1
|
Stacy AK, Van Hooser SD. Development of Functional Properties in the Early Visual System: New Appreciations of the Roles of Lateral Geniculate Nucleus. Curr Top Behav Neurosci 2022; 53:3-35. [PMID: 35112333 DOI: 10.1007/7854_2021_297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the years following Hubel and Wiesel's first reports on ocular dominance plasticity and amblyopia, much attention has been focused on understanding the role of cortical circuits in developmental and experience-dependent plasticity. Initial studies found few differences between retinal ganglion cells and neurons in the lateral geniculate nucleus and uncovered little evidence for an impact of altered visual experience on the functional properties of lateral geniculate nucleus neurons. In the last two decades, however, studies have revealed that the connectivity between the retina and lateral geniculate nucleus is much richer than was previously appreciated, even revealing visual plasticity - including ocular dominance plasticity - in lateral geniculate nucleus neurons. Here we review the development of the early visual system and the impact of experience with a distinct focus on recent discoveries about lateral geniculate nucleus, its connectivity, and evidence for its plasticity and rigidity during development.
Collapse
Affiliation(s)
- Andrea K Stacy
- Department of Biology, Brandeis University, Waltham, MA, USA
| | | |
Collapse
|
2
|
Kim J, Song M, Jang J, Paik SB. Spontaneous Retinal Waves Can Generate Long-Range Horizontal Connectivity in Visual Cortex. J Neurosci 2020; 40:6584-6599. [PMID: 32680939 PMCID: PMC7486661 DOI: 10.1523/jneurosci.0649-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/02/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
In the primary visual cortex (V1) of higher mammals, long-range horizontal connections (LHCs) are observed to develop, linking iso-orientation domains of cortical tuning. It is unknown how this feature-specific wiring of circuitry develops before eye-opening. Here, we suggest that LHCs in V1 may originate from spatiotemporally structured feedforward activities generated from spontaneous retinal waves. Using model simulations based on the anatomy and observed activity patterns of the retina, we show that waves propagating in retinal mosaics can initialize the wiring of LHCs by coactivating neurons of similar tuning, whereas equivalent random activities cannot induce such organizations. Simulations showed that emerged LHCs can produce the patterned activities observed in V1, matching the topography of the underlying orientation map. The model can also reproduce feature-specific microcircuits in the salt-and-pepper organizations found in rodents. Our results imply that early peripheral activities contribute significantly to cortical development of functional circuits.SIGNIFICANCE STATEMENT Long-range horizontal connections (LHCs) in the primary visual cortex (V1) are observed to emerge before the onset of visual experience, thereby selectively connecting iso-domains of orientation map. However, it is unknown how such feature-specific wirings develop before eye-opening. Here, we show that LHCs in V1 may originate from the feature-specific activation of cortical neurons by spontaneous retinal waves during early developmental stages. Our simulations of a visual cortex model show that feedforward activities from the retina initialize the spatial organization of activity patterns in V1, which induces visual feature-specific wirings in the V1 neurons. Our model also explains the origin of cortical microcircuits observed in rodents, suggesting that the proposed developmental mechanism is universally applicable to circuits of various mammalian species.
Collapse
Affiliation(s)
| | - Min Song
- Department of Bio and Brain Engineering
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | | | - Se-Bum Paik
- Department of Bio and Brain Engineering
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Dooley JC, Sokoloff G, Blumberg MS. Behavioral states modulate sensory processing in early development. CURRENT SLEEP MEDICINE REPORTS 2019; 5:112-117. [PMID: 31662954 DOI: 10.1007/s40675-019-00144-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose of Review Sleep-wake states modulate cortical activity in adults. In infants, however, such modulation is less clear; indeed, early cortical activity comprises bursts of neural activity driven predominantly by peripheral sensory input. Consequently, in many studies of sensory development in rodents, sensory processing has been carefully investigated, but the modulatory role of behavioral state has typically been ignored. Recent Findings In the developing visual and somatosensory systems, it is now known that sleep and wake states modulate sensory processing. Further, in both systems, the nature of this modulation shifts rapidly during the second postnatal week, with subcortical nuclei changing how they gate sensory inputs. Summary The interactions among sleep and wake movements, sensory processing, and development are dynamic and complex. Now that established methods exist to record neural activity in unanesthetized infant animals, we can provide a more comprehensive understanding of how infant sleep-wake states interact with sensory-driven responses to promote developmental plasticity.
