1
|
Wu AM, Zhang JY, Lun WZ, Geng Z, Yang Y, Wu JC, Chen GH. Dynamic changes of media prefrontal cortex astrocytic activity in response to negative stimuli in male mice. Neurobiol Stress 2024; 33:100676. [PMID: 39429249 PMCID: PMC11490747 DOI: 10.1016/j.ynstr.2024.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Astrocytes play significant roles in regulating the central stress response. Chronic stress impairs the structure and function of astrocytes in many brain regions such as media prefrontal cortex (mPFC) in multiple neuropsychiatric conditions, but the astrocytic dynamics on the timescale of behavior remains unclear. Here, we recorded mPFC astrocytic activity in freely behaving mice and found that astrocytes are activated immediately by different aversive stimuli. Astrocyte specific GCaMP6s calcium indicator were virally expressed in mPFC astrocytes and fiber photometry experiments revealed that astrocytes are activated by tail-restraint (TRT), foot shock (FS), open arm exploration, stressor of height, predator odor and social defeat (SD) stress. ΔF/F analyses demonstrated that an unpredictable stimulus such as elevated platform stress (EPS) at the initial encounter induced the most intense and rapid changes in astrocytic calcium activity, while a predictable 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) stimulus resulted in the weakest response with a longer peak latency. In TRT, FS or SD test, a somatic stimulus led to higher average calcium activity level and faster average peak latency in repeated trails. Similar to TMT stimulus, astrocytic calcium activity in elevated plus maze (EPM) test exhibited a smaller average change in amplitude and the longest peak latency during open arm exploration. Moreover, astrocytic calcium activity exhibited different changes across behavioral states in SD tests. Our findings show that mPFC astrocytes exhibit distinct patterns of calcium activity in response to various negative stimuli, indicating that the dynamic activity of astrocytes may reflect the stress-related behavioral state under different stimulus conditions.
Collapse
Affiliation(s)
- Ai-Mei Wu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, 230011, China
- Department of Neurology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, China
| | - Jing-Ya Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, 230011, China
| | - Wei-Zhong Lun
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, 230011, China
| | - Zhi Geng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230011, China
| | - Ye Yang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230011, China
| | - Jun-Cang Wu
- Department of Neurology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, 230011, China
| |
Collapse
|
2
|
Castro MML, Amaral Junior FLD, Mendes FDCCDS, Anthony DC, Brites DMTDO, Diniz CWP, Sosthenes MCK. Intriguing astrocyte responses in CA1 to reduced and rehabilitated masticatory function: Dorsal and ventral distinct perspectives in adult mice. Arch Oral Biol 2024; 169:106097. [PMID: 39395318 DOI: 10.1016/j.archoralbio.2024.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE We sought to investigate the plasticity of diet-induced changes in astrocyte morphology of stratum lacunosum-moleculare (SLM) in CA1. DESIGN Three diet regimes were adopted in 15 mice, from the 21st postnatal day to 6 months. The first diet regimen was pellet feed, called Hard Diet (HD). The second, with reduced masticatory, received a pellet-diet followed by a powdered-diet, and it was identified as Hard Diet/Soft Diet (HD/SD). Finally, the group with rehabilitated masticatory was named Hard Diet/Soft Diet/Hard Diet (HD/SD/HD). In the end, euthanasia and brain histological processing were performed, in which astrocytic immunoreactivity to glial-fibrillary-acidic-protein (GFAP) was tested. In reconstructed astrocytes, morphometric analysis was performed. RESULTS Astrocyte morphometric revealed that changes in masticatory regimens impact astrocyte morphology. In the dorsal CA1, switching from a hard diet to a soft diet led to reductions in most variables, whereas in the ventral, fewer variables were affected, highlighting regional differences in astrocyte responses. Cluster analysis further showed that diet-induced changes in astrocyte morphology were reversible in the dorsal region, but not in the ventral region, indicating a persistent impact on astrocyte diversity and complexity in the ventral even after rehabilitation. Correlation tests between astrocyte morphology and behavioral performance demonstrated disrupted relationships under masticatory stress, with effects persisting after rehabilitation. CONCLUSION Changes in the diet result in significant alterations in astrocyte morphology, suggesting a direct link between dietary modulation and cellular structure. Morphometric analyses revealed distinct alterations in astrocyte morphology in response to changes in the masticatory regimen, with both dorsal/ventral regions displaying notable changes. Moreover, the regional differential effects on astrocytes underscore the complexity of mastication on neuroplasticity and cognitive function.
