1
|
Keysers C, Silani G, Gazzola V. Predictive coding for the actions and emotions of others and its deficits in autism spectrum disorders. Neurosci Biobehav Rev 2024; 167:105877. [PMID: 39260714 DOI: 10.1016/j.neubiorev.2024.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Traditionally, the neural basis of social perception has been studied by showing participants brief examples of the actions or emotions of others presented in randomized order to prevent participants from anticipating what others do and feel. This approach is optimal to isolate the importance of information flow from lower to higher cortical areas. The degree to which feedback connections and Bayesian hierarchical predictive coding contribute to how mammals process more complex social stimuli has been less explored, and will be the focus of this review. We illustrate paradigms that start to capture how participants predict the actions and emotions of others under more ecological conditions, and discuss the brain activity measurement methods suitable to reveal the importance of feedback connections in these predictions. Together, these efforts draw a richer picture of social cognition in which predictive coding and feedback connections play significant roles. We further discuss how the notion of predicting coding is influencing how we think of autism spectrum disorder.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, Amsterdam 1105 BA, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Giorgia Silani
- Department of Clinical and Health Psychology, University of Vienna, Wien, Austria
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, Amsterdam 1105 BA, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Alzate Sanchez AM, Janssen MLF, Temel Y, Roberts MJ. Aging suppresses subthalamic neuronal activity in patients with Parkinson's disease. Eur J Neurosci 2024; 60:6160-6174. [PMID: 38880896 DOI: 10.1111/ejn.16435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Age is a primary risk factor for Parkinson's disease (PD); however, the effects of aging on the Parkinsonian brain remain poorly understood, particularly for deep brain structures. We investigated intraoperative micro-electrode recordings from the subthalamic nucleus (STN) of PD patients aged between 42 and 76 years. Age was associated with decreased oscillatory beta power and non-oscillatory high-frequency power, independent of PD-related variables. Single unit firing and burst rates were also reduced, whereas the coefficient of variation and the structure of burst activity were unchanged. Phase synchronization (debiased weighed phase lag index [dWPLI]) between sites was pronounced in the beta band between electrodes in the superficial STN but was unaffected by age. Our results show that aging is associated with reduced neuronal activity without changes to its temporal structure. We speculate that the loss of activity in the STN may mediate the relationship between PD and age.
Collapse
Affiliation(s)
- Ana M Alzate Sanchez
- Mental Health and Neuroscience Research Institute, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marcus L F Janssen
- Mental Health and Neuroscience Research Institute, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Mental Health and Neuroscience Research Institute, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mark J Roberts
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
Prakash SS, Mayo JP, Ray S. Dissociation of Attentional State and Behavioral Outcome Using Local Field Potentials. eNeuro 2024; 11:ENEURO.0327-24.2024. [PMID: 39389779 PMCID: PMC11552547 DOI: 10.1523/eneuro.0327-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Successful behavior depends on the attentional state and other factors related to decision-making, which may modulate neuronal activity differently. Here, we investigated whether attentional state and behavioral outcome (i.e., whether a target is detected or missed) are distinguishable using the power and phase of local field potential recorded bilaterally from area V4 of two male rhesus monkeys performing a cued visual attention task. To link each trial's outcome to pairwise measures of attention that are typically averaged across trials, we used several methods to obtain single-trial estimates of spike count correlation and phase consistency. Surprisingly, while attentional location was best discriminated using gamma and high-gamma power, behavioral outcome was best discriminated by alpha power and steady-state visually evoked potential. Power outperformed absolute phase in attentional/behavioral discriminability, although single-trial gamma phase consistency provided reasonably high attentional discriminability. Our results suggest a dissociation between the neuronal mechanisms that regulate attentional focus and behavioral outcome.
Collapse
Affiliation(s)
- Surya S Prakash
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - J Patrick Mayo
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India,
| |
Collapse
|
4
|
Rettore Andreis F, Meijs S, Nielsen TGNDS, Janjua TAM, Jensen W. Comparison of Subdural and Intracortical Recordings of Somatosensory Evoked Responses. SENSORS (BASEL, SWITZERLAND) 2024; 24:6847. [PMID: 39517744 PMCID: PMC11548369 DOI: 10.3390/s24216847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Micro-electrocorticography (µECoG) electrodes have emerged to balance the trade-off between invasiveness and signal quality in brain recordings. However, its large-scale applicability is still hindered by a lack of comparative studies assessing the relationship between ECoG and traditional recording methods such as penetrating electrodes. This study aimed to compare somatosensory evoked potentials (SEPs) through the lenses of a µECoG and an intracortical microelectrode array (MEA). The electrodes were implanted in the pig's primary somatosensory cortex, while SEPs were generated by applying electrical stimulation to the ulnar nerve. The SEP amplitude, signal-to-noise ratio (SNR), power spectral density (PSD), and correlation structure were analysed. Overall, SEPs resulting from MEA recordings had higher amplitudes and contained significantly more spectral power, especially at higher frequencies. However, the SNRs were similar between the interfaces. These results demonstrate the feasibility of using µECoG to decode SEPs with wide-range applications in physiology monitoring and brain-computer interfaces.
