1
|
Khalife MR, Scott RC, Hernan AE. Mechanisms for Cognitive Impairment in Epilepsy: Moving Beyond Seizures. Front Neurol 2022; 13:878991. [PMID: 35645970 PMCID: PMC9135108 DOI: 10.3389/fneur.2022.878991] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
There has been a major emphasis on defining the role of seizures in the causation of cognitive impairments like memory deficits in epilepsy. Here we focus on an alternative hypothesis behind these deficits, emphasizing the mechanisms of information processing underlying healthy cognition characterized as rate, temporal and population coding. We discuss the role of the underlying etiology of epilepsy in altering neural networks thereby leading to both the propensity for seizures and the associated cognitive impairments. In addition, we address potential treatments that can recover the network function in the context of a diseased brain, thereby improving both seizure and cognitive outcomes simultaneously. This review shows the importance of moving beyond seizures and approaching the deficits from a system-level perspective with the guidance of network neuroscience.
Collapse
Affiliation(s)
- Mohamed R. Khalife
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Rod C. Scott
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
- Institute of Child Health, Neurosciences Unit University College London, London, United Kingdom
| | - Amanda E. Hernan
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
2
|
Dohm-Hansen S, Donoso F, Lucassen PJ, Clarke G, Nolan YM. The gut microbiome and adult hippocampal neurogenesis: A new focal point for epilepsy? Neurobiol Dis 2022; 170:105746. [DOI: 10.1016/j.nbd.2022.105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
|
3
|
Ladol S, Sharma D. The effects of Hippophae rhamnoides in neuroprotection and behavioral alterations against iron-induced epilepsy. Epilepsy Res 2021; 175:106695. [PMID: 34186382 DOI: 10.1016/j.eplepsyres.2021.106695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Epilepsy is a neurological disorder in which malfunctioning of the electrical activity of the brain causes recurrent, unprovoked seizures. Epilepsy causes wide symptoms that include cognitive dysfunction, anxiety, behavioral alterations, and histological impairments. In this study, the effect of Hippophae rhamnoides (Sea buckthorn/Sbt) on electrophysiology, behavior, and histology in iron-induced epilepsy was analyzed. Rats were randomly divided into four groups (n = 8); Control group, Epileptic group, Sbt treated epileptic group, and Sbt treated group. To induce epilepsy, the intracortical iron injection was administered at a dose of 5 μl of 100 mM FeCl3. A significant increase in epileptiform activity, behavioral abnormalities, and histological impairments was observed in the iron-induced epileptic rats. Hippophae rhamnoides berry extract was administered orally at a dose of 1 ml/kg body wt. for one month. Sbt administration significantly reduced the epileptiform activity, improved behavioral abnormalities, and improved histological impairments in epileptic rats. In conclusion, this study demonstrates the antiepileptic effect of Sbt that probably has exerted by its neuroprotective and behavioral alteration potential against iron-induced epilepsy.
Collapse
Affiliation(s)
- Stanzin Ladol
- Department of Zoology, Central University of Jammu, Bagla (Rahya Suchani) Distt. Samba, Jammu and Kashmir, 181143, India.
| | - Deepak Sharma
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
4
|
Scott RC. Brains, complex systems and therapeutic opportunities in epilepsy. Seizure 2021; 90:155-159. [PMID: 33582003 DOI: 10.1016/j.seizure.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
The treatment of epilepsy remains extremely challenging for the thirty percent of people that do not become seizure free. This is despite the introduction of multiple new drugs over that last several decades, highlighting the need for new approaches to identifying novel therapeutic strategies. Conceptualizing the brain as a complex adaptive system and applying the tools that are used in addressing such systems provides an opportunity for expanding the space in which to search for new therapies. Epilepsy has long been considered a network disease at the level of whole brain connectivity, but the application of the concepts to gene and protein expression networks as well as to the dynamic behaviors of microcircuits has been underexplored. These levels of the brain complex adaptive system will be reviewed and a case made for the epilepsy community to embrace these concepts in order to reap to enormous potential rewards.
Collapse
Affiliation(s)
- Rod C Scott
- University of Vermont, 95 Carrigan Drive, Burlington, VT, 05405, United States; University of Vermont Medical Center, United States; Great Ormond Street Hospital for Children NHS Trust, United Kingdom.
