1
|
Felder-Schmittbuhl MP, Hicks D, Ribelayga CP, Tosini G. Melatonin in the mammalian retina: Synthesis, mechanisms of action and neuroprotection. J Pineal Res 2024; 76:e12951. [PMID: 38572848 DOI: 10.1111/jpi.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/09/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Melatonin is an important player in the regulation of many physiological functions within the body and in the retina. Melatonin synthesis in the retina primarily occurs during the night and its levels are low during the day. Retinal melatonin is primarily synthesized by the photoreceptors, but whether the synthesis occurs in the rods and/or cones is still unclear. Melatonin exerts its influence by binding to G protein-coupled receptors named melatonin receptor type 1 (MT1) and type 2 (MT2). MT1 and MT2 receptors activate a wide variety of signaling pathways and both receptors are present in the vertebrate photoreceptors where they may form MT1/MT2 heteromers (MT1/2h). Studies in rodents have shown that melatonin signaling plays an important role in the regulation of retinal dopamine levels, rod/cone coupling as well as the photopic and scotopic electroretinogram. In addition, melatonin may play an important role in protecting photoreceptors from oxidative stress and can protect photoreceptors from apoptosis. Critically, melatonin signaling is involved in the modulation of photoreceptor viability during aging and other studies have implicated melatonin in the pathogenesis of age-related macular degeneration. Hence melatonin may represent a useful tool in the fight to protect photoreceptors-and other retinal cells-against degeneration due to aging or diseases.
Collapse
Affiliation(s)
- Marie Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - David Hicks
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Christophe P Ribelayga
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, Texas, USA
| | - Gianluca Tosini
- Department of Pharmacology & Toxicology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Kang JH, Guo XD, Wang YD, Kang XW. Neuroprotective Effects of N-acetylserotonin and Its Derivative. Neuroscience 2023; 517:18-25. [PMID: 36893983 DOI: 10.1016/j.neuroscience.2023.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
N-acetylserotonin (NAS) is a chemical intermediate in melatonin biosynthesis. NAS and its derivative N-(2-(5-hydroxy-1H-indol-3-yl) ethyl)-2-oxopiperidine-3-carboxamide (HIOC) are potential therapeutic agents for traumatic brain injury, autoimmune encephalomyelitis, hypoxic-ischemic encephalopathy, and other diseases. Evidence shows that NAS and its derivative HIOC have neuroprotective properties, and can exert neuroprotective effects by inhibiting oxidative stress, anti-apoptosis, regulating autophagy dysfunction, and anti-inflammatory. In this review, we discussed the neuroprotective effects and related mechanisms of NAS and its derivative HIOC to provide a reference for follow-up research and applications.
Collapse
Affiliation(s)
- Ji-He Kang
- Orthopedics Department, the Second Hospital of Lanzhou University, Lanzhou, China; Orthopedics Department, the Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xu-Dong Guo
- Orthopedics Department, the Second Hospital of Lanzhou University, Lanzhou, China
| | - Yi-Dian Wang
- Orthopedics Department, School of Medicine, Honghui-hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xue-Wen Kang
- Orthopedics Department, the Second Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
3
|
Kirsz K, Szczęsna M, Biernat W, Molik E, Zięba DA. Involvement of orexin A in nocturnal melatonin secretion into the cerebrospinal fluid and the blood plasma in seasonal sheep. Gen Comp Endocrinol 2020; 286:113304. [PMID: 31654677 DOI: 10.1016/j.ygcen.2019.113304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/18/2019] [Accepted: 10/20/2019] [Indexed: 01/28/2023]
Abstract
In sheep, differences in orexin A (OXA) gene expression and activity are related to changes in energy demand and seasonal reproduction. However, the mechanism by which and the key place where the OXA signal is integrated with photoperiod, whose main biochemical expression is melatonin (MEL), remain unknown. We examined the effects of cisterna magna injections of OXA (0.3 μg/kg body weight) on nocturnal cerebrospinal fluid (CSF) and plasma MEL concentrations; mRNA and protein expression of two rate-limiting enzymes for MEL biosynthesis, tryptophan 5-hydroxylase-1 (TPH1) and arylalkylamine-N-acetyltransferase (AA-NAT); and OXA receptor (OX1R, OX2R) expression in the pineal gland (PG) obtained from twenty ewes during the short-day (SD) and long-day (LD) seasons. OXA increased (P < 0.001) CSF and plasma MEL concentrations regardless of the season. Plasma MEL was positively correlated (P < 0.001) with CSF MEL in the OXA-treated sheep in both seasons. OXA had no effect (P > 0.05) on TPH1 transcript or protein level but upregulated (P < 0.05) AA-NAT mRNA and protein expression in both seasons. OXA enhanced (P < 0.05) OX1R mRNA level only during the LD season. Our results show that the endocrine activity of the ovine PG is regulated by day length and non-photic signals via hypothalamic OXA. These results are important for understanding the work of the biological clock and recognizing mechanisms responsible for the adaptation of seasonal animals to the changing external environment conditions. OXA and MEL are both involved in the regulation of the sleep-wakefulness system, therefore our results can be used in the study on the circadian rhythm disorders in humans (e.g. jet lag, insomnia, seasonal depression).
Collapse
Affiliation(s)
- Katarzyna Kirsz
- University of Agriculture in Krakow, Department of Animal Biotechnology, 1B Rędzina Street, 31-248 Krakow, Poland.
| | - Małgorzata Szczęsna
- University of Agriculture in Krakow, Department of Animal Biotechnology, 1B Rędzina Street, 31-248 Krakow, Poland.
| | - Weronika Biernat
- University of Agriculture in Krakow, Department of Animal Biotechnology, 1B Rędzina Street, 31-248 Krakow, Poland
| | - Edyta Molik
- University of Agriculture in Krakow, Department of Animal Biotechnology, 1B Rędzina Street, 31-248 Krakow, Poland.
| | - Dorota A Zięba
- University of Agriculture in Krakow, Department of Animal Biotechnology, 1B Rędzina Street, 31-248 Krakow, Poland.
| |
Collapse
|
4
|
Verra DM, Sajdak BS, Merriman DK, Hicks D. Diurnal rodents as pertinent animal models of human retinal physiology and pathology. Prog Retin Eye Res 2019; 74:100776. [PMID: 31499165 DOI: 10.1016/j.preteyeres.2019.100776] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022]
Abstract
This presentation will survey the retinal architecture, advantages, and limitations of several lesser-known rodent species that provide a useful diurnal complement to rats and mice. These diurnal rodents also possess unusually cone-rich photoreceptor mosaics that facilitate the study of cone cells and pathways. Species to be presented include principally the Sudanian Unstriped Grass Rat and Nile Rat (Arvicanthis spp.), the Fat Sand Rat (Psammomys obesus), the degu (Octodon degus) and the 13-lined ground squirrel (Ictidomys tridecemlineatus). The retina and optic nerve in several of these species demonstrate unusual resilience in the face of neuronal injury, itself an interesting phenomenon with potential translational value.