Collapse
Affiliation(s)
- Felipe Rettore Andreis
- Center for Neuroplasticity and Pain, Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Aalborg, Denmark; (S.M.); (T.G.N.d.S.N.); (T.A.M.J.); (W.J.)
| | | | | | | | | |
Collapse
|
5
|
Chen J, Yu K, Bi Y, Ji X, Zhang D. Strategic Integration: A Cross-Disciplinary Review of the fNIRS-EEG Dual-Modality Imaging System for Delivering Multimodal Neuroimaging to Applications. Brain Sci 2024; 14:1022. [PMID: 39452034 PMCID: PMC11506513 DOI: 10.3390/brainsci14101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Recent years have seen a surge of interest in dual-modality imaging systems that integrate functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) to probe brain function. This review aims to explore the advancements and clinical applications of this technology, emphasizing the synergistic integration of fNIRS and EEG. Methods: The review begins with a detailed examination of the fundamental principles and distinctive features of fNIRS and EEG techniques. It includes critical technical specifications, data-processing methodologies, and analysis techniques, alongside an exhaustive evaluation of 30 seminal studies that highlight the strengths and weaknesses of the fNIRS-EEG bimodal system. Results: The paper presents multiple case studies across various clinical domains-such as attention-deficit hyperactivity disorder, infantile spasms, depth of anesthesia, intelligence quotient estimation, and epilepsy-demonstrating the fNIRS-EEG system's potential in uncovering disease mechanisms, evaluating treatment efficacy, and providing precise diagnostic options. Noteworthy research findings and pivotal breakthroughs further reinforce the developmental trajectory of this interdisciplinary field. Conclusions: The review addresses challenges and anticipates future directions for the fNIRS-EEG dual-modal imaging system, including improvements in hardware and software, enhanced system performance, cost reduction, real-time monitoring capabilities, and broader clinical applications. It offers researchers a comprehensive understanding of the field, highlighting the potential applications of fNIRS-EEG systems in neuroscience and clinical medicine.
Collapse
Affiliation(s)
| | | | | | | | - Dawei Zhang
- Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.C.); (K.Y.); (Y.B.); (X.J.)
| |
Collapse
|
6
|
Kanth ST, Ray S. Gamma Responses to Colored Natural Stimuli Can Be Predicted from Local Low-Level Stimulus Features. eNeuro 2024; 11:ENEURO.0417-23.2024. [PMID: 39054054 PMCID: PMC11277289 DOI: 10.1523/eneuro.0417-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/17/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
The role of gamma rhythm (30-80 Hz) in visual processing is debated; stimuli like gratings and hue patches generate strong gamma, but many natural images do not. Could image gamma responses be predicted by approximating images as gratings or hue patches? Surprisingly, this question remains unanswered, since the joint dependence of gamma on multiple features is poorly understood. We recorded local field potentials and electrocorticogram from two female monkeys while presenting natural images and parametric stimuli varying along several feature dimensions. Gamma responses to different grating/hue features were separable, allowing for a multiplicative model based on individual features. By fitting a hue patch to the image around the receptive field, this simple model could predict gamma responses to chromatic images across scales with reasonably high accuracy. Our results provide a simple "baseline" model to predict gamma from local image properties, against which more complex models of natural vision can be tested.