| |
Collapse
|
5
|
Lee JM, Ji ES, Kim TW, Kim CJ, Shin MS, Lim BV, Chung YR, Cho YS. Treadmill exercise improves memory function by inhibiting hippocampal apoptosis in pilocarpine-induced epileptic rats. J Exerc Rehabil 2018; 14:713-723. [PMID: 30443515 PMCID: PMC6222143 DOI: 10.12965/jer.36394.197] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/05/2018] [Indexed: 12/05/2022] Open
Abstract
Epilepsy is characterized by recurrent seizures and loss of neurons with abnormal rhythmic firing in the brains. In the present study, we investigated the effect of treadmill exercise on memory function in relation with cell proliferation and apoptosis in the hippocampus using pilocarpine-induced seizure rats. Epilepsy was initiated by intraperitoneal injection of pilocarpine hydrochloride. The rats in the exercise group were forced to run on a motorized treadmill for 30 min once a day for 2 weeks. In the present results, treadmill exercise alleviated short-term and spatial learning memory impairments in the epileptic rats. Treadmill exercise suppressed neuronal degeneration and enhanced neuronal maturation in the epileptic rats. Treadmill exercise suppressed cell proliferation and apoptosis in the epileptic rats. Treadmill exercise alleviated pilocarpine-induced memory impairments and suppressed neuronal loss in the hippocampus through down-regulation of apoptosis. These findings offer a possibility that treadmill exercise may provide a preventive or therapeutic value to the epilepsy-induced learning and memory impairments.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Pharmacology, School of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun-Sang Ji
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Mal-Soon Shin
- School of Global Sport Studies, Korea University, Sejong, Korea
| | - Baek-Vin Lim
- Division of Leisure & Sports Science, Department of Exercise Prescription, Dongseo University, Busan, Korea
| | - Yong-Rak Chung
- Department of Golf Mapping, College of Arts Physical Education, Joongbu University, Geumsan, Korea
| | - Young Sam Cho
- Department of Urology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Mechanisms for Selective Single-Cell Reactivation during Offline Sharp-Wave Ripples and Their Distortion by Fast Ripples. Neuron 2017. [PMID: 28641116 DOI: 10.1016/j.neuron.2017.05.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Memory traces are reactivated selectively during sharp-wave ripples. The mechanisms of selective reactivation, and how degraded reactivation affects memory, are poorly understood. We evaluated hippocampal single-cell activity during physiological and pathological sharp-wave ripples using juxtacellular and intracellular recordings in normal and epileptic rats with different memory abilities. CA1 pyramidal cells participate selectively during physiological events but fired together during epileptic fast ripples. We found that firing selectivity was dominated by an event- and cell-specific synaptic drive, modulated in single cells by changes in the excitatory/inhibitory ratio measured intracellularly. This mechanism collapses during pathological fast ripples to exacerbate and randomize neuronal firing. Acute administration of a use- and cell-type-dependent sodium channel blocker reduced neuronal collapse and randomness and improved recall in epileptic rats. We propose that cell-specific synaptic inputs govern firing selectivity of CA1 pyramidal cells during sharp-wave ripples.
Collapse
|
7
|
PTEN Loss Increases the Connectivity of Fast Synaptic Motifs and Functional Connectivity in a Developing Hippocampal Network. J Neurosci 2017; 37:8595-8611. [PMID: 28751459 DOI: 10.1523/jneurosci.0878-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/13/2017] [Accepted: 07/15/2017] [Indexed: 11/21/2022] Open
Abstract
Changes in synaptic strength and connectivity are thought to be a major mechanism through which many gene variants cause neurological disease. Hyperactivation of the PI3K-mTOR signaling network, via loss of function of repressors such as PTEN, causes epilepsy in humans and animal models, and altered mTOR signaling may contribute to a broad range of neurological diseases. Changes in synaptic transmission have been reported in animal models of PTEN loss; however, the full extent of these changes, and their effect on network function, is still unknown. To better understand the scope of these changes, we recorded from pairs of mouse hippocampal neurons cultured in a two-neuron microcircuit configuration that allowed us to characterize all four major connection types within the hippocampus. Loss of PTEN caused changes in excitatory and inhibitory connectivity, and these changes were postsynaptic, presynaptic, and transynaptic, suggesting that disruption of PTEN has the potential to affect most connection types in the hippocampal circuit. Given the complexity of the changes at the synaptic level, we measured changes in network behavior after deleting Pten from neurons in an organotypic hippocampal slice network. Slices containing Pten-deleted neurons showed increased recruitment of neurons into network bursts. Importantly, these changes were not confined to Pten-deleted neurons, but involved the entire network, suggesting that the extensive changes in synaptic connectivity rewire the entire network in such a way that promotes a widespread increase in functional connectivity.SIGNIFICANCE STATEMENT Homozygous deletion of the Pten gene in neuronal subpopulations in the mouse serves as a valuable model of epilepsy caused by mTOR hyperactivation. To better understand how gene deletions lead to altered neuronal activity, we investigated the synaptic and network effects that occur 1 week after Pten deletion. PTEN loss increased the connectivity of all four types of hippocampal synaptic connections, including two forms of increased inhibition of inhibition, and increased network functional connectivity. These data suggest that single gene mutations that cause neurological diseases such as epilepsy may affect a surprising range of connection types. Moreover, given the robustness of homeostatic plasticity, these diverse effects on connection types may be necessary to cause network phenotypes such as increased synchrony.