Collapse
Affiliation(s)
- Daniela M Verra
- Department of Neurobiology of Rhythms, Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR 3212, Strasbourg, France
| | | | - Dana K Merriman
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - David Hicks
- Department of Neurobiology of Rhythms, Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR 3212, Strasbourg, France.
| |
Collapse
|
5
|
Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ. Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Front Endocrinol (Lausanne) 2019; 10:249. [PMID: 31057485 PMCID: PMC6481276 DOI: 10.3389/fendo.2019.00249] [Citation(s) in RCA: 344] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to N-acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin.
Collapse
Affiliation(s)
- Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Yang Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Yong Shen
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Qin Liu
- School of Landscape and Horticulture, Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| |
Collapse
|
6
|
Sluchanko NN, Bustos DM. Intrinsic disorder associated with 14-3-3 proteins and their partners. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:19-61. [PMID: 31521232 DOI: 10.1016/bs.pmbts.2019.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein-protein interactions (PPIs) mediate a variety of cellular processes and form complex networks, where connectivity is achieved owing to the "hub" proteins whose interaction with multiple protein partners is facilitated by the intrinsically disordered protein regions (IDPRs) and posttranslational modifications (PTMs). Universal regulatory proteins of the eukaryotic 14-3-3 family nicely exemplify these concepts and are the focus of this chapter. The extremely wide interactome of 14-3-3 proteins is characterized by high levels of intrinsic disorder (ID) enabling protein phosphorylation and consequent specific binding to the well-structured 14-3-3 dimers, one of the first phosphoserine/phosphothreonine binding modules discovered. However, high ID enrichment also challenges structural studies, thereby limiting the progress in the development of small molecule modulators of the key 14-3-3 PPIs of increased medical importance. Besides the well-known structural flexibility of their variable C-terminal tails, recent studies revealed the strong and conserved ID propensity hidden in the N-terminal segment of 14-3-3 proteins (~40 residues), normally forming the α-helical dimerization region, that may have a potential role for the dimer/monomer dynamics and recently reported moonlighting chaperone-like activity of these proteins. We review the role of ID in the 14-3-3 structure, their interactome, and also in selected 14-3-3 complexes. In addition, we discuss approaches that, in the future, may help minimize the disproportion between the large amount of known 14-3-3 partners and the small number of 14-3-3 complexes characterized with atomic precision, to unleash the whole potential of 14-3-3 PPIs as drug targets.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation; Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Diego M Bustos
- Instituto de Histología y Embriología (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| |
Collapse
|
7
|
Quintela T, Gonçalves I, Silva M, Duarte AC, Guedes P, Andrade K, Freitas F, Talhada D, Albuquerque T, Tavares S, Passarinha LA, Cipolla-Neto J, Santos CRA. Choroid plexus is an additional source of melatonin in the brain. J Pineal Res 2018; 65:e12528. [PMID: 30260503 DOI: 10.1111/jpi.12528] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023]
Abstract
The cerebrospinal fluid melatonin is released from the pineal gland, directly into the third ventricle, or produced de novo in the brain from extrapineal melatonin sources leading to a melatonin concentration gradient in the cerebrospinal fluid. Despite the interest on this topic, the brain areas capable of producing melatonin are not yet clear. Bearing this in mind, we hypothesized that the choroid plexus (CP) could be one of these melatonin sources. We analyzed and confirmed the presence of the four enzymes required for melatonin synthesis in rat CP and demonstrated that arylalkylamine N-acetyltransferase shows a circadian expression in female and male rat CP. Specifically, this enzyme colocalizes with mitochondria in rat CP epithelial cells, an organelle known to be involved in melatonin function and synthesis. Then, we demonstrated that melatonin is synthesized by porcine CP explants, although without a circadian pattern. In conclusion, our data show that the CP is a local source of melatonin to the central nervous system, probably contributing to its high levels in the cerebrospinal fluid. We believe that in the CP, melatonin might be regulated by its endogenous clock machinery and by the hormonal background.
Collapse
Affiliation(s)
- Telma Quintela
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Marco Silva
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Ana C Duarte
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Paula Guedes
- CENSE, DCEA, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Késsia Andrade
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Flávia Freitas
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Daniela Talhada
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Tânia Albuquerque
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sara Tavares
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Luis A Passarinha
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- UCIBIO-Requimte, Department of Chemistry, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - José Cipolla-Neto
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cecília R A Santos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
8
|
Inamdar SM, Lankford CK, Laird JG, Novbatova G, Tatro N, Whitmore SS, Scheetz TE, Baker SA. Analysis of 14-3-3 isoforms expressed in photoreceptors. Exp Eye Res 2018; 170:108-116. [PMID: 29486162 DOI: 10.1016/j.exer.2018.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/02/2018] [Accepted: 02/23/2018] [Indexed: 11/18/2022]
Abstract
The 14-3-3 family of proteins has undergone considerable expansion in higher eukaryotes with humans and mice expressing seven isoforms (β, ε, η, γ, θ, ζ, and σ) from seven distinct genes (YWHAB, YWAHE, YWHAH, YWHAG, YWHAQ, YWHAZ, and SFN). Growing evidence indicates that while highly conserved, these isoforms are not entirely functionally redundant as they exhibit unique tissue expression profiles, subcellular localization, and biochemical functions. A key limitation in our understanding of 14-3-3 biology lies in our limited knowledge of cell-type specific 14-3-3 expression. Here we provide a characterization of 14-3-3 expression in whole retina and isolated rod photoreceptors using reverse-transcriptase digital droplet PCR. We find that all 14-3-3 genes with the exception of SFN are expressed in mouse retina with YWHAQ and YWHAE being the most highly expressed. Rod photoreceptors are enriched in YWHAE (14-3-3 ε). Immunohistochemistry revealed that 14-3-3 ε and 14-3-3 ζ exhibit unique distributions in photoreceptors with 14-3-3 ε restricted to the inner segment and 14-3-3 ζ localized to the outer segment. Our data demonstrates that, in the retina, 14-3-3 isoforms likely serve specific functions as they exhibit unique expression levels and cell-type specificity. As such, future investigations into 14-3-3 function in rod photoreceptors should be centered on 14-3-3 ε and 14-3-3 ζ, depending on the subcellular region of question.