Collapse
Affiliation(s)
- Sidrat Tasawoor Kanth
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, India
- Center for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Supratim Ray
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, India
- Center for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
Prakash SS, Mayo JP, Ray S. Dissociation of attentional state and behavioral outcome using local field potentials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.05.552102. [PMID: 37609148 PMCID: PMC10441331 DOI: 10.1101/2023.08.05.552102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Successful behavior depends on attentional state and other factors related to decision-making, which may modulate neuronal activity differently. Here, we investigated whether attentional state and behavioral outcome (i.e., whether a target is detected or missed) are distinguishable using the power and phase of local field potential (LFP) recorded bilaterally from area V4 of monkeys performing a cued visual attention task. To link each trial's outcome to pairwise measures of attention that are typically averaged across trials, we used several methods to obtain single-trial estimates of spike count correlation and phase consistency. Surprisingly, while attentional location was best discriminated using gamma and high-gamma power, behavioral outcome was best discriminated by alpha power and steady-state visually evoked potential. Power outperformed absolute phase in attentional/behavioral discriminability, although single-trial gamma phase consistency provided reasonably high attentional discriminability. Our results suggest a dissociation between the neuronal mechanisms that regulate attentional focus and behavioral outcome.
Collapse
Affiliation(s)
- Surya S Prakash
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India, 560012
| | - J Patrick Mayo
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, 15219
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India, 560012
| |
Collapse
|
8
|
Dawit H, Zhao Y, Wang J, Pei R. Advances in conductive hydrogels for neural recording and stimulation. Biomater Sci 2024; 12:2786-2800. [PMID: 38682423 DOI: 10.1039/d4bm00048j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The brain-computer interface (BCI) allows the human or animal brain to directly interact with the external environment through the neural interfaces, thus playing the role of monitoring, protecting, improving/restoring, enhancing, and replacing. Recording electrophysiological information such as brain neural signals is of great importance in health monitoring and disease diagnosis. According to the electrode position, it can be divided into non-implantable, semi-implantable, and implantable. Among them, implantable neural electrodes can obtain the highest-quality electrophysiological information, so they have the most promising application. However, due to the chemo-mechanical mismatch between devices and tissues, the adverse foreign body response and performance loss over time seriously restrict the development and application of implantable neural electrodes. Given the challenges, conductive hydrogel-based neural electrodes have recently attracted much attention, owing to many advantages such as good mechanical match with the native tissues, negligible foreign body response, and minimal signal attenuation. This review mainly focuses on the current development of conductive hydrogels as a biocompatible framework for neural tissue and conductivity-supporting substrates for the transmission of electrical signals of neural tissue to speed up electrical regeneration and their applications in neural sensing and recording as well as stimulation.
Collapse
Affiliation(s)
- Hewan Dawit
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jine Wang
- College of Medicine and Nursing, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, China.
- Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
9
|
Weber J, Solbakk AK, Blenkmann AO, Llorens A, Funderud I, Leske S, Larsson PG, Ivanovic J, Knight RT, Endestad T, Helfrich RF. Ramping dynamics and theta oscillations reflect dissociable signatures during rule-guided human behavior. Nat Commun 2024; 15:637. [PMID: 38245516 PMCID: PMC10799948 DOI: 10.1038/s41467-023-44571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 12/19/2023] [Indexed: 01/22/2024] Open
Abstract
Contextual cues and prior evidence guide human goal-directed behavior. The neurophysiological mechanisms that implement contextual priors to guide subsequent actions in the human brain remain unclear. Using intracranial electroencephalography (iEEG), we demonstrate that increasing uncertainty introduces a shift from a purely oscillatory to a mixed processing regime with an additional ramping component. Oscillatory and ramping dynamics reflect dissociable signatures, which likely differentially contribute to the encoding and transfer of different cognitive variables in a cue-guided motor task. The results support the idea that prefrontal activity encodes rules and ensuing actions in distinct coding subspaces, while theta oscillations synchronize the prefrontal-motor network, possibly to guide action execution. Collectively, our results reveal how two key features of large-scale neural population activity, namely continuous ramping dynamics and oscillatory synchrony, jointly support rule-guided human behavior.