Collapse
|
8
|
Abstract
Memory difficulties are commonly associated with temporal lobe epilepsy (TLE) and cause significant disability. This article reviews the role of altered hippocampal theta oscillations and theta-gamma coupling as potential causes of memory disturbance in temporal lobe epilepsy, dissecting the potential mechanisms underlying these changes in large-scale neuronal synchronization. We discuss development of treatments for cognitive dysfunction directed at restoring theta rhythmicity and future directions for research.
Collapse
|
9
|
Lee DJ, Izadi A, Melnik M, Seidl S, Echeverri A, Shahlaie K, Gurkoff GG. Stimulation of the medial septum improves performance in spatial learning following pilocarpine-induced status epilepticus. Epilepsy Res 2017; 130:53-63. [PMID: 28152425 DOI: 10.1016/j.eplepsyres.2017.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/22/2016] [Accepted: 01/09/2017] [Indexed: 01/20/2023]
Abstract
Temporal lobe epilepsy often leads to hippocampal sclerosis and persistent cognitive deficits, including difficulty with learning and memory. Hippocampal theta oscillations are critical in optimizing hippocampal function and facilitating plasticity. We hypothesized that pilocarpine-induced status epilepticus would disrupt oscillations and behavioral performance and that electrical neuromodulation to entrain theta would improve cognition specifically in injured rats. Rats received a pilocarpine (n=30) or saline injection (n=27) and unilateral bi-polar electrodes were implanted into the medial septum and hippocampus the following day. Hippocampal and septal theta were recorded in a Plexiglas box over the first week following implantation. Control and pilocarpine-treated rats were split into stimulation (continuous 7.7Hz, 80μA, 1ms pulse width) and non-stimulation groups for behavioral analysis. Continuous stimulation was initiated one-minute prior to and throughout an object exploration task (post-injury day seven) and again for each of six trials on the Barnes maze (post-injury days 12-14). There was a significant reduction in hippocampal theta power (p<0.05) and percentage of time oscillating in theta (p<0.05). In addition there was a significant decrease in object exploration in rats post-pilocarpine (p<0.05) and an impairment in spatial learning. Specifically, pilocarpine-treated rats were more likely to use random search strategies (p<0.001) and had an increase in latency to find the hidden platform (p<0.05) on the Barnes maze. Stimulation of the medial septum at 7.7Hz in pilocarpine-treated rats resulted in performance similar to shams in both the object recognition and Barnes maze tasks. Stimulation of sham rats resulted in impaired object exploration (p<0.05) with no difference in Barnes maze latency or strategy. In conclusion, pilocarpine-induced seizures diminished hippocampal oscillations and impaired performance in both an object exploration and a spatial memory task in pilocarpine-treated rats. Theta stimulation at 7.7Hz improved behavioral outcome on the Barnes maze task; this improvement in function was not related to a general cognitive enhancement, as shams did not benefit from stimulation. Therefore, stimulation of the medial septum represents an exciting target to improve behavioral outcome in patients with epilepsy.
Collapse
Affiliation(s)
- Darrin J Lee
- Department of Neurological Surgery, UC Davis School of Medicine, 4860 Y Street, Suite 3740, Sacramento, CA 95817, United States
| | - Ali Izadi
- Department of Neurological Surgery, UC Davis School of Medicine, 4860 Y Street, Suite 3740, Sacramento, CA 95817, United States; Center for Neuroscience, University of California, 1544 Newton Court, Davis, CA 95618, United States.
| | - Mikhail Melnik
- Department of Neurological Surgery, UC Davis School of Medicine, 4860 Y Street, Suite 3740, Sacramento, CA 95817, United States.
| | - Stacey Seidl
- Department of Neurological Surgery, UC Davis School of Medicine, 4860 Y Street, Suite 3740, Sacramento, CA 95817, United States; Center for Neuroscience, University of California, 1544 Newton Court, Davis, CA 95618, United States.
| | - Angela Echeverri
- Department of Neurological Surgery, UC Davis School of Medicine, 4860 Y Street, Suite 3740, Sacramento, CA 95817, United States.
| | - Kiarash Shahlaie
- Department of Neurological Surgery, UC Davis School of Medicine, 4860 Y Street, Suite 3740, Sacramento, CA 95817, United States; Center for Neuroscience, University of California, 1544 Newton Court, Davis, CA 95618, United States.
| | - Gene G Gurkoff
- Department of Neurological Surgery, UC Davis School of Medicine, 4860 Y Street, Suite 3740, Sacramento, CA 95817, United States; Center for Neuroscience, University of California, 1544 Newton Court, Davis, CA 95618, United States.