Collapse
Affiliation(s)
- Shivangi M Inamdar
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Colten K Lankford
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Joseph G Laird
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Gulnara Novbatova
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Nicole Tatro
- Department of Ophthalmology & Visual Sciences and Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - S Scott Whitmore
- Department of Ophthalmology & Visual Sciences and Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Todd E Scheetz
- Department of Ophthalmology & Visual Sciences and Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Sheila A Baker
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA; Department of Ophthalmology & Visual Sciences and Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
9
|
Kirsz K, Szczesna M, Molik E, Zieba DA. Effects of ghrelin on nocturnal melatonin secretion in sheep: An in vitro and in vivo approach1. J Anim Sci 2017. [DOI: 10.2527/jas.2017.1737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Backlund PS, Urbanski HF, Doll MA, Hein DW, Bozinoski M, Mason CE, Coon SL, Klein DC. Daily Rhythm in Plasma N-acetyltryptamine. J Biol Rhythms 2017; 32:195-211. [PMID: 28466676 PMCID: PMC5571864 DOI: 10.1177/0748730417700458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Normal physiology undergoes 24-h changes in function that include daily rhythms in circulating hormones, most notably melatonin and cortical steroids. This study focused on N-acetyltryptamine, a little-studied melatonin receptor mixed agonist-antagonist and the likely evolutionary precursor of melatonin. The central issue addressed was whether N-acetyltryptamine is physiologically present in the circulation. N-acetyltryptamine was detected by LC-MS/MS in daytime plasma of 3 different mammals in subnanomolar levels (mean ± SEM: rat, 0.29 ± 0.05 nM, n = 5; rhesus macaque, 0.54 ± 0.24 nM, n = 4; human, 0.03 ± 0.01 nM, n = 32). Analysis of 24-h blood collections from rhesus macaques revealed a nocturnal increase in plasma N-acetyltryptamine (p < 0.001), which varied from 2- to 15-fold over daytime levels among the 4 animals studied. Related RNA sequencing studies indicated that the transcript encoding the tryptamine acetylating enzyme arylalkylamine N-acetyltransferase (AANAT) is expressed at similar levels in the rhesus pineal gland and retina, thereby indicating that either tissue could contribute to circulating N-acetyltryptamine. The evidence that N-acetyltryptamine is a physiological component of mammalian blood and exhibits a daily rhythm, together with known effects as a melatonin receptor mixed agonist-antagonist, shifts the status of N-acetyltryptamine from pharmacological tool to candidate for a physiological role. This provides a new opportunity to extend our understanding of 24-h biology.
Collapse
Affiliation(s)
- Peter S. Backlund
- Biomedical Mass Spectrometry Facility, Intramural Research Program,
Eunice Kennedy Shriver National Institute of Child Health and
Human Development, National Institutes of Health, Bethesda, MD 20892-1580
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center,
Beaverton, OR 97006
- Division of Reproductive and Developmental Sciences, Oregon National
Primate Research Center, Beaverton, OR 97006
- Department of Behavioral Neuroscience, Oregon Health and Science
University, Portland, OR 97006
- Department of Physiology and Pharmacology, Oregon Health and Science
University, Portland, OR 97239
| | - Mark A. Doll
- Department of Pharmacology and Toxicology, and James Graham Brown
Cancer Center, University of Louisville, Louisville, KY 40202
| | - David W. Hein
- Department of Pharmacology and Toxicology, and James Graham Brown
Cancer Center, University of Louisville, Louisville, KY 40202
| | - Marjan Bozinoski
- Department of Physiology and Biophysics, Weill Cornell Medical
College, Cornell University, New York, NY 10065
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medical
College, Cornell University, New York, NY 10065
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for
Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell
Medicine, New York, NY, USA
| | - Steven L. Coon
- Section on Neuroendocrinology, Program in Developmental
Endocrinology and Genetics, Eunice Kennedy Shriver National
Institute of Child Health and Human Development, National Institutes of Health,
Bethesda, MD 20892-1830
- Molecular Genomics Core Facility, Office of the Scientific
Director, Eunice Kennedy Shriver National Institute of Child Health
and Human Development, National Institutes of Health, Bethesda, MD 20892-1830
| | - David C. Klein
- Section on Neuroendocrinology, Program in Developmental
Endocrinology and Genetics, Eunice Kennedy Shriver National
Institute of Child Health and Human Development, National Institutes of Health,
Bethesda, MD 20892-1830
- Office of the Scientific Director, Intramural Research Program,
Eunice Kennedy Shriver National Institute of Child Health and
Human Development, National Institutes of Health, Bethesda, MD 20892-1830
| |
Collapse
|
11
|
Hou B, Fu Y, Weng C, Liu W, Zhao C, Yin ZQ. Homeostatic Plasticity Mediated by Rod-Cone Gap Junction Coupling in Retinal Degenerative Dystrophic RCS Rats. Front Cell Neurosci 2017; 11:98. [PMID: 28473754 PMCID: PMC5397418 DOI: 10.3389/fncel.2017.00098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/22/2017] [Indexed: 11/14/2022] Open
Abstract
Rod-cone gap junctions open at night to allow rod signals to pass to cones and activate the cone-bipolar pathway. This enhances the ability to detect large, dim objects at night. This electrical synaptic switch is governed by the circadian clock and represents a novel form of homeostatic plasticity that regulates retinal excitability according to network activity. We used tracer labeling and ERG recording in the retinae of control and retinal degenerative dystrophic RCS rats. We found that in the control animals, rod-cone gap junction coupling was regulated by the circadian clock via the modulation of the phosphorylation of the melatonin synthetic enzyme arylalkylamine N-acetyltransferase (AANAT). However, in dystrophic RCS rats, AANAT was constitutively phosphorylated, causing rod-cone gap junctions to remain open. A further b/a-wave ratio analysis revealed that dystrophic RCS rats had stronger synaptic strength between photoreceptors and bipolar cells, possibly because rod-cone gap junctions remained open. This was despite the fact that a decrease was observed in the amplitude of both a- and b-waves as a result of the progressive loss of rods during early degenerative stages. These results suggest that electric synaptic strength is increased during the day to allow cone signals to pass to the remaining rods and to be propagated to rod bipolar cells, thereby partially compensating for the weak visual input caused by the loss of rods.