Collapse
Affiliation(s)
- Jan Weber
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Tübingen, Germany
- International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, Tübingen, Germany
| | - Anne-Kristin Solbakk
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - Alejandro O Blenkmann
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | - Anais Llorens
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA, USA
| | - Ingrid Funderud
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - Sabine Leske
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Musicology, University of Oslo, Oslo, Norway
| | | | | | - Robert T Knight
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA, USA
- Department of Psychology, UC Berkeley, Berkeley, CA, USA
| | - Tor Endestad
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | - Randolph F Helfrich
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Weber J, Iwama G, Solbakk AK, Blenkmann AO, Larsson PG, Ivanovic J, Knight RT, Endestad T, Helfrich R. Subspace partitioning in the human prefrontal cortex resolves cognitive interference. Proc Natl Acad Sci U S A 2023; 120:e2220523120. [PMID: 37399398 PMCID: PMC10334727 DOI: 10.1073/pnas.2220523120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/31/2023] [Indexed: 07/05/2023] Open
Abstract
The human prefrontal cortex (PFC) constitutes the structural basis underlying flexible cognitive control, where mixed-selective neural populations encode multiple task features to guide subsequent behavior. The mechanisms by which the brain simultaneously encodes multiple task-relevant variables while minimizing interference from task-irrelevant features remain unknown. Leveraging intracranial recordings from the human PFC, we first demonstrate that competition between coexisting representations of past and present task variables incurs a behavioral switch cost. Our results reveal that this interference between past and present states in the PFC is resolved through coding partitioning into distinct low-dimensional neural states; thereby strongly attenuating behavioral switch costs. In sum, these findings uncover a fundamental coding mechanism that constitutes a central building block of flexible cognitive control.
Collapse
Affiliation(s)
- Jan Weber
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, 72076Tübingen, Germany
- International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, 72076Tübingen, Germany
| | - Gabriela Iwama
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, 72076Tübingen, Germany
- International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, 72076Tübingen, Germany
| | - Anne-Kristin Solbakk
- Department of Psychology, University of Oslo, 0373Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, 0373Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, 0372Oslo, Norway
- Department of Neuropsychology, Helgeland Hospital, 8657Mosjøen, Norway
| | - Alejandro O. Blenkmann
- Department of Psychology, University of Oslo, 0373Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, 0373Oslo, Norway
| | - Pal G. Larsson
- Department of Neurosurgery, Oslo University Hospital, 0372Oslo, Norway
| | - Jugoslav Ivanovic
- Department of Neurosurgery, Oslo University Hospital, 0372Oslo, Norway
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA94720
- Department of Psychology, UC Berkeley, Berkeley, CA94720
| | - Tor Endestad
- Department of Psychology, University of Oslo, 0373Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, 0373Oslo, Norway
| | - Randolph Helfrich
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, 72076Tübingen, Germany
| |
Collapse
|
11
|
Prakash SS, Mayo JP, Ray S. Decoding of attentional state using local field potentials. Curr Opin Neurobiol 2022; 76:102589. [PMID: 35751949 PMCID: PMC9840850 DOI: 10.1016/j.conb.2022.102589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/18/2023]
Abstract
We review recent efforts to decode visual spatial attention from different types of brain signals, such as spikes and local field potentials (LFPs). Combining signals from more electrodes improves decoding, but the pattern of improvement varies considerably depending on the signal as well as the task (for example, decoding of sensory stimulus/motor intention versus location of attention). We argue that this pattern of results conveys important information not only about the usefulness of a particular brain signal for decoding attention, but also about the spatial scale over which attention operates in the brain. The spatial scale, in turn, likely depends on the extent of underlying mechanisms such as normalization, gain control via excitation-inhibition interactions, and neuromodulatory regulation of attention.
Collapse
Affiliation(s)
- Surya S. Prakash
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - J. Patrick Mayo
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
12
|
Alasfour A, Gabriel P, Jiang X, Shamie I, Melloni L, Thesen T, Dugan P, Friedman D, Doyle W, Devinsky O, Gonda D, Sattar S, Wang S, Halgren E, Gilja V. Spatiotemporal dynamics of human high gamma discriminate naturalistic behavioral states. PLoS Comput Biol 2022; 18:e1010401. [PMID: 35939509 PMCID: PMC9387937 DOI: 10.1371/journal.pcbi.1010401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/18/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
In analyzing the neural correlates of naturalistic and unstructured behaviors, features of neural activity that are ignored in a trial-based experimental paradigm can be more fully studied and investigated. Here, we analyze neural activity from two patients using electrocorticography (ECoG) and stereo-electroencephalography (sEEG) recordings, and reveal that multiple neural signal characteristics exist that discriminate between unstructured and naturalistic behavioral states such as “engaging in dialogue” and “using electronics”. Using the high gamma amplitude as an estimate of neuronal firing rate, we demonstrate that behavioral states in a naturalistic setting are discriminable based on long-term mean shifts, variance shifts, and differences in the specific neural activity’s covariance structure. Both the rapid and slow changes in high gamma band activity separate unstructured behavioral states. We also use Gaussian process factor analysis (GPFA) to show the existence of salient spatiotemporal features with variable smoothness in time. Further, we demonstrate that both temporally smooth and stochastic spatiotemporal activity can be used to differentiate unstructured behavioral states. This is the first attempt to elucidate how different neural signal features contain information about behavioral states collected outside the conventional experimental paradigm.