Collapse
Affiliation(s)
- James C Dooley
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.,DeLTA Center, University of Iowa, Iowa City, IA 52242 USA
| | - Greta Sokoloff
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.,DeLTA Center, University of Iowa, Iowa City, IA 52242 USA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242 USA
| | - Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52245, USA.,Department of Biology, University of Iowa, Iowa City, IA, 52242 USA.,DeLTA Center, University of Iowa, Iowa City, IA 52242 USA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
4
|
Gelfman S, Wang Q, Lu YF, Hall D, Bostick CD, Dhindsa R, Halvorsen M, McSweeney KM, Cotterill E, Edinburgh T, Beaumont MA, Frankel WN, Petrovski S, Allen AS, Boland MJ, Goldstein DB, Eglen SJ. meaRtools: An R package for the analysis of neuronal networks recorded on microelectrode arrays. PLoS Comput Biol 2018; 14:e1006506. [PMID: 30273353 PMCID: PMC6181426 DOI: 10.1371/journal.pcbi.1006506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/11/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022] Open
Abstract
Here we present an open-source R package 'meaRtools' that provides a platform for analyzing neuronal networks recorded on Microelectrode Arrays (MEAs). Cultured neuronal networks monitored with MEAs are now being widely used to characterize in vitro models of neurological disorders and to evaluate pharmaceutical compounds. meaRtools provides core algorithms for MEA spike train analysis, feature extraction, statistical analysis and plotting of multiple MEA recordings with multiple genotypes and treatments. meaRtools functionality covers novel solutions for spike train analysis, including algorithms to assess electrode cross-correlation using the spike train tiling coefficient (STTC), mutual information, synchronized bursts and entropy within cultured wells. Also integrated is a solution to account for bursts variability originating from mixed-cell neuronal cultures. The package provides a statistical platform built specifically for MEA data that can combine multiple MEA recordings and compare extracted features between different genetic models or treatments. We demonstrate the utilization of meaRtools to successfully identify epilepsy-like phenotypes in neuronal networks from Celf4 knockout mice. The package is freely available under the GPL license (GPL> = 3) and is updated frequently on the CRAN web-server repository. The package, along with full documentation can be downloaded from: https://cran.r-project.org/web/packages/meaRtools/.
Collapse
Affiliation(s)
- Sahar Gelfman
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
| | - Quanli Wang
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
- Simcere Diagnostics Co, Ltd, Nanjing, China
| | - Yi-Fan Lu
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
- Department of Biology, Westmont College, Santa Barbara, CA, United States of America
| | - Diana Hall
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
| | - Christopher D. Bostick
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
| | - Ryan Dhindsa
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
| | - Matt Halvorsen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - K. Melodi McSweeney
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Ellese Cotterill
- Cambridge Computational Biology Institute, University of Cambridge, Cambridge, United Kingdom
| | - Tom Edinburgh
- Cambridge Computational Biology Institute, University of Cambridge, Cambridge, United Kingdom
| | - Michael A. Beaumont
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Axion BioSystems, Inc., Atlanta, GA, United States of America
| | - Wayne N. Frankel
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
| | - Slavé Petrovski
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Medicine, Austin Health and Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Andrew S. Allen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States of America
| | - Michael J. Boland
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Neurology, Columbia University, New York, NY, United States of America
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States of America
| | - Stephen J. Eglen
- Cambridge Computational Biology Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Failor SW, Ng A, Cheng HJ. Monocular enucleation alters retinal waves in the surviving eye. Neural Dev 2018; 13:4. [PMID: 29573745 PMCID: PMC5866508 DOI: 10.1186/s13064-018-0101-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/02/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Activity in neurons drives afferent competition that is critical for the refinement of nascent neural circuits. In ferrets, when an eye is lost in early development, surviving retinogeniculate afferents from the spared eye spread across the thalamus in a manner that is dependent on spontaneous retinal activity. However, how this spontaneous activity, also known as retinal waves, might dynamically regulate afferent terminal targeting remains unknown. METHODS We recorded retinal waves from retinae ex vivo using multi-electrode arrays. Retinae came from ferrets who were binocular or who had one eye surgically removed at birth. Linear mixed effects models were used to investigate the effects of early monocular enucleation on retinal wave activity. RESULTS When an eye is removed at birth, spontaneous bursts of action potentials by retinal ganglion cells (RGCs) in the surviving eye are shorter in duration. The shortening of RGC burst duration results in decreased pairwise RGC correlations across the retina and is associated with the retinal wave-dependent spread of retinogeniculate afferents previously reported in enucleates. CONCLUSION Our findings show that removal of the competing eye modulates retinal waves and could underlie the dynamic regulation of competition-based refinement during retinogeniculate development.