Collapse
Affiliation(s)
- Baoke Hou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical UniversityChongqing, China.,Department of Ophthalmology, Chinese PLA General HospitalBeijing, China
| | - Yan Fu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical UniversityChongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of ChongqingChongqing, China
| | - Chuanhuang Weng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical UniversityChongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of ChongqingChongqing, China
| | - Weiping Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical UniversityChongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of ChongqingChongqing, China
| | - Congjian Zhao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical UniversityChongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of ChongqingChongqing, China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical UniversityChongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of ChongqingChongqing, China
| |
Collapse
|
12
|
Melatonin in Retinal Physiology and Pathology: The Case of Age-Related Macular Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6819736. [PMID: 27688828 PMCID: PMC5027321 DOI: 10.1155/2016/6819736] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/09/2016] [Indexed: 12/16/2022]
Abstract
Melatonin, an indoleamine, is synthesized mainly in the pineal gland in a circadian fashion, but it is produced in many other organs, including the retina, which seems to be especially important as the eye is a primary recipient of circadian signals. Melatonin displays strong antioxidative properties, which predispose it to play a protective role in many human pathologies associated with oxidative stress, including premature aging and degenerative disease. Therefore, melatonin may play a role in age-related macular degeneration (AMD), a disease affecting photoreceptors, and retinal pigment epithelium (RPE) with an established role of oxidative stress in its pathogenesis. Several studies have shown that melatonin could exert the protective effect against damage to RPE cells evoked by reactive oxygen species (ROS), but it has also been reported to increase ROS-induced damage to photoreceptors and RPE. Melatonin behaves like synthetic mitochondria-targeted antioxidants, which concentrate in mitochondria at relatively high levels; thus, melatonin may prevent mitochondrial damage in AMD. The retina contains telomerase, an enzyme implicated in maintaining the length of telomeres, and oxidative stress inhibits telomere synthesis, while melatonin overcomes this effect. These features support considering melatonin as a preventive and therapeutic agent in the treatment of AMD.
Collapse
|
13
|
Ferrington DA, Sinha D, Kaarniranta K. Defects in retinal pigment epithelial cell proteolysis and the pathology associated with age-related macular degeneration. Prog Retin Eye Res 2015; 51:69-89. [PMID: 26344735 DOI: 10.1016/j.preteyeres.2015.09.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/29/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022]
Abstract
Maintenance of protein homeostasis, also referred to as "Proteostasis", integrates multiple pathways that regulate protein synthesis, folding, translocation, and degradation. Failure in proteostasis may be one of the underlying mechanisms responsible for the cascade of events leading to age-related macular degeneration (AMD). This review covers the major degradative pathways (ubiquitin-proteasome and lysosomal involvement in phagocytosis and autophagy) in the retinal pigment epithelium (RPE) and summarizes evidence of their involvement in AMD. Degradation of damaged and misfolded proteins via the proteasome occurs in coordination with heat shock proteins. Evidence of increased content of proteasome and heat shock proteins in retinas from human donors with AMD is consistent with increased oxidative stress and extensive protein damage with AMD. Phagocytosis and autophagy share key molecules in phagosome maturation as well as degradation of their cargo following fusion with lysosomes. Phagocytosis and degradation of photoreceptor outer segments ensures functional integrity of the neural retina. Autophagy rids the cell of toxic protein aggregates and defective mitochondria. Evidence suggesting a decline in autophagic flux includes the accumulation of autophagic substrates and damaged mitochondria in RPE from AMD donors. An age-related decrease in lysosomal enzymatic activity inhibits autophagic clearance of outer segments, mitochondria, and protein aggregates, thereby accelerating the accumulation of lipofuscin. This cumulative damage over a person's lifetime tips the balance in RPE from a state of para-inflammation, which strives to restore cell homeostasis, to the chronic inflammation associated with AMD.
Collapse
Affiliation(s)
- Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, 2001 6th St SE, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Debasish Sinha
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Room M035 Robert and Clarice Smith Bldg, 400 N Broadway, Baltimore, MD, 21287, USA.
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland and Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland.
| |
Collapse
|
14
|
Anderson G, Rodriguez M. Multiple sclerosis: the role of melatonin and N-acetylserotonin. Mult Scler Relat Disord 2014; 4:112-23. [PMID: 25787187 DOI: 10.1016/j.msard.2014.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/06/2014] [Accepted: 12/09/2014] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is an immune mediated disorder that is under intensive investigation in an attempt to improve on available treatments. Many of the changes occurring in MS, including increased mitochondrial dysfunction, pain reporting and depression may be partly mediated by increased indoleamine 2,3-dioxygenase, which drives tryptophan to the production of neuroregulatory tryptophan catabolites and away from serotonin, N-acetylserotonin and melatonin production. The consequences of decreased melatonin have classically been attributed to circadian changes following its release from the pineal gland. However, recent data shows that melatonin may be produced by all mitochondria containing cells to some degree, including astrocytes and immune cells, thereby providing another important MS treatment target. As well as being a powerful antioxidant, anti-inflammatory and antinociceptive, melatonin improves mitochondrial functioning, partly via increased oxidative phosphorylation. Melatonin also inhibits demyelination and increases remyelination, suggesting that its local regulation in white matter astrocytes by serotonin availability and apolipoprotein E4, among other potential factors, will be important in the etiology, course and treatment of MS. Here we review the role of local melatonin and its precursors, N-acetylserotonin and serotonin, in MS.
