGAT immunostaining was also observed in horizontal cell somata and processes. By P15, the GAT and VGAT immunostaining patterns appear similar to the adult immunostaining patterns; they reached adult levels by about P20. These findings demonstrate that GABA uptake and release are initially established in the inner retina during the first postnatal week and that these systems subsequently mature in the outer retina during the second postnatal week.
Collapse
Affiliation(s)
- Chenying Guo
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
42
|
Sun C, Speer CM, Wang GY, Chapman B, Chalupa LM. Epibatidine application in vitro blocks retinal waves without silencing all retinal ganglion cell action potentials in developing retina of the mouse and ferret. J Neurophysiol 2008; 100:3253-63. [PMID: 18922954 DOI: 10.1152/jn.90303.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epibatidine (EPI), a potent cholinergic agonist, disrupts acetylcholine-dependent spontaneous retinal activity. Early patch-clamp recordings in juvenile ferrets suggested that EPI blocks all retinal ganglion cell (RGC) action potentials when applied to the retina. In contrast, recent experiments on the developing mouse that relied on multielectrode array (MEA) recordings reported that EPI application decorrelates the activity of neighboring RGCs and eliminates retinal waves while preserving the spiking activity of many neurons. The different techniques used in previous studies raise the question of whether EPI has different effects on RGC activity in mouse compared with that in ferret. A resolution of this issue is essential for interpreting the results of developmental studies that relied on EPI to manipulate retinal activity. Our goal was to compare the effects of EPI on the spontaneous discharges of RGCs in mouse and ferret using 60-electrode MEA as well as patch-clamp recordings during the developmental stage when retinal waves are driven by acetylcholine in both species. We found that in both mouse and ferret EPI decorrelates RGC activity and eliminates retinal waves. However, EPI does not block all spontaneous activity in either species. Instead, our whole cell recordings reveal that EPI silences more than half of all RGCs while significantly increasing the activity of the remainder. These results have important implications for interpreting the results of previous studies that relied on this cholinergic agonist to perturb retinal activity.
Collapse
Affiliation(s)
- Chao Sun
- Department of Neurobiology, Physiology, and Behavior, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
43
|
Qu J, Myhr KL. The development of intrinsic excitability in mouse retinal ganglion cells. Dev Neurobiol 2008; 68:1196-212. [DOI: 10.1002/dneu.20653] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Ferreiro-Galve S, Candal E, Carrera I, Anadón R, Rodríguez-Moldes I. Early development of GABAergic cells of the retina in sharks: an immunohistochemical study with GABA and GAD antibodies. J Chem Neuroanat 2008; 36:6-16. [PMID: 18524536 DOI: 10.1016/j.jchemneu.2008.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/17/2008] [Accepted: 04/18/2008] [Indexed: 11/24/2022]
Abstract
We studied the ontogeny and organization of GABAergic cells in the retina of two elasmobranches, the lesser-spotted dogfish (Scyliorhinus canicula) and the brown shyshark (Haploblepharus fuscus) by using immunohistochemistry for gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD). Both antibodies revealed the same pattern of immunoreactivity and both species showed similar organization of GABAergic cells. GABAergic cells were first detected in neural retina of embryos at stage 26, which showed a neuroepithelial appearance without any layering. In stages 27-29 the retina showed similar organization but the number of neuroblastic GABAergic cells increased. When layering became apparent in the central retina (stage-30 embryos), GABAergic cells mainly appeared organized in the outer and inner retina, and GABAergic processes and fibres were seen in the primordial inner plexiform layer (IPL), optic fibre layer and optic nerve stalk. In stage-32 embryos, layering was completed in the central retina, where immunoreactivity appeared in perikarya of the horizontal cell layer, inner nuclear layer and ganglion cell layer, and in numerous processes coursing in the IPL, optic fibre layer and optic nerve. From stage 32 to hatching (stage 34), the layered retina extends from centre-to-periphery, recapitulating that observed in the central retina at earlier stages. In adults, GABA/GAD immunoreactivity disappears from the horizontal cell layer except in the marginal retina. Our results indicate that the source of GABA in the shark retina can be explained by its synthesis by GAD. Such synthesis precedes layering and synaptogenesis, thus supporting a developmental role for GABA in addition to act as neurotransmitter and neuromodulator.
Collapse
Affiliation(s)
- Susana Ferreiro-Galve
- Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
45
|
GABA Effects During Neuronal Differentiation of Stem Cells. Neurochem Res 2008; 33:1546-57. [DOI: 10.1007/s11064-008-9642-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 02/21/2008] [Indexed: 12/18/2022]
|