| |
Collapse
|
10
|
Liraz-Zaltsman S, Yaka R, Shabashov D, Shohami E, Biegon A. Neuroinflammation-Induced Memory Deficits Are Amenable to Treatment with D-Cycloserine. J Mol Neurosci 2016; 60:46-62. [PMID: 27421842 DOI: 10.1007/s12031-016-0786-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/21/2016] [Indexed: 12/18/2022]
Abstract
Cognitive deficits, especially memory loss, are common following many types of brain insults which are associated with neuroinflammation, although the underlying mechanisms are not entirely clear. The present study aimed to characterize the long-term cognitive and behavioral impairments in a mouse model of neuroinflammation in the absence of other insults and to evaluate the therapeutic potential of D-cycloserine (DCS). DCS is a co-agonist of the NMDA receptor that ameliorates cognitive deficits in models of TBI and stroke. Using a mouse model of global neuroinflammation induced by intracisternal (i.c.) administration of endotoxin (LPS), we found long-lasting microgliosis, memory deficits, impaired LTP, and reduced levels of the obligatory NR1 subunit of the NMDA receptor. A single administration of DCS, 1 day after i.c. LPS reduced microgliosis, reversed the cognitive deficits and restored LTP and NR1 levels. These results demonstrate that neuroinflammation alone, in the absence of trauma or ischemia, can cause persistent (>6 months) memory deficits linked to deranged NNMDA receptor function and suggest a possible role for NMDA co-agonists in reducing the cognitive sequelae of neuroinflammation.
Collapse
Affiliation(s)
- Sigal Liraz-Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel.
- Department of Pharmacology, School of Pharmacy, Hebrew University, Jerusalem, Israel.
| | - Rami Yaka
- Department of Pharmacology, School of Pharmacy, Hebrew University, Jerusalem, Israel
| | - Dalia Shabashov
- Department of Pharmacology, School of Pharmacy, Hebrew University, Jerusalem, Israel
| | - Esther Shohami
- Department of Pharmacology, School of Pharmacy, Hebrew University, Jerusalem, Israel
| | - Anat Biegon
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel
- Department of Neurology, Stony Brook University School of Medicine, Stony Brook, New York, USA
| |
Collapse
|
11
|
Deshpande LS, Blair RE, Phillips KF, DeLorenzo RJ. Role of the calcium plateau in neuronal injury and behavioral morbidities following organophosphate intoxication. Ann N Y Acad Sci 2016; 1374:176-83. [PMID: 27327161 DOI: 10.1111/nyas.13122] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 12/28/2022]
Abstract
Organophosphate (OP) chemicals include nerve agents and pesticides, and there is a growing concern of OP-based chemical attacks against civilians. Current antidotes are essential in limiting immediate mortality associated with OP exposure. However, further research is needed to identify the molecular mechanisms underlying long-term neurological deficits following survival of OP toxicity in order to develop effective therapeutics. We have developed rat survival models of OP-induced status epilepticus (SE) that mimic chronic mortality and morbidity following OP intoxication. We have observed significant elevations in hippocampal calcium levels after OP SE that persisted for weeks following initial survival. Drugs inhibiting intracellular calcium-induced calcium release, such as dantrolene, levetiracetam, and carisbamate, lowered OP SE-mediated protracted calcium elevations. Given the critical role of calcium signaling in modulating behavior and cell death mechanisms, drugs targeted at preventing the development of the calcium plateau could enhance neuroprotection, help reduce morbidity, and improve outcomes following survival of OP SE.
Collapse
Affiliation(s)
- Laxmikant S Deshpande
- Departments of Neurology, Virginia Commonwealth University, Richmond, Virginia.,Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Robert E Blair
- Departments of Neurology, Virginia Commonwealth University, Richmond, Virginia
| | - Kristin F Phillips
- Departments of Neurology, Virginia Commonwealth University, Richmond, Virginia
| | - Robert J DeLorenzo
- Departments of Neurology, Virginia Commonwealth University, Richmond, Virginia.,Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
12
|
Bernard C. The Diathesis-Epilepsy Model: How Past Events Impact the Development of Epilepsy and Comorbidities. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a022418. [PMID: 27194167 DOI: 10.1101/cshperspect.a022418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In epilepsy, seizures and comorbidities (e.g., cognitive deficits and depression) occur when specific thresholds are crossed. These thresholds depend on the diathesis (or vulnerability) of a given individual. The diathesis is controlled by multiple genetic and environmental factors. Diathesis changes over multiple timescales: on a daily basis, and as part of the development/aging processes, etc. The diathesis-epilepsy model introduced here provides a conceptual framework to understand how past events (e.g., a very stressful event) can directly influence the occurrence of epilepsy and comorbidities later in life. Experimental evidence supports this model, and the existence of biomarkers predictive of a vulnerability state have led to the development of preventive therapeutic strategies. Epigenetic modifications could be a key determinant of diathesis. Their role is discussed.