Collapse
Affiliation(s)
- Micaele Maria Lopes Castro
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Fabio Leite do Amaral Junior
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Fabíola de Carvalho Chaves de Siqueira Mendes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil; Curso de Medicina, Centro Universitário do Estado do Pará, Belém, PA 66613-903, Brazil
| | - Daniel Clive Anthony
- University of Oxford, Laboratory of Experimental Neuropathology, Department of Pharmacology, Oxford OX13QT, United Kingdom
| | - Dora Maria Tuna de Oliveira Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil.
| |
Collapse
|
3
|
Testen A, VanRyzin JW, Bellinger TJ, Kim R, Wang H, Gastinger MJ, Witt EA, Franklin JP, Vecchiarelli HA, Picard K, Tremblay MÈ, Reissner KJ. Abstinence from cocaine self-administration promotes microglia pruning of astrocytes which drives cocaine-seeking behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614128. [PMID: 39345569 PMCID: PMC11429948 DOI: 10.1101/2024.09.20.614128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Rodent drug self-administration leads to compromised ability of astrocytes to maintain glutamate homeostasis within the brain's reward circuitry, as well as reductions in surface area, volume, and synaptic colocalization of astrocyte membranes. However, the mechanisms driving astrocyte responses to cocaine are unknown. Here, we report that long-access cocaine self-administration followed by prolonged home cage abstinence results in decreased branching complexity of nucleus accumbens astrocytes, characterized by the loss of peripheral processes. Using a combination of confocal fluorescence microcopy and immuno-gold electron microscopy, we show that alterations in astrocyte structural features are driven by microglia phagocytosis, as labeled astrocyte membranes are found within microglia phagolysosomes. Inhibition of complement C3-mediated phagocytosis using the neutrophil inhibitory peptide (NIF) rescued astrocyte structure and decreased cocaine seeking behavior following cocaine self-administration and abstinence. Collectively, these results provide evidence for microglia pruning of accumbens astrocytes across cocaine abstinence which mediates cocaine craving.
Collapse
Affiliation(s)
- Anze Testen
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Neuroscience - College of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Jonathan W VanRyzin
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Tania J Bellinger
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ronald Kim
- Section on Genetics of Neuronal Signaling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States
| | - Han Wang
- MS-HCI Program, Georgia Institute of Technology, Atlanta, Georgia, United States
| | | | - Emily A Witt
- Department of Medical Neuroscience, Dalhousie University, Nova Scotia, Canada
| | - Janay P Franklin
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Haley A Vecchiarelli
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Katherine Picard
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
4
|
Kolesnikova TO, Demin KA, Costa FV, de Abreu MS, Kalueff AV. Zebrafish models for studying cognitive enhancers. Neurosci Biobehav Rev 2024; 164:105797. [PMID: 38971515 DOI: 10.1016/j.neubiorev.2024.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/16/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Cognitive decline is commonly seen both in normal aging and in neurodegenerative and neuropsychiatric diseases. Various experimental animal models represent a valuable tool to study brain cognitive processes and their deficits. Equally important is the search for novel drugs to treat cognitive deficits and improve cognitions. Complementing rodent and clinical findings, studies utilizing zebrafish (Danio rerio) are rapidly gaining popularity in translational cognitive research and neuroactive drug screening. Here, we discuss the value of zebrafish models and assays for screening nootropic (cognitive enhancer) drugs and the discovery of novel nootropics. We also discuss the existing challenges, and outline future directions of research in this field.
Collapse
Affiliation(s)
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Fabiano V Costa
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; West Caspian University, Baku, Azerbaijan.
| | - Allan V Kalueff
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Suzhou Key Laboratory on Neurobiology and Cell Signaling, Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
5
|
He L, Duan X, Li S, Zhang R, Dai X, Lu M. Unveiling the role of astrocytes in postoperative cognitive dysfunction. Ageing Res Rev 2024; 95:102223. [PMID: 38325753 DOI: 10.1016/j.arr.2024.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive cognitive decline and the accumulation of amyloid-beta plaques, tau tangles, and neuroinflammation in the brain. Postoperative cognitive dysfunction (POCD) is a prevalent and debilitating condition characterized by cognitive decline following neuroinflammation and oxidative stress induced by procedures. POCD and AD are two conditions that share similarities in the underlying mechanisms and pathophysiology. Compared to normal aging individuals, individuals with POCD are at a higher risk for developing AD. Emerging evidence suggests that astrocytes, the most abundant glial cells in the central nervous system, play a critical role in the pathogenesis of these conditions. Comprehensive functions of astrocyte in AD has been extensively explored, but very little is known about POCD may experience late-onset AD pathogenesis. Herein, in this context, we mainly explore the multifaceted roles of astrocytes in the context of POCD, highlighting their involvement in neuroinflammation, neurotransmitter regulation, synaptic plasticity and neurotrophic support, and discuss how POCD may augment the onset of AD. Additionally, we discuss potential therapeutic strategies targeting astrocytes to mitigate or prevent POCD, which hold promise for improving the quality of life for patients undergoing surgeries and against AD in the future.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China.
| | - Xiyuan Duan
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Shikuo Li
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Ruqiang Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Xulei Dai
- Department of Clinical Laboratory Science, Xingtai Medical College, Xingtai 050054, China
| | - Meilin Lu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|