Collapse
Affiliation(s)
- Samuel Wilson Failor
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA, 95618, USA. .,Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Arash Ng
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA, 95618, USA
| | - Hwai-Jong Cheng
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA, 95618, USA. .,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA. .,Department of Pathology and Laboratory Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Thompson A, Gribizis A, Chen C, Crair MC. Activity-dependent development of visual receptive fields. Curr Opin Neurobiol 2017; 42:136-143. [PMID: 28088066 DOI: 10.1016/j.conb.2016.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022]
Abstract
It is widely appreciated that neuronal activity contributes to the development of brain representations of the external world. In the visual system, in particular, it is well known that activity cooperates with molecular cues to establish the topographic organization of visual maps on a macroscopic scale [1,2] (Huberman et al., 2008; Cang and Feldheim, 2013), mapping axons in a retinotopic and eye-specific manner. In recent years, significant progress has been made in elucidating the role of activity in driving the finer-scale circuit refinement that shapes the receptive fields of individual cells. In this review, we focus on these recent breakthroughs-primarily in mice, but also in other mammals where noted.
Collapse
Affiliation(s)
- Andrew Thompson
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Alexandra Gribizis
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Michael C Crair
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
7
|
Abstract
The thalamocortical (TC) relay neuron of the dorsoLateral Geniculate Nucleus (dLGN) has borne its imprecise label for many decades in spite of strong evidence that its role in visual processing transcends the implied simplicity of the term "relay". The retinogeniculate synapse is the site of communication between a retinal ganglion cell and a TC neuron of the dLGN. Activation of retinal fibers in the optic tract causes reliable, rapid, and robust postsynaptic potentials that drive postsynaptics spikes in a TC neuron. Cortical and subcortical modulatory systems have been known for decades to regulate retinogeniculate transmission. The dynamic properties that the retinogeniculate synapse itself exhibits during and after developmental refinement further enrich the role of the dLGN in the transmission of the retinal signal. Here we consider the structural and functional substrates for retinogeniculate synaptic transmission and plasticity, and reflect on how the complexity of the retinogeniculate synapse imparts a novel dynamic and influential capacity to subcortical processing of visual information.