Collapse
Affiliation(s)
- Christophe Bernard
- Aix Marseille Université, Inserm, INS UMR S 1106, 13005 Marseille, France
| |
Collapse
|
13
|
Abstract
The quality of life of children with epilepsy is a function of seizures and associated cognitive and behavioral comorbidities. Current treatments are not successful at stopping seizures in approximately 30% of patients despite the introduction of multiple new antiepileptic drugs over the last decade. In addition, modification of seizures has only a modest impact on the comorbidities. Therefore, novel approaches to identify therapeutic targets that improve seizures and comorbidities are urgently required. The potential of network science as applied to genetic, local neural network, and global brain data is reviewed. Several examples of possible new therapeutic approaches defined using novel network tools are highlighted. Further study to translate the findings into clinical practice is now required.
Collapse
Affiliation(s)
- Rod C Scott
- Department of Neurological Sciences, University of Vermont, Burlington, VT, USA; Neurosciences Unit, UCL Institute of Child Health, London, UK
| |
Collapse
|
14
|
Russmann V, Goc J, Boes K, Ongerth T, Salvamoser JD, Siegl C, Potschka H. Minocycline fails to exert antiepileptogenic effects in a rat status epilepticus model. Eur J Pharmacol 2016; 771:29-39. [DOI: 10.1016/j.ejphar.2015.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022]
|
15
|
Abstract
The challenges to individuals with epilepsy extend far beyond the seizures. Co-morbidities in epilepsy are very common and are often more problematic to individuals than the seizures themselves. In this review, the pathophysiological mechanisms of cognitive impairment are discussed. While aetiology of the epilepsy has a significant influence on cognition, there is increasing evidence that prolonged or recurrent seizures can cause or exacerbate cognitive impairment. Alterations in signalling pathways and neuronal network function play a major role in both the pathophysiology of epilepsy and the epilepsy comorbidities. However, the biological underpinnings of cognitive impairment can be distinct from the pathophysiological processes that cause seizures.
Collapse
|
16
|
Lenck-Santini PP, Scott RC. Mechanisms Responsible for Cognitive Impairment in Epilepsy. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a022772. [PMID: 26337111 DOI: 10.1101/cshperspect.a022772] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Epilepsy is often associated with cognitive and behavioral impairments that can have profound impact on the quality of life of patients. Although the mechanisms of cognitive impairment are not completely understood, we make an attempt to describe, from a systems perspective, how information processing is affected in epilepsy disorders. The aim of this review is to (1) define the nature of cognitive deficits associated with epilepsy, (2) review fundamental systems-level mechanisms underlying information processing, and (3) describe how information processing is dysfunctional in epilepsy and investigate the relative contributions of etiology, seizures, and interictal discharges (IDs). We conclude that these mechanisms are likely to be important and deserve more detailed scrutiny in the future.
Collapse
Affiliation(s)
| | - Rodney C Scott
- Institute of Child Health, University College of London, London WC1N 3JH, United Kingdom
| |
Collapse
|
17
|
Preictal activity of subicular, CA1, and dentate gyrus principal neurons in the dorsal hippocampus before spontaneous seizures in a rat model of temporal lobe epilepsy. J Neurosci 2015; 34:16671-87. [PMID: 25505320 DOI: 10.1523/jneurosci.0584-14.2014] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Previous studies suggest that spontaneous seizures in patients with temporal lobe epilepsy might be preceded by increased action potential firing of hippocampal neurons. Preictal activity is potentially important because it might provide new opportunities for predicting when a seizure is about to occur and insight into how spontaneous seizures are generated. We evaluated local field potentials and unit activity of single, putative excitatory neurons in the subiculum, CA1, CA3, and dentate gyrus of the dorsal hippocampus in epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Average action potential firing rates of neurons in the subiculum, CA1, and dentate gyrus, but not CA3, increased significantly and progressively beginning 2-4 min before locally recorded spontaneous seizures. In the subiculum, CA1, and dentate gyrus, but not CA3, 41-57% of neurons displayed increased preictal activity with significant consistency across multiple seizures. Much of the increased preictal firing of neurons in the subiculum and CA1 correlated with preictal theta activity, whereas preictal firing of neurons in the dentate gyrus was independent of theta. In addition, some CA1 and dentate gyrus neurons displayed reduced firing rates preictally. These results reveal that different hippocampal subregions exhibit differences in the extent and potential underlying mechanisms of preictal activity. The finding of robust and significantly consistent preictal activity of subicular, CA1, and dentate neurons in the dorsal hippocampus, despite the likelihood that many seizures initiated in other brain regions, suggests the existence of a broader neuronal network whose activity changes minutes before spontaneous seizures initiate.
