1
|
Wu K, Li H, Xie Y, Zhang S, Wang X. Fractional amplitude of low-frequency fluctuation alterations in patients with cervical spondylotic myelopathy: a resting-state fMRI study. Neuroradiology 2024; 66:847-854. [PMID: 38530417 DOI: 10.1007/s00234-024-03337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE We sought to use the fractional amplitude of low-frequency fluctuation (fALFF) method to investigate the changes in spontaneous brain activity in CSM patients and their relationships with clinical features. METHODS We recruited 20 patients with CSM, and 20 healthy controls (HCs) matched for age, sex, and education status. The fALFF method was used to evaluate the altered spontaneous brain activities. The Pearson correlation analysis of fALFF and the clinical features were carried out. RESULTS Compared with HC, CSM group showed increased fALFF values in the left middle frontal gyrus, inferior parietal lobule, and right angular gyrus. Decreased fALFF values were found in the right lingual gyrus, cuneus (P < 0.05). Pearson correlation analysis shows that the fALFF values of all CSM were positively correlated with JOA score in the right angular gyrus (r = 0.518, P < 0.05). CONCLUSION CSM patients have abnormal fALFF distribution in multiple brain regions and might be an appealing alternative approach for further exploration of the pathological and neuropsychological states in CSM.
Collapse
Affiliation(s)
- Kaifu Wu
- Department of Radiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Wuhan, 430014, China
| | - Han Li
- Department of Radiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Wuhan, 430014, China
| | - Yuanliang Xie
- Department of Radiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Wuhan, 430014, China
| | - Shutong Zhang
- Department of Radiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Wuhan, 430014, China
| | - Xiang Wang
- Department of Radiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Wuhan, 430014, China.
| |
Collapse
|
2
|
Ren Y, Brown T. Visual Sequence Encoding is Enhanced by Predictable Music Pairing via Modulating Medial Temporal Lobe and Its Connectivity with Frontostriatal Loops. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551506. [PMID: 37577605 PMCID: PMC10418274 DOI: 10.1101/2023.08.01.551506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Listening to music during cognitive activities, such as reading and studying, is very common in human daily life. Therefore, it is important to understand how music interacts with concurrent cognitive functions, particularly memory. Current literature has presented mixed results for whether music can benefit learning in other modalities. Evidence is needed for what neural mechanisms music can tap into to enhance concurrent memory processing. This fMRI study aimed to begin filling this gap by investigating how music of varying predictability levels influences parallel visual sequence encoding performance. Behavioral results suggest that overall, predictable music enhances visual sequential encoding, and this effect increases with the structural regularity and familiarity of music. fMRI results indicate that during visual sequence encoding, music activates traditional music-processing and motor-related areas, but decreases parahippocampal and striatal engagement. This deactivation may indicate a more efficient encoding of visual information when music is present. By comparing music conditions of different structural predictability and familiarity, we probed how this occurs. We demonstrate improved encoding with increased syntactical regularity, which was associated with decreased activity in default mode network and increased activity in inferior temporal gyrus. Furthermore, the temporal schema provided by music familiarity may influence encoding through altered functional connectivity between the prefrontal cortex, medial temporal lobe and striatum. Overall, we propose that pairing music with learning might facilitate memory by reducing neural demands for visual encoding and simultaneously strengthening the connectivity between the medial temporal lobe and frontostriatal loops important for sequencing information. Significance Statement There is considerable interest in what mechanisms can be tapped to improve human memory. Music provides a potential modulator, but few studies have investigated music effects on encoding episodic memory. This study used a novel design to examine how music can influence concurrent visual item sequence encoding. We provided neural data to better understand mechanisms behind potential benefits of music for learning. Our results demonstrated predictable music may help guide parallel learning of sequences in another modality. We found that music might facilitate processing in neural systems associated with visual declarative long-term and working memory, and familiar music might modulate reward circuits and provide a temporal schema which