Collapse
Affiliation(s)
- Elizabeth Y Litvina
- Department of Neurology,F.M. Kirby Neurobiology Center,Children's Hospital, Boston,Boston,Massachusetts 02115
| | - Chinfei Chen
- Department of Neurology,F.M. Kirby Neurobiology Center,Children's Hospital, Boston,Boston,Massachusetts 02115
| |
Collapse
|
8
|
Murata Y, Colonnese MT. An excitatory cortical feedback loop gates retinal wave transmission in rodent thalamus. eLife 2016; 5. [PMID: 27725086 PMCID: PMC5059135 DOI: 10.7554/elife.18816] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/18/2016] [Indexed: 11/17/2022] Open
Abstract
Spontaneous retinal waves are critical for the development of receptive fields in visual thalamus (LGN) and cortex (VC). Despite a detailed understanding of the circuit specializations in retina that generate waves, whether central circuit specializations also exist to control their propagation through visual pathways of the brain is unknown. Here we identify a developmentally transient, corticothalamic amplification of retinal drive to thalamus as a mechanism for retinal wave transmission in the infant rat brain. During the period of retinal waves, corticothalamic connections excite LGN, rather than driving feedforward inhibition as observed in the adult. This creates an excitatory feedback loop that gates retinal wave transmission through the LGN. This cortical multiplication of retinal wave input ends just prior to eye-opening, as cortex begins to inhibit LGN. Our results show that the early retino-thalamo-cortical circuit uses developmentally specialized feedback amplification to ensure powerful, high-fidelity transmission of retinal activity despite immature connectivity. DOI:http://dx.doi.org/10.7554/eLife.18816.001 The brain of a developing fetus has a big job to do: it needs to create the important connections between neurons that the individual will need later in life. This is a challenge because the first connections that form between neurons are sparse, weak and unreliable. They would not be expected to be able to transmit signals in a robust or effective way, and yet they do. How the nervous system solves this problem is an important question, because many neurological disorders may be the result of bad wiring between neurons in the fetal brain. When an adult human or other mammal “sees” an object, visual information from the eye is transmitted to a part of the brain called the thalamus. From there it is sent on to another part of the brain called the cortex. The cortex also provides feedback to the thalamus to adjust the system and often acts as a brake in adults to limit the flow of information from the eyes. Murata and Colonnese investigated whether the fetal brain contains any “booster” circuits of neurons that can amplify weak signals from other neurons to help ensure that information is transferred accurately. The experiments monitored and altered visual activity in the brains of newborn rats – which have similar activity patterns to those observed in human babies born prematurely. Murata and Colonnese found that in these rats the feedback signals from the cortex to the thalamus actually multiply the visual signals from the eye, instead of restraining them. This causes a massive amplification in activity in the developing brain and explains how the fetal brain stays active despite its neurons being only weakly connected. The booster circuit stops working just before the eyes first open (equivalent to birth in humans) as the connections between neurons become stronger, and is replaced by the braking mechanism seen in adults. This is important, because continued amplification of signals in the adult brain might cause excessive brain activity and epilepsy. The findings of Murata and Colonnese may therefore help to explain why epileptic seizures have different causes and behave differently in children and adults. The next step following on from this work is to find out how the braking mechanism forms in young animals. Future studies will also focus on understanding the precise role the booster circuit plays in early brain development. DOI:http://dx.doi.org/10.7554/eLife.18816.002
Collapse
Affiliation(s)
- Yasunobu Murata
- Department of Pharmacology and Physiology, George Washington University, Washington, United States.,Institute for Neuroscience, George Washington University, Washington, United States
| | - Matthew T Colonnese
- Department of Pharmacology and Physiology, George Washington University, Washington, United States.,Institute for Neuroscience, George Washington University, Washington, United States
| |
Collapse
|
9
|
Leighton AH, Lohmann C. The Wiring of Developing Sensory Circuits-From Patterned Spontaneous Activity to Synaptic Plasticity Mechanisms. Front Neural Circuits 2016; 10:71. [PMID: 27656131 PMCID: PMC5011135 DOI: 10.3389/fncir.2016.00071] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/18/2016] [Indexed: 12/18/2022] Open
Abstract
In order to accurately process incoming sensory stimuli, neurons must be organized into functional networks, with both genetic and environmental factors influencing the precise arrangement of connections between cells. Teasing apart the relative contributions of molecular guidance cues, spontaneous activity and visual experience during this maturation is on-going. During development of the sensory system, the first, rough organization of connections is created by molecular factors. These connections are then modulated by the intrinsically generated activity of neurons, even before the senses have become operational. Spontaneous waves of depolarizations sweep across the nervous system, placing them in a prime position to strengthen correct connections and weaken others, shaping synapses into a useful network. A large body of work now support the idea that, rather than being a mere side-effect of the system, spontaneous activity actually contains information which readies the nervous system so that, as soon as the senses become active, sensory information can be utilized by the animal. An example is the neonatal mouse. As soon as the eyelids first open, neurons in the cortex respond to visual information without the animal having previously encountered structured sensory input (Cang et al., 2005b; Rochefort et al., 2011; Zhang et al., 2012; Ko et al., 2013). In vivo imaging techniques have advanced considerably, allowing observation of the natural activity in the brain of living animals down to the level of the individual synapse. New (opto)genetic methods make it possible to subtly modulate the spatio-temporal properties of activity, aiding our understanding of how these characteristics relate to the function of spontaneous activity. Such experiments have had a huge impact on our knowledge by permitting direct testing of ideas about the plasticity mechanisms at play in the intact system, opening up a provocative range of fresh questions. Here, we intend to outline the most recent descriptions of spontaneous activity patterns in rodent developing sensory areas, as well as the inferences we can make about the information content of those activity patterns and ideas about the plasticity rules that allow this activity to shape the young brain.