Collapse
|
18
|
Abstract
Convulsive status epilepticus is the most common neurological emergency in children and is associated with significant morbidity and mortality. The morbidities include later development of epilepsy, cognitive impairment, and psychiatric impairments. There has been a long-standing hypothesis that these outcomes are, at least in part, a function of brain injury induced by the status epilepticus. There is evidence from animal models and prospective human studies that the hippocampus may be injured during febrile status epilepticus although this pathophysiological sequence remains uncommon. Potential mechanisms include excitotoxicity, ischaemia, and inflammation. Neuroprotective drugs reduce brain injury but have little impact on epileptogenesis or cognitive impairments. Anti-inflammatory treatments have given mixed results to date. Broad-spectrum anti-inflammatory agents, such as steroids, are potentially harmful, whereas prevention of leucocyte diapedesis across the blood brain barrier appears to have a positive outcome. Therefore, more studies dissecting the inflammatory process are required to establish the most effective strategies for translation into clinical practice. In addition to neuronal loss, cognitive impairments are related to neuronal re-organisation and disruption of neural networks underpinning cognition. Further understanding of these mechanisms may lead to novel therapies that prevent brain injury, but also therapies that may improve outcomes even if injury has occurred.
Collapse
Affiliation(s)
- Rod C Scott
- Department of Neurological Science, University of Vermont College of Medicine, Burlington, VT 05405, USA
- Neurosciences Unit, UCL Institute of Child Health, London, UK
| |
Collapse
|
19
|
Deshpande LS, Phillips K, Huang B, DeLorenzo RJ. Chronic behavioral and cognitive deficits in a rat survival model of paraoxon toxicity. Neurotoxicology 2014; 44:352-7. [PMID: 25172410 DOI: 10.1016/j.neuro.2014.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 01/15/2023]
Abstract
Organophosphate (OP) compounds, including paraoxon (POX), are similar to nerve agents such as sarin. There is a growing concern that OP agents could be weaponized to cause mass civilian causalities. We have developed a rodent survival model of POX toxicity that is being used to evaluate chronic morbidity and to screen for medical countermeasures against severe OP exposure. It is well known that the survivors of nerve gas and chronic OP exposure exhibit neurobehavioral deficits such as mood changes, depression, and memory impairments. In this study we investigated whether animals surviving severe POX exposure exhibited long-term neurological impairments. POX exposure produced overt signs of cholinergic toxicity. Rats were rescued using an optimized atropine, 2-PAM and diazepam therapy. Surviving rats were studied using established behavioral assays for identifying symptoms of depression and memory impairment 3-months after POX exposure. In the forced swim test, POX rats exhibited increased immobility time indicative of a despair-like state. In the sucrose preference test, POX rats consumed significantly less sucrose water indicating anhedonia-like condition. POX rats also displayed increased anxiety as characterized by significantly lower performance in the open arm of the elevated plus maze. Further, when tested with a novel object recognition paradigm, POX rats exhibited a negative discrimination ratio indicative of impaired recognition memory. The results indicate that this model of survival from severe POX exposure can be employed to study some of the molecular bases for OP-induced chronic behavioral and cognitive comorbidities and develop therapies for their treatment.
Collapse
Affiliation(s)
| | - Kristin Phillips
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Beverly Huang
- Department of Neuroscience, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Robert J DeLorenzo
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Molecular Biophysics and Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
20
|
Nie Y, Fellous JM, Tatsuno M. Influence of external inputs and asymmetry of connections on information-geometric measures involving up to ten neuronal interactions. Neural Comput 2014; 26:2247-93. [PMID: 24922506 DOI: 10.1162/neco_a_00633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The investigation of neural interactions is crucial for understanding information processing in the brain. Recently an analysis method based on information geometry (IG) has gained increased attention, and the property of the pairwise IG measure has been studied extensively in relation to the two-neuron interaction. However, little is known about the property of IG measures involving more neuronal interactions. In this study, we systematically investigated the influence of external inputs and the asymmetry of connections on the IG measures in cases ranging from 1-neuron to 10-neuron interactions. First, the analytical relationship between the IG measures and external inputs was derived for a network of 10 neurons with uniform connections. Our results confirmed that the single and pairwise IG measures were good estimators of the mean background input and of the sum of the connection weights, respectively. For the IG measures involving 3 to 10 neuronal interactions, we found that the influence of external inputs was highly nonlinear. Second, by computer simulation, we extended our analytical results to asymmetric connections. For a network of 10 neurons, the simulation showed that the behavior of the IG measures in relation to external inputs was similar to the analytical solution obtained for a uniformly connected network. When the network size was increased to 1000 neurons, the influence of external inputs almost disappeared. This result suggests that all IG measures from 1-neuron to 10-neuron interactions are robust against the influence of external inputs. In addition, we investigated how the strength of asymmetry influenced the IG measures. Computer simulation of a 1000-neuron network showed that all the IG measures were robust against the modulation of the asymmetry of connections. Our results provide further support for an information-geometric approach and will provide useful insights when these IG measures are applied to real experimental spike data.