Collapse
|
15
|
Tan DX, Zheng X, Kong J, Manchester LC, Hardeland R, Kim SJ, Xu X, Reiter RJ. Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: relation to their biological functions. Int J Mol Sci 2014; 15:15858-90. [PMID: 25207599 PMCID: PMC4200856 DOI: 10.3390/ijms150915858] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/15/2014] [Accepted: 08/27/2014] [Indexed: 12/29/2022] Open
Abstract
Melatonin and melatonin isomers exist and/or coexist in living organisms including yeasts, bacteria and plants. The levels of melatonin isomers are significantly higher than that of melatonin in some plants and in several fermented products such as in wine and bread. Currently, there are no reports documenting the presence of melatonin isomers in vertebrates. From an evolutionary point of view, it is unlikely that melatonin isomers do not exist in vertebrates. On the other hand, large quantities of the microbial flora exist in the gut of the vertebrates. These microorganisms frequently exchange materials with the host. Melatonin isomers, which are produced by these organisms inevitably enter the host's system. The origins of melatonin and its isomers can be traced back to photosynthetic bacteria and other primitive unicellular organisms. Since some of these bacteria are believed to be the precursors of mitochondria and chloroplasts these cellular organelles may be the primary sites of melatonin production in animals or in plants, respectively. Phylogenic analysis based on its rate-limiting synthetic enzyme, serotonin N-acetyltransferase (SNAT), indicates its multiple origins during evolution. Therefore, it is likely that melatonin and its isomer are also present in the domain of archaea, which perhaps require these molecules to protect them against hostile environments including extremely high or low temperature. Evidence indicates that the initial and primary function of melatonin and its isomers was to serve as the first-line of defence against oxidative stress and all other functions were acquired during evolution either by the process of adoption or by the extension of its antioxidative capacity.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, the University of Texas, Health Science Center, San Antonio, TX 78229, USA.
| | - Xiaodong Zheng
- Institute for Horticultural Plants, China Agricultural University, Beijing 100083, China.
| | - Jin Kong
- Institute for Horticultural Plants, China Agricultural University, Beijing 100083, China.
| | - Lucien C Manchester
- Department of Cellular and Structural Biology, the University of Texas, Health Science Center, San Antonio, TX 78229, USA.
| | - Ruediger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen 37073, Germany.
| | - Seok Joong Kim
- Department of Cellular and Structural Biology, the University of Texas, Health Science Center, San Antonio, TX 78229, USA.
| | - Xiaoying Xu
- Department of Cellular and Structural Biology, the University of Texas, Health Science Center, San Antonio, TX 78229, USA.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, the University of Texas, Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
16
|
Sluchanko NN, Chebotareva NA, Gusev NB. Modulation of 14-3-3/phosphotarget interaction by physiological concentrations of phosphate and glycerophosphates. PLoS One 2013; 8:e72597. [PMID: 23977325 PMCID: PMC3747078 DOI: 10.1371/journal.pone.0072597] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022] Open
Abstract
Molecular mechanisms governing selective binding of a huge number of various phosphorylated protein partners to 14-3-3 remain obscure. Phosphate can bind to 14-3-3 and therefore being present at high intracellular concentration, which undergoes significant changes under physiological conditions, phosphate can theoretically regulate interaction of 14-3-3 with phosphorylated targets. In order to check this hypothesis we analyzed effect of phosphate and other natural abundant anions on interaction of 14-3-3 with phosphorylated human small heat shock protein HspB6 (Hsp20) participating in regulation of different intracellular processes. Inorganic phosphate, glycerol-1-phosphate and glycerol-2-phosphate at physiologically relevant concentrations (5-15 mM) significantly destabilized complexes formed by 14-3-3ζ and phosphorylated HspB6 (pHspB6), presumably, via direct interaction with the substrate-binding site of 14-3-3. Phosphate also destabilized complexes between pHspB6 and 14-3-3γ or the monomeric mutant form of 14-3-3ζ. Inorganic sulfate and pyrophosphate were less effective in modulation of 14-3-3 interaction with its target protein. The inhibitory effect of all anions on pHspB6/14-3-3 interaction was concentration-dependent. It is hypothesized that physiological changes in phosphate anions concentration can modulate affinity and specificity of interaction of 14-3-3 with its multiple targets and therefore the actual phosphointeractome of 14-3-3.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- Laboratory of Molecular Organization of Biological Structures, AN Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow, Russian Federation.
| | | | | |
Collapse
|
17
|
Du Y, Fu RW, Lou B, Zhao J, Qui M, Khuri FR, Fu H. A time-resolved fluorescence resonance energy transfer assay for high-throughput screening of 14-3-3 protein-protein interaction inhibitors. Assay Drug Dev Technol 2013; 11:367-81. [PMID: 23906346 DOI: 10.1089/adt.2013.507] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein-protein interaction networks mediate diverse biological processes by regulating various signaling hubs and clusters. 14-3-3 proteins, a family of phosphoserine/threonine-binding molecules, serve as major interaction hubs in eukaryotic cells and have emerged as promising therapeutic targets for various human diseases. In order to identify chemical probes for mechanistic studies and for potential therapeutic development, we have developed highly sensitive bioassays to monitor the interaction of 14-3-3 with a client protein. In this study, we describe a homogenous time-resolved fluorescence resonance energy transfer (TR-FRET) assay to detect the interaction of 14-3-3 with Bad, a proapoptotic member of the Bcl-2 family. Through a series of titration studies in which europium-labeled 14-3-3 serves as an FRET donor and a Dy647-labeled phosphorylated Bad, the peptide acts as an FRET acceptor, we have achieved a robust TR-FRET assay that is suitable for high-throughput screening (HTS) with an excellent signal-to-background ratio of >20 and Z' values >0.7. This assay was further miniaturized to a 1,536-well format for ultra-HTS (uHTS), and exhibited a similar robust performance. The utility and performance of the assay for uHTS were validated by (i) known inhibitors, including peptide R18 and small molecule FOBISIN101, and (ii) screening of a 51,200 compound library. This simple and robust assay is generally applicable to detect the interaction of 14-3-3 with other client proteins. It provides a sensitive and easy-to-use tool to facilitate the discovery of 14-3-3 protein inhibitors as well as to study 14-3-3-mediated protein-protein interactions.