Collapse
Affiliation(s)
- Alexandra H Leighton
- Synapse and Network Development, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| | - Christian Lohmann
- Synapse and Network Development, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| |
Collapse
|
10
|
Arroyo DA, Feller MB. Spatiotemporal Features of Retinal Waves Instruct the Wiring of the Visual Circuitry. Front Neural Circuits 2016; 10:54. [PMID: 27507937 PMCID: PMC4960261 DOI: 10.3389/fncir.2016.00054] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/12/2016] [Indexed: 11/13/2022] Open
Abstract
Coordinated spontaneous activity is present in different sensory systems during early stages of development. This activity is thought to play a critical role in the development of sensory representations before the maturation of sensory experience. In the visual system, the mechanisms by which spatiotemporal properties of retinal spontaneous activity, called retinal waves, drive developmental events has been well studied. Recent advancements in pharmacological, genetic, and optogenetic manipulations have provided further understanding of the contribution of specific spatiotemporal properties of retinal waves to eye-specific segregation and retinotopic refinement of retinofugal projections. Here we review some of the recent progress in understanding the role of retinal waves in the early stages of visual system development, prior to the maturation of vision.
Collapse
Affiliation(s)
- David A Arroyo
- Department of Molecular and Cell Biology, University of California Berkeley Berkeley, CA, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeley, CA, USA; Helen Wills Neuroscience Institute, University of California BerkeleyBerkeley, CA, USA
| |
Collapse
|
11
|
Abstract
Spontaneous activity patterns propagate through many parts of the developing nervous system and shape the wiring of emerging circuits. Prior to vision, waves of activity originating in the retina propagate through the lateral geniculate nucleus (LGN) of the thalamus to primary visual cortex (V1). Retinal waves have been shown to instruct the wiring of ganglion cell axons in LGN and of thalamocortical axons in V1 via correlation-based plasticity rules. Across species, retinal waves mature in three stereotypic stages (I-III), in which distinct circuit mechanisms give rise to unique activity patterns that serve specific functions in visual system refinement. Here, I review insights into the patterns, mechanisms, and functions of stage III retinal waves, which rely on glutamatergic signaling. As glutamatergic waves spread across the retina, neighboring ganglion cells with opposite light responses (ON vs. OFF) are activated sequentially. Recent studies identified lateral excitatory networks in the inner retina that generate and propagate glutamatergic waves, and vertical inhibitory networks that desynchronize the activity of ON and OFF cells in the wavefront. Stage III wave activity patterns may help segregate axons of ON and OFF ganglion cells in the LGN, and could contribute to the emergence of orientation selectivity in V1.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Departments of Ophthalmology and Visual Sciences, Neuroscience, and Biomedical Engineering, Hope Center for Neurological Diseases, Washington University School of Medicine Saint Louis, MO, USA
| |
Collapse
|