Collapse
Affiliation(s)
- Yimin Nie
- Department of Neuroscience, Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4 Canada
| | | | | |
Collapse
|
21
|
Titiz AS, Mahoney JM, Testorf ME, Holmes GL, Scott RC. Cognitive impairment in temporal lobe epilepsy: role of online and offline processing of single cell information. Hippocampus 2014; 24:1129-45. [PMID: 24799359 DOI: 10.1002/hipo.22297] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2014] [Indexed: 12/31/2022]
Abstract
Cognitive impairment is a common comorbidity in temporal lobe epilepsy (TLE) and is often considered more detrimental to quality of life than seizures. While it has been previously shown that the encoding of memory during behavior is impaired in the pilocarpine model of TLE in rats, how this information is consolidated during the subsequent sleep period remains unknown. In this study, we first report marked deficits in spatial memory performance and severe cell loss in the CA1 layer of the hippocampus lower spatial coherence of firing in TLE rats. We then present the first evidence that the reactivation of behavior-driven patterns of activity of CA1 place cells in the hippocampus is intact in TLE rats. Using a template-matching method, we discovered that real-time (3-5 s) reactivation structure was intact in TLE rats. Furthermore, we estimated the entropy rate of short time scale (∼250 ms) bursting activity using block entropies and found that significant, extended temporal correlations exist in both TLE and control rats. Fitting a first-order Markov Chain model to these bursting time series, we found that long sequences derived from behavior were significantly enriched in the Markov model over corresponding models fit on randomized data confirming the presence of replay in shorter time scales. We propose that the persistent consolidation of poor spatial information in both real time and during bursting activity may contribute to memory impairments in TLE rats.
Collapse
Affiliation(s)
- A S Titiz
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | | | | | | | | |
Collapse
|
22
|
Nie Y, Fellous JM, Tatsuno M. Information-geometric measures estimate neural interactions during oscillatory brain states. Front Neural Circuits 2014; 8:11. [PMID: 24605089 PMCID: PMC3932415 DOI: 10.3389/fncir.2014.00011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 02/04/2014] [Indexed: 12/04/2022] Open
Abstract
The characterization of functional network structures among multiple neurons is essential to understanding neural information processing. Information geometry (IG), a theory developed for investigating a space of probability distributions has recently been applied to spike-train analysis and has provided robust estimations of neural interactions. Although neural firing in the equilibrium state is often assumed in these studies, in reality, neural activity is non-stationary. The brain exhibits various oscillations depending on cognitive demands or when an animal is asleep. Therefore, the investigation of the IG measures during oscillatory network states is important for testing how the IG method can be applied to real neural data. Using model networks of binary neurons or more realistic spiking neurons, we studied how the single- and pairwise-IG measures were influenced by oscillatory neural activity. Two general oscillatory mechanisms, externally driven oscillations and internally induced oscillations, were considered. In both mechanisms, we found that the single-IG measure was linearly related to the magnitude of the external input, and that the pairwise-IG measure was linearly related to the sum of connection strengths between two neurons. We also observed that the pairwise-IG measure was not dependent on the oscillation frequency. These results are consistent with the previous findings that were obtained under the equilibrium conditions. Therefore, we demonstrate that the IG method provides useful insights into neural interactions under the oscillatory condition that can often be observed in the real brain.
Collapse
Affiliation(s)
- Yimin Nie
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge Lethbridge, AB, Canada
| | - Jean-Marc Fellous
- Department of Psychology, Program in Applied Mathematics, University of Arizona Tucson, AZ, USA
| | - Masami Tatsuno
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge Lethbridge, AB, Canada
| |
Collapse
|
23
|
Woeffler-Maucler C, Beghin A, Ressnikoff D, Bezin L, Marinesco S. Automated immunohistochemical method to quantify neuronal density in brain sections: application to neuronal loss after status epilepticus. J Neurosci Methods 2014; 225:32-41. [PMID: 24462622 DOI: 10.1016/j.jneumeth.2014.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND To study neurotoxic processes, it is necessary to quantify the number of neurons in a given brain structure and estimate neuronal loss. Neuronal densities can be estimated by immunohistochemical quantitation of a neuronal marker such as the protein NeuN. However, NeuN expression may vary, depending on certain pathophysiological conditions and bias such quantifications. NEW METHOD We have developed a simple automatic quantification of neuronal densities in brain sections stained with DAPI and antibody to NeuN. This method determines the number of DAPI-positive nuclei also positive for NeuN in at least two adjacent sections within a Z-stack of optical sections. RESULTS We tested this method in animals with induced status epilepticus (SE) a state of intractable persistent seizure that produces extensive neuronal injury. We found that SE significantly reduced neuronal density in the piriform cortex, the amygdala, the dorsal thalamus, the CA3 area of the hippocampus, the dentate gyrus and the hilus, but not in the somatosensory cortex or the CA1 area. SE resulted in increases in the total density of cellular nuclei within these brain structures, suggesting gliosis. COMPARISON WITH EXISTING METHODS This automated method was more accurate than simply estimating the overall NeuN fluorescence intensity in the brain section, and as accurate, but less time-consuming, than manual cell counts. CONCLUSION This method simplifies and accelerates the unbiased quantification of neuronal density. It can be easily applied to other models of brain injury and neurodegeneration, or used to screen the efficacy of neuroprotective treatments.