Collapse
Affiliation(s)
- Abdulwahab Alasfour
- Department of Electrical Engineering, Kuwait University, Kuwait City, Kuwait
- Department of Electrical and Computer Engineering, UC San Diego, San Diego, California, United States of America
- * E-mail:
| | - Paolo Gabriel
- Department of Electrical and Computer Engineering, UC San Diego, San Diego, California, United States of America
| | - Xi Jiang
- Department of Neurosciences, UC San Diego, San Diego, California, United States of America
| | - Isaac Shamie
- Department of Neurosciences, UC San Diego, San Diego, California, United States of America
| | - Lucia Melloni
- Comprehensive Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Thomas Thesen
- Comprehensive Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York City, New York, United States of America
- Department of Biomedical Sciences, College of Medicine, University of Houston, Houston, Texas, United States of America
| | - Patricia Dugan
- Comprehensive Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Daniel Friedman
- Comprehensive Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Werner Doyle
- Comprehensive Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Orin Devinsky
- Comprehensive Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - David Gonda
- Department of Neurosciences, UC San Diego, San Diego, California, United States of America
- Rady Children’s Hospital San Diego, San Diego, California, United States of America
| | - Shifteh Sattar
- Department of Neurosciences, UC San Diego, San Diego, California, United States of America
- Rady Children’s Hospital San Diego, San Diego, California, United States of America
| | - Sonya Wang
- Rady Children’s Hospital San Diego, San Diego, California, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Eric Halgren
- Department of Neurosciences, UC San Diego, San Diego, California, United States of America
| | - Vikash Gilja
- Department of Electrical and Computer Engineering, UC San Diego, San Diego, California, United States of America
| |
Collapse
|
13
|
Shirhatti V, Ravishankar P, Ray S. Gamma oscillations in primate primary visual cortex are severely attenuated by small stimulus discontinuities. PLoS Biol 2022; 20:e3001666. [PMID: 35700175 PMCID: PMC9197048 DOI: 10.1371/journal.pbio.3001666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022] Open
Abstract
Gamma oscillations (30 to 80 Hz) have been hypothesized to play an important role in feature binding, based on the observation that continuous long bars induce stronger gamma in the visual cortex than bars with a small gap. Recently, many studies have shown that natural images, which have discontinuities in several low-level features, do not induce strong gamma oscillations, questioning their role in feature binding. However, the effect of different discontinuities on gamma has not been well studied. To address this, we recorded spikes and local field potential from 2 monkeys while they were shown gratings with discontinuities in 4 attributes: space, orientation, phase, or contrast. We found that while these discontinuities only had a modest effect on spiking activity, gamma power drastically reduced in all cases, suggesting that gamma could be a resonant phenomenon. An excitatory–inhibitory population model with stimulus-tuned recurrent inputs showed such resonant properties. Therefore, gamma could be a signature of excitation–inhibition balance, which gets disrupted due to discontinuities. Gamma oscillations (30-80 Hz) in visual cortex have been hypothesized to play an important role in feature binding, but this role has recently been questioned. This study shows that visual stimulus-induced gamma oscillations are highly attenuated with even small discontinuities in the stimulus. This "resonant" behaviour can be explained by a simple excitatory-inhibitory model in which discontinuities lead to a small reduction in lateral inputs.