Collapse
Affiliation(s)
- Yuhong Du
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Campello L, Esteve-Rudd J, Cuenca N, Martín-Nieto J. The ubiquitin-proteasome system in retinal health and disease. Mol Neurobiol 2013; 47:790-810. [PMID: 23339020 DOI: 10.1007/s12035-012-8391-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the main intracellular pathway for modulated protein turnover, playing an important role in the maintenance of cellular homeostasis. It also exerts a protein quality control through degradation of oxidized, mutant, denatured, or misfolded proteins and is involved in many biological processes where protein level regulation is necessary. This system allows the cell to modulate its protein expression pattern in response to changing physiological conditions and provides a critical protective role in health and disease. Impairments of UPS function in the central nervous system (CNS) underlie an increasing number of genetic and idiopathic diseases, many of which affect the retina. Current knowledge on the UPS composition and function in this tissue, however, is scarce and dispersed. This review focuses on UPS elements reported in the retina, including ubiquitinating and deubiquitinating enzymes (DUBs), and alternative proteasome assemblies. Known and inferred roles of protein ubiquitination, and of the related, SUMO conjugation (SUMOylation) process, in normal retinal development and adult homeostasis are addressed, including modulation of the visual cycle and response to retinal stress and injury. Additionally, the relationship between UPS dysfunction and human neurodegenerative disorders affecting the retina, including Alzheimer's, Parkinson's, and Huntington's diseases, are dealt with, together with numerous instances of retina-specific illnesses with UPS involvement, such as retinitis pigmentosa, macular degenerations, glaucoma, diabetic retinopathy (DR), and aging-related impairments. This information, though still basic and limited, constitutes a suitable framework to be expanded in incoming years and should prove orientative toward future therapy design targeting sight-affecting diseases with a UPS underlying basis.
Collapse
Affiliation(s)
- Laura Campello
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080 Alicante, Spain
| | | | | | | |
Collapse
|
19
|
Tosini G, Baba K, Hwang CK, Iuvone PM. Melatonin: an underappreciated player in retinal physiology and pathophysiology. Exp Eye Res 2012; 103:82-9. [PMID: 22960156 DOI: 10.1016/j.exer.2012.08.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 12/14/2022]
Abstract
In the vertebrate retina, melatonin is synthesized by the photoreceptors with high levels of melatonin at night and lower levels during the day. Melatonin exerts its influence by interacting with a family of G-protein-coupled receptors that are negatively coupled with adenylyl cyclase. Melatonin receptors belonging to the subtypes MT(1) and MT(2) have been identified in the mammalian retina. MT(1) and MT(2) receptors are found in all layers of the neural retina and in the retinal pigmented epithelium. Melatonin in the eye is believed to be involved in the modulation of many important retinal functions; it can modulate the electroretinogram (ERG), and administration of exogenous melatonin increases light-induced photoreceptor degeneration. Melatonin may also have protective effects on retinal pigment epithelial cells, photoreceptors and ganglion cells. A series of studies have implicated melatonin in the pathogenesis of age-related macular degeneration, and melatonin administration may represent a useful approach to prevent and treat glaucoma. Melatonin is used by millions of people around the world to retard aging, improve sleep performance, mitigate jet lag symptoms, and treat depression. Administration of exogenous melatonin at night may also be beneficial for ocular health, but additional investigation is needed to establish its potential.
Collapse
Affiliation(s)
- Gianluca Tosini
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | | | | | | |
Collapse
|
20
|
Sluchanko NN, Artemova NV, Sudnitsyna MV, Safenkova IV, Antson AA, Levitsky DI, Gusev NB. Monomeric 14-3-3ζ has a chaperone-like activity and is stabilized by phosphorylated HspB6. Biochemistry 2012; 51:6127-38. [PMID: 22794279 PMCID: PMC3413243 DOI: 10.1021/bi300674e] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Members of the 14-3-3 eukaryotic protein family predominantly
function
as dimers. The dimeric form can be converted into monomers upon phosphorylation
of Ser58 located at the subunit interface. Monomers are
less stable than dimers and have been considered to be either less
active or even inactive during binding and regulation of phosphorylated
client proteins. However, like dimers, monomers contain the phosphoserine-binding
site and therefore can retain some functions of the dimeric 14-3-3.
Furthermore, 14-3-3 monomers may possess additional functional roles
owing to their exposed intersubunit surfaces. Previously we have found
that the monomeric mutant of 14-3-3ζ (14-3-3ζm), like the wild type protein, is able to bind phosphorylated small
heat shock protein HspB6 (pHspB6), which is involved in the regulation
of smooth muscle contraction and cardioprotection. Here we report
characterization of the 14-3-3ζm/pHspB6 complex by
biophysical and biochemical techniques. We find that formation of
the complex retards proteolytic degradation and increases thermal
stability of the monomeric 14-3-3, indicating that interaction with
phosphorylated targets could be a general mechanism of 14-3-3 monomers
stabilization. Furthermore, by using myosin subfragment 1 (S1) as
a model substrate we find that the monomer has significantly higher
chaperone-like activity than either the dimeric 14-3-3ζ protein
or even HspB6 itself. These observations indicate that 14-3-3ζ
and possibly other 14-3-3 isoforms may have additional functional
roles conducted by the monomeric state.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russian Federation.
| | | | | | | | | | | | | |
Collapse
|
21
|
Tosini G, Ye K, Iuvone PM. N-acetylserotonin: neuroprotection, neurogenesis, and the sleepy brain. Neuroscientist 2012; 18:645-53. [PMID: 22585341 DOI: 10.1177/1073858412446634] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
N-Acetylserotonin (NAS) is a naturally occurring chemical intermediate in biosynthesis of melatonin. Previous studies have shown that NAS has different brain distribution patterns from those of serotonin and melatonin, suggesting that NAS might have functions other than as a precursor or metabolite of melatonin. Indeed, several studies have now shown that NAS may play an important role in mood regulation and may have antidepressant activity. Additional studies have shown that NAS stimulates proliferation of neuroprogenitor cells and prevents some of the negative effects of sleep deprivation. It is believed that the antidepressant and neurotrophic actions of NAS are due at least in part to the capability on this molecule to activate the TrkB receptor in a brain-derived neurotrophic factor-independent manner. Emerging evidence also indicates that NAS and its derivatives have neuroprotective properties and protect retinal photoreceptor cells from light-induced degeneration. In this review, the authors discuss the literature about this exciting and underappreciated molecule.
Collapse
|
22
|
Rawashdeh O, Maronde E. The hormonal Zeitgeber melatonin: role as a circadian modulator in memory processing. Front Mol Neurosci 2012; 5:27. [PMID: 22408602 PMCID: PMC3295223 DOI: 10.3389/fnmol.2012.00027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 02/15/2012] [Indexed: 11/13/2022] Open
Abstract
The neuroendocrine substance melatonin is a hormone synthesized rhythmically by the pineal gland under the influence of the circadian system and alternating light/dark cycles. Melatonin has been shown to have broad applications, and consequently becoming a molecule of great controversy. Undoubtedly, however, melatonin plays an important role as a time cue for the endogenous circadian system. This review focuses on melatonin as a regulator in the circadian modulation of memory processing. Memory processes (acquisition, consolidation, and retrieval) are modulated by the circadian system. However, the mechanism by which the biological clock is rhythmically influencing cognitive processes remains unknown. We also discuss, how the circadian system by generating cycling melatonin levels can implant information about daytime into memory processing, depicted as day and nighttime differences in acquisition, memory consolidation and/or retrieval.