Collapse
Affiliation(s)
- Caroline Woeffler-Maucler
- Université de Lyon, Lyon, France; INSERM, Institut National de la Santé et de la Recherche Médicale, U1028, Lyon Neuroscience Research Center, Lyon, France; CNRS, Centre National de la Recherche Scientifique, UMR5292, Lyon Neuroscience Research Center, Lyon, France
| | - Anne Beghin
- Université de Lyon, Lyon, France; Centre Commun de Quantimétrie, Lyon F-69008, France
| | - Denis Ressnikoff
- Université de Lyon, Lyon, France; Centre Commun de Quantimétrie, Lyon F-69008, France
| | - Laurent Bezin
- Université de Lyon, Lyon, France; INSERM, Institut National de la Santé et de la Recherche Médicale, U1028, Lyon Neuroscience Research Center, Lyon, France; CNRS, Centre National de la Recherche Scientifique, UMR5292, Lyon Neuroscience Research Center, Lyon, France; IDÉE, Institut Des ÉpilepsiEs, Lyon, France
| | - Stéphane Marinesco
- Université de Lyon, Lyon, France; INSERM, Institut National de la Santé et de la Recherche Médicale, U1028, Lyon Neuroscience Research Center, Lyon, France; CNRS, Centre National de la Recherche Scientifique, UMR5292, Lyon Neuroscience Research Center, Lyon, France; Plate-forme technologique AniRA-Neurochem, Lyon F-69000, France.
| |
Collapse
|
24
|
Besio W, Cuellar-Herrera M, Luna-Munguia H, Orozco-Suárez S, Rocha L. Effects of transcranial focal electrical stimulation alone and associated with a sub-effective dose of diazepam on pilocarpine-induced status epilepticus and subsequent neuronal damage in rats. Epilepsy Behav 2013; 28:432-6. [PMID: 23886585 DOI: 10.1016/j.yebeh.2013.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
Experiments were conducted to evaluate the effects of transcranial focal electrical stimulation (TFS) applied via tripolar concentric ring electrodes, alone and associated with a sub-effective dose of diazepam (DZP) on the expression of status epilepticus (SE) induced by lithium-pilocarpine (LP) and subsequent neuronal damage in the hippocampus. Immediately before pilocarpine injection, male Wistar rats received TFS (300Hz, 200-μs biphasic square charge-balanced 50-mA constant current pulses for 2min) alone or combined with a sub-effective dose of DZP (0.41mg/kg, i.p.). In contrast with DZP or TFS alone, DZP plus TFS reduced the incidence of, and enhanced the latency to, mild and severe generalized seizures and SE induced by LP. These effects were associated with a significant reduction in the number of degenerated neurons in the hippocampus. The present study supports the notion that TFS combined with sub-effective doses of DZP may represent a therapeutic tool to induce anticonvulsant effects and reduce the SE-induced neuronal damage.
Collapse
Affiliation(s)
- Walter Besio
- Electrical, Computer, and Biomedical Engineering Department, University of Rhode Island, Kingston, RI, USA
| | | | | | | | | |
Collapse
|
25
|
Richard GR, Titiz A, Tyler A, Holmes GL, Scott RC, Lenck-Santini PP. Speed modulation of hippocampal theta frequency correlates with spatial memory performance. Hippocampus 2013; 23:1269-79. [PMID: 23832676 DOI: 10.1002/hipo.22164] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2013] [Indexed: 11/11/2022]
Abstract
Hippocampal theta rhythm is believed to play a critical role in learning and memory. In animal models of temporal lobe epilepsy (TLE), there is evidence that alterations of hippocampal theta oscillations are involved in the cognitive impairments observed in this model. However, hippocampal theta frequency and amplitude at both the local field potential (LFP) and single unit level are strongly modulated by running speed, suggesting that the integration of locomotor information into memory processes may also be critical for hippocampal processing. Here, we investigate whether hippocampal speed-theta integration influences spatial memory and whether it could account for the memory deficits observed in TLE rats. LFPs were recorded in both Control (CTR) and TLE rats as they were trained in a spatial alternation task. TLE rats required more training sessions to perform the task at CTR levels. Both theta frequency and power were significantly lower in the TLE group. In addition, speed/theta frequency correlation coefficients and regression slopes varied from session to session and were worse in TLE. Importantly, there was a strong relationship between speed/theta frequency parameters and performance. Our analyses reveal that speed/theta frequency correlation with performance cannot merely be explained by the direct influence of speed on behavior. Therefore, variations in the coordination of theta frequency with speed may participate in learning and memory processes. Impairments of this function could explain at least partially memory deficits in epilepsy.
Collapse
Affiliation(s)
- Gregory R Richard
- Department of Neurology, Geisel School of Medicine, Hanover, New Hampshire
| | | | | | | | | | | |
Collapse
|