Collapse
Affiliation(s)
- Vinay Shirhatti
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
- IISc Mathematics Initiative, Indian Institute of Science, Bengaluru, India
| | | | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
- IISc Mathematics Initiative, Indian Institute of Science, Bengaluru, India
- * E-mail:
| |
Collapse
|
14
|
Ray S. Spike-Gamma Phase Relationship in the Visual Cortex. Annu Rev Vis Sci 2022; 8:361-381. [PMID: 35667158 DOI: 10.1146/annurev-vision-100419-104530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gamma oscillations (30-70 Hz) have been hypothesized to play a role in cortical function. Most of the proposed mechanisms involve rhythmic modulation of neuronal excitability at gamma frequencies, leading to modulation of spike timing relative to the rhythm. I first show that the gamma band could be more privileged than other frequencies in observing spike-field interactions even in the absence of genuine gamma rhythmicity and discuss several biases in spike-gamma phase estimation. I then discuss the expected spike-gamma phase according to several hypotheses. Inconsistent with the phase-coding hypothesis (but not with others), the spike-gamma phase does not change with changes in stimulus intensity or attentional state, with spikes preferentially occurring 2-4 ms before the trough, but with substantial variability. However, this phase relationship is expected even when gamma is a byproduct of excitatory-inhibitory interactions. Given that gamma occurs in short bursts, I argue that the debate over the role of gamma is a matter of semantics. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India 560012;
| |
Collapse
|
15
|
Lu HY, Lorenc ES, Zhu H, Kilmarx J, Sulzer J, Xie C, Tobler PN, Watrous AJ, Orsborn AL, Lewis-Peacock J, Santacruz SR. Multi-scale neural decoding and analysis. J Neural Eng 2021; 18. [PMID: 34284369 PMCID: PMC8840800 DOI: 10.1088/1741-2552/ac160f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Objective. Complex spatiotemporal neural activity encodes rich information related to behavior and cognition. Conventional research has focused on neural activity acquired using one of many different measurement modalities, each of which provides useful but incomplete assessment of the neural code. Multi-modal techniques can overcome tradeoffs in the spatial and temporal resolution of a single modality to reveal deeper and more comprehensive understanding of system-level neural mechanisms. Uncovering multi-scale dynamics is essential for a mechanistic understanding of brain function and for harnessing neuroscientific insights to develop more effective clinical treatment. Approach. We discuss conventional methodologies used for characterizing neural activity at different scales and review contemporary examples of how these approaches have been combined. Then we present our case for integrating activity across multiple scales to benefit from the combined strengths of each approach and elucidate a more holistic understanding of neural processes. Main results. We examine various combinations of neural activity at different scales and analytical techniques that can be used to integrate or illuminate information across scales, as well the technologies that enable such exciting studies. We conclude with challenges facing future multi-scale studies, and a discussion of the power and potential of these approaches. Significance. This roadmap will lead the readers toward a broad range of multi-scale neural decoding techniques and their benefits over single-modality analyses. This Review article highlights the importance of multi-scale analyses for systematically interrogating complex spatiotemporal mechanisms underlying cognition and behavior.
Collapse
Affiliation(s)
- Hung-Yun Lu
- The University of Texas at Austin, Biomedical Engineering, Austin, TX, United States of America
| | - Elizabeth S Lorenc
- The University of Texas at Austin, Psychology, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Hanlin Zhu
- Rice University, Electrical and Computer Engineering, Houston, TX, United States of America
| | - Justin Kilmarx
- The University of Texas at Austin, Mechanical Engineering, Austin, TX, United States of America
| | - James Sulzer
- The University of Texas at Austin, Mechanical Engineering, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Chong Xie
- Rice University, Electrical and Computer Engineering, Houston, TX, United States of America
| | - Philippe N Tobler
- University of Zurich, Neuroeconomics and Social Neuroscience, Zurich, Switzerland
| | - Andrew J Watrous
- The University of Texas at Austin, Neurology, Austin, TX, United States of America
| | - Amy L Orsborn
- University of Washington, Electrical and Computer Engineering, Seattle, WA, United States of America.,University of Washington, Bioengineering, Seattle, WA, United States of America.,Washington National Primate Research Center, Seattle, WA, United States of America
| | - Jarrod Lewis-Peacock
- The University of Texas at Austin, Psychology, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Samantha R Santacruz
- The University of Texas at Austin, Biomedical Engineering, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| |
Collapse
|
16
|
Helfrich RF, Lendner JD, Knight RT. Aperiodic sleep networks promote memory consolidation. Trends Cogn Sci 2021; 25:648-659. [PMID: 34127388 PMCID: PMC9017392 DOI: 10.1016/j.tics.2021.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
Hierarchical synchronization of sleep oscillations establishes communication pathways to support memory reactivation, transfer, and consolidation. From an information-theoretical perspective, oscillations constitute highly structured network states that provide limited information-coding capacity. Recent findings indicate that sleep oscillations occur in transient bursts that are interleaved with aperiodic network states, which were previously considered to be random noise. We argue that aperiodic activity exhibits unique and variable spatiotemporal patterns, providing an ideal information-rich neurophysiological substrate for imprinting new mnemonic patterns onto existing circuits. We discuss novel avenues in conceptualizing and quantifying aperiodic network states during sleep to further understand their relevance and interplay with sleep oscillations in support of memory consolidation.