Collapse
Affiliation(s)
- Oliver Rawashdeh
- Dr. Senckenbergische Anatomie III, Institute of Cellular and Molecular Anatomy, Goethe-University, Frankfurt Hessen, Germany
| | | |
Collapse
|
23
|
Haque R, Chong NW, Ali F, Chaurasia SS, Sengupta T, Chun E, Howell JC, Klein DC, Iuvone PM. Melatonin synthesis in retina: cAMP-dependent transcriptional regulation of chicken arylalkylamine N-acetyltransferase by a CRE-like sequence and a TTATT repeat motif in the proximal promoter. J Neurochem 2011; 119:6-17. [PMID: 21790603 DOI: 10.1111/j.1471-4159.2011.07397.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arylalkylamine N-acetyltransferase (AANAT) is the key regulatory enzyme controlling the daily rhythm of melatonin biosynthesis. In chicken retinal photoreceptor cells, Aanat transcription and AANAT activity are regulated in part by cAMP-dependent mechanisms. The purpose of this study was to identify regulatory elements within the chicken Aanat promoter responsible for cAMP-dependent induction. Photoreceptor-enriched retinal cell cultures were transfected with a luciferase reporter construct containing up to 4 kb of 5'-flanking region and the first exon of Aanat. Forskolin treatment stimulated luciferase activity driven by the ∼4 kb promoter construct and by all 5'-deletion constructs except the smallest, Aanat (-217 to +120)luc. Maximal basal and forskolin-stimulated expression levels were generated by the Aanat (-484 to +120)luc construct. This construct lacks a canonical cyclic AMP-response element (CRE), but contains two other potentially important elements in its sequence: an eight times TTATT repeat (TTATT₈) and a CRE-like sequence. Electrophoretic mobility shift assays, luciferase reporter assays, chromatin immunoprecipitation, and siRNA experiments provide evidence that these elements bind c-Fos, JunD, and CREB to enhance basal and forskolin-stimulated Aanat transcription. We propose that the CRE-like sequence and TTATT₈ elements in the 484 bp proximal promoter interact to mediate cAMP-dependent transcriptional regulation of Aanat.
Collapse
Affiliation(s)
- Rashidul Haque
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Osawa S, Jo R, Xiong Y, Reidel B, Tserentsoodol N, Arshavsky VY, Iuvone PM, Weiss ER. Phosphorylation of G protein-coupled receptor kinase 1 (GRK1) is regulated by light but independent of phototransduction in rod photoreceptors. J Biol Chem 2011; 286:20923-9. [PMID: 21504899 PMCID: PMC3121460 DOI: 10.1074/jbc.m111.230904] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/13/2011] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of rhodopsin by G protein-coupled receptor kinase 1 (GRK1, or rhodopsin kinase) is critical for the deactivation of the phototransduction cascade in vertebrate photoreceptors. Based on our previous studies in vitro, we predicted that Ser(21) in GRK1 would be phosphorylated by cAMP-dependent protein kinase (PKA) in vivo. Here, we report that dark-adapted, wild-type mice demonstrate significantly elevated levels of phosphorylated GRK1 compared with light-adapted animals. Based on comparatively slow half-times for phosphorylation and dephosphorylation, phosphorylation of GRK1 by PKA is likely to be involved in light and dark adaptation. In mice missing the gene for adenylyl cyclase type 1, levels of phosphorylated GRK1 were low in retinas from both dark- and light-adapted animals. These data are consistent with reports that cAMP levels are high in the dark and low in the light and also indicate that cAMP generated by adenylyl cyclase type 1 is required for phosphorylation of GRK1 on Ser(21). Surprisingly, dephosphorylation was induced by light in mice missing the rod transducin α-subunit. This result indicates that phototransduction does not play a direct role in the light-dependent dephosphorylation of GRK1.
Collapse
Affiliation(s)
- Shoji Osawa
- From the Department of Cell and Developmental Biology and
| | - Rebecca Jo
- From the Department of Cell and Developmental Biology and
| | - Yubin Xiong
- From the Department of Cell and Developmental Biology and
| | - Boris Reidel
- the Albert Eye Research Institute, Duke University, Durham, North Carolina 27710, and
| | | | - Vadim Y. Arshavsky
- the Albert Eye Research Institute, Duke University, Durham, North Carolina 27710, and
| | - P. Michael Iuvone
- the Departments of Pharmacology and Ophthalmology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Ellen R. Weiss
- From the Department of Cell and Developmental Biology and
- the Lineberger Comprehensive Cancer Center, the University of North Carolina, Chapel Hill, North Carolina 27599-7090
| |
Collapse
|
25
|
Rosenstein RE, Pandi-Perumal SR, Srinivasan V, Spence DW, Brown GM, Cardinali DP. Melatonin as a therapeutic tool in ophthalmology: implications for glaucoma and uveitis. J Pineal Res 2010; 49:1-13. [PMID: 20492443 DOI: 10.1111/j.1600-079x.2010.00764.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Several lines of evidence support the view that increased free radical generation and altered nitric oxide (NO) metabolism play a role in the pathogenesis of highly prevalent ocular diseases, such as glaucoma and uveitis. Data are discussed indicating that melatonin, being an efficient antioxidant that displays antinitridergic properties, has a promising role in the treatment of these ocular dysfunctions. Melatonin synthesis occurs in the eye of most species, and melatonin receptors are localized in different ocular structures. In view of the fact that melatonin lacks significant adverse collateral effects even at high doses, the application of melatonin could potentially protect ocular tissues by effectively scavenging free radicals and excessive amounts of NO generated in the glaucomatous or uveitic eye.
Collapse
Affiliation(s)
- Ruth E Rosenstein
- Department of Human Biochemistry, School of Medicine, CEFyBO, University of Buenos Aires, CONICET, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
26
|
Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol Rep 2009; 61:383-410. [PMID: 19605939 DOI: 10.1016/s1734-1140(09)70081-7] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 05/01/2009] [Indexed: 01/01/2023]
Abstract
Melatonin is an evolutionarily conserved molecule that serves a time-keeping function in various species. In vertebrates, melatonin is produced predominantly by the pineal gland with a marked circadian rhythm that is governed by the central circadian pacemaker (biological clock) in the suprachiasmatic nuclei of the hypothalamus. High levels of melatonin are normally found at night, and low levels are seen during daylight hours. As a consequence, melatonin has been called the "darkness hormone". This review surveys the current state of knowledge regarding the regulation of melatonin synthesis, receptor expression, and function. In particular, it addresses the physiological, pathological, and therapeutic aspects of melatonin in humans, with an emphasis on biological rhythms.