Collapse
Affiliation(s)
- Randolph F Helfrich
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany.
| | - Janna D Lendner
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA; Department of Psychology, University of California Berkeley, Tolman Hall, Berkeley, CA 94720, USA
| |
Collapse
|
17
|
Peterson SM, Singh SH, Wang NXR, Rao RPN, Brunton BW. Behavioral and Neural Variability of Naturalistic Arm Movements. eNeuro 2021; 8:ENEURO.0007-21.2021. [PMID: 34031100 PMCID: PMC8225404 DOI: 10.1523/eneuro.0007-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/27/2021] [Accepted: 05/04/2021] [Indexed: 11/21/2022] Open
Abstract
Motor behaviors are central to many functions and dysfunctions of the brain, and understanding their neural basis has consequently been a major focus in neuroscience. However, most studies of motor behaviors have been restricted to artificial, repetitive paradigms, far removed from natural movements performed "in the wild." Here, we leveraged recent advances in machine learning and computer vision to analyze intracranial recordings from 12 human subjects during thousands of spontaneous, unstructured arm reach movements, observed over several days for each subject. These naturalistic movements elicited cortical spectral power patterns consistent with findings from controlled paradigms, but with considerable neural variability across subjects and events. We modeled interevent variability using 10 behavioral and environmental features; the most important features explaining this variability were reach angle and day of recording. Our work is among the first studies connecting behavioral and neural variability across cortex in humans during unstructured movements and contributes to our understanding of long-term naturalistic behavior.
Collapse
Affiliation(s)
- Steven M Peterson
- Department of Biology, University of Washington, Seattle, Washington 98195
- eScience Institute, University of Washington, Seattle, Washington 98195
| | - Satpreet H Singh
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195
| | - Nancy X R Wang
- IBM Research, San Jose, California 95120
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195
| | - Rajesh P N Rao
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195
- Center for Neurotechnology, University of Washington, Seattle, Washington 98195
| | - Bingni W Brunton
- Department of Biology, University of Washington, Seattle, Washington 98195
- eScience Institute, University of Washington, Seattle, Washington 98195
| |
Collapse
|
18
|
Prakash SS, Das A, Kanth ST, Mayo JP, Ray S. Decoding of Attentional State Using High-Frequency Local Field Potential Is As Accurate As Using Spikes. Cereb Cortex 2021; 31:4314-4328. [PMID: 33866366 DOI: 10.1093/cercor/bhab088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/25/2021] [Accepted: 03/18/2021] [Indexed: 11/14/2022] Open
Abstract
Local field potentials (LFPs) in visual cortex are reliably modulated when the subject's focus of attention is cued into versus out of the receptive field of the recorded sites, similar to modulation of spikes. However, human psychophysics studies have used an additional attention condition, neutral cueing, for decades. The effect of neutral cueing on spikes was examined recently and found to be intermediate between cued and uncued conditions. However, whether LFPs are also precise enough to represent graded states of attention is unknown. We found in rhesus monkeys that LFPs during neutral cueing were also intermediate between cued and uncued conditions. For a single electrode, attention was more discriminable using high frequency (>30 Hz) LFP power than spikes, which is expected because LFP represents a population signal and therefore is expected to be less noisy than spikes. However, previous studies have shown that when multiple electrodes are used, spikes can outperform LFPs. Surprisingly, in our study, spikes did not outperform LFPs when discriminability was computed using multiple electrodes, even though the LFP activity was highly correlated across electrodes compared with spikes. These results constrain the spatial scale over which attention operates and highlight the usefulness of LFPs in studying attention.
Collapse
Affiliation(s)
- Surya S Prakash
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Aritra Das
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Sidrat Tasawoor Kanth
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India.,IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, India
| | - J Patrick Mayo
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India.,IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
19
|
Yang W, Gong Y, Li W. A Review: Electrode and Packaging Materials for Neurophysiology Recording Implants. Front Bioeng Biotechnol 2021; 8:622923. [PMID: 33585422 PMCID: PMC7873964 DOI: 10.3389/fbioe.2020.622923] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/10/2020] [Indexed: 01/28/2023] Open
Abstract
To date, a wide variety of neural tissue implants have been developed for neurophysiology recording from living tissues. An ideal neural implant should minimize the damage to the tissue and perform reliably and accurately for long periods of time. Therefore, the materials utilized to fabricate the neural recording implants become a critical factor. The materials of these devices could be classified into two broad categories: electrode materials as well as packaging and substrate materials. In this review, inorganic (metals and semiconductors), organic (conducting polymers), and carbon-based (graphene and carbon nanostructures) electrode materials are reviewed individually in terms of various neural recording devices that are reported in recent years. Properties of these materials, including electrical properties, mechanical properties, stability, biodegradability/bioresorbability, biocompatibility, and optical properties, and their critical importance to neural recording quality and device capabilities, are discussed. For the packaging and substrate materials, different material properties are desired for the chronic implantation of devices in the complex environment of the body, such as biocompatibility and moisture and gas hermeticity. This review summarizes common solid and soft packaging materials used in a variety of neural interface electrode designs, as well as their packaging performances. Besides, several biopolymers typically applied over the electrode package to reinforce the mechanical rigidity of devices during insertion, or to reduce the immune response and inflammation at the device-tissue interfaces are highlighted. Finally, a benchmark analysis of the discussed materials and an outlook of the future research trends are concluded.