Collapse
|
27
|
Osawa S, Jo R, Weiss ER. Phosphorylation of GRK7 by PKA in cone photoreceptor cells is regulated by light. J Neurochem 2008; 107:1314-24. [PMID: 18803695 DOI: 10.1111/j.1471-4159.2008.05691.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The retina-specific G protein-coupled receptor kinases, GRK1 and GRK7, have been implicated in the shutoff of the photoresponse and adaptation to changing light conditions via rod and cone opsin phosphorylation. Recently, we have defined sites of phosphorylation by cAMP-dependent protein kinase (PKA) in the amino termini of both GRK1 and GRK7 in vitro. To determine the conditions under which GRK7 is phosphorylated in vivo, we have generated an antibody that recognizes GRK7 phosphorylated on Ser36, the PKA phosphorylation site. Using this phospho-specific antibody, we have shown that GRK7 is phosphorylated in vivo and is located in the cone inner and outer segments of mammalian, amphibian and fish retinas. Using Xenopus laevis as a model, GRK7 is phosphorylated under dark-adapted conditions, but becomes dephosphorylated when the animals are exposed to light. The conservation of phosphorylation at Ser36 in GRK7 in these different species (which span a 400 million-year evolutionary period), and its light-dependent regulation, indicates that phosphorylation plays an important role in the function of GRK7. Our work demonstrates for the first time that cAMP can regulate proteins involved in the photoresponse in cones and introduces a novel mode of regulation for the retinal GRKs by PKA.
Collapse
Affiliation(s)
- Shoji Osawa
- Department of Cell and Developmental Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7090, USA
| | | | | |
Collapse
|
28
|
Localization and regulation of dopamine receptor D4 expression in the adult and developing rat retina. Exp Eye Res 2008; 87:471-7. [PMID: 18778704 DOI: 10.1016/j.exer.2008.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 08/12/2008] [Accepted: 08/13/2008] [Indexed: 11/24/2022]
Abstract
Levels of dopamine and melatonin exhibit diurnal rhythms in the rat retina. Dopamine is high during daytime adapting the retina to light, whereas melatonin is high during nighttime participating in the adaptation of the retina to low light intensities. Dopamine inhibits the synthesis of melatonin in the photoreceptors via Drd4 receptors located on the cell membrane of these cells. In this study, we show by semiquantitative in situ hybridization a prominent day/night variation in Drd4 expression in the retina of the Sprague-Dawley rat with a peak during the nighttime. Drd4 expression is seen in all retinal layers but the nocturnal increase is confined to the photoreceptors. Retinal Drd4 expression is not affected by removal of the sympathetic input to the eye, but triiodothyronine treatment induces Drd4 expression in the photoreceptors. In a developmental series, we show that the expression of Drd4 is restricted to postnatal stages with a peak at postnatal day 12. The high Drd4 expression in the rat retinal photoreceptors during the night supports physiological and pharmacologic evidence that the Drd4 receptor is involved in the dopaminergic inhibition of melatonin synthesis upon light stimulation. The sharp increase of Drd4 expression at a specific postnatal time suggests that dopamine is involved in retinal development.
Collapse
|
29
|
Ivanova TN, Alonso-Gomez AL, Iuvone PM. Dopamine D4 receptors regulate intracellular calcium concentration in cultured chicken cone photoreceptor cells: relationship to dopamine receptor-mediated inhibition of cAMP formation. Brain Res 2008; 1207:111-9. [PMID: 18371938 DOI: 10.1016/j.brainres.2008.02.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
Dopamine is a retinal neuromodulator secreted from amacrine and interplexiform cells. Activation of dopamine D4 receptors on photoreceptor cells reduces a light-sensitive pool of cAMP. The aim of the present study was to evaluate the role of dopamine receptors and cAMP in the regulation of intracellular Ca(2+) concentrations ([Ca(2+)](i)) in photoreceptor cells of chick retina. Retinal cells from 6 day-old chicken embryos were isolated and cultured for 5-7 days prior to experiments. Cone photoreceptors were the predominant cell type in these cultures. Dopamine and agonists of dopamine D4 receptors suppressed K(+)-stimulated uptake of (45)Ca(2+) and [Ca(2+)](i), measured with the Ca(2+)-sensitive fluorescent dye fura-2AM. The effects of the agonists were blocked by dopamine D2/D4 receptor antagonists or by pertussis toxin. 8Br-cAMP, a cell-permeable analog of cAMP, had no effect on inhibition of K(+)-stimulated (45)Ca(2+) influx or [Ca(2+)](i) by dopamine D2/D4 receptor agonists. Quinpirole inhibited the increase in cAMP level elicited by K(+), which requires Ca(2+) influx through voltage-gated Ca(2+) channels, but not that induced by the calcium ionophore A23187. Moreover, dopamine had no effect on either forskolin-stimulated or Ca(2+)/calmodulin-stimulated adenylyl cyclase activity in cell membranes prepared from the cultured cells. These data indicate that the decrease of cAMP elicited by dopamine D4 receptor stimulation may be secondary to decreased [Ca(2+)](i).
Collapse
Affiliation(s)
- Tamara N Ivanova
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
30
|
Abstract
Arylalkylamine N-acetyltransferase controls daily changes in melatonin production by the pineal gland and thereby plays a unique role in biological timing in vertebrates. Arylalkylamine N-acetyltransferase is also expressed in the retina, where it may play other roles in addition to signaling, including neurotransmission and detoxification. Large changes in activity reflect cyclic 3',5'-adenosine monophosphate-dependent phosphorylation of arylalkylamine N-acetyltransferase, leading to formation of a regulatory complex with 14-3-3 proteins. This activates the enzyme and prevents proteosomal proteolysis. The conserved features of regulatory systems that control arylalkylamine N-acetyltransferase are a circadian clock and environmental lighting.
Collapse
Affiliation(s)
- David C Klein
- Section on Neuroendocrinology, Office of Scientific Director, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|