Collapse
Affiliation(s)
| | | | - Wen Li
- Microtechnology Lab, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
20
|
van den Boom MA, Miller K, Ramsey N, Hermes D. Functional MRI based simulations of ECoG grid configurations for optimal measurement of spatially distributed hand-gesture information. J Neural Eng 2021; 18. [PMID: 33418549 DOI: 10.1088/1741-2552/abda0d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/08/2021] [Indexed: 01/13/2023]
Abstract
Objective In electrocorticography (ECoG), the physical characteristics of the electrode grid determine which aspect of the neurophysiology is measured. For particular cases, the ECoG grid may be tailored to capture specific features, such as in the development and use of brain-computer-interfaces (BCI). Neural representations of hand movement are increasingly used to control ECoG based BCIs. However, it remains unclear which grid configurations are the most optimal to capture the dynamics of hand gesture information. Here, we investigate how the design and surgical placement of grids would affect the usability of ECoG measurements. Approach High resolution 7T functional MRI was used as a proxy for neural activity in ten healthy participants to simulate various grid configurations, and evaluated the performance of each configuration for decoding hand gestures. The grid configurations varied in number of electrodes, electrode distance and electrode size. Main results Optimal decoding of hand gestures occurred in grid configurations with a higher number of densely-packed, large-size, electrodes up to a grid of ~5x5 electrodes. When restricting the grid placement to a highly informative region of primary sensorimotor cortex, optimal parameters converged to about 3x3 electrodes, an inter-electrode distance of 8mm, and an electrode size of 3mm radius (performing at ~70% 3-class classification accuracy). Significance Our approach might be used to identify the most informative region, find the optimal grid configuration and assist in positioning of the grid to achieve high BCI performance for the decoding of hand-gestures prior to surgical implantation.
Collapse
Affiliation(s)
- Max Alexander van den Boom
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, Minnesota, 55905, UNITED STATES
| | - Kai Miller
- Department of Neurosurgery, Mayo Clinic, 200 1st St SW Floor 8, Rochester, Minnesota, 55905, UNITED STATES
| | - Nick Ramsey
- Neurology and Neurosurgery, University Medical Centre Utrecht Brain Centre, Heidelberglaan 100, Utrecht, Utrecht, 3584 CX, NETHERLANDS
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, Minnesota, 55905, UNITED STATES
| |
Collapse
|
21
|
Johnson EL, Kam JWY, Tzovara A, Knight RT. Insights into human cognition from intracranial EEG: A review of audition, memory, internal cognition, and causality. J Neural Eng 2020; 17:051001. [PMID: 32916678 PMCID: PMC7731730 DOI: 10.1088/1741-2552/abb7a5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
By recording neural activity directly from the human brain, researchers gain unprecedented insight into how neurocognitive processes unfold in real time. We first briefly discuss how intracranial electroencephalography (iEEG) recordings, performed for clinical practice, are used to study human cognition with the spatiotemporal and single-trial precision traditionally limited to non-human animal research. We then delineate how studies using iEEG have informed our understanding of issues fundamental to human cognition: auditory prediction, working and episodic memory, and internal cognition. We also discuss the potential of iEEG to infer causality through the manipulation or 'engineering' of neurocognitive processes via spatiotemporally precise electrical stimulation. We close by highlighting limitations of iEEG, potential of burgeoning techniques to further increase spatiotemporal precision, and implications for future research using intracranial approaches to understand, restore, and enhance human cognition.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, United States of America
| | - Julia W Y Kam
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Canada
| | - Athina Tzovara
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Institute for Computer Science, University of Bern, Switzerland
- Sleep Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of California, Berkeley, United States of America
| |
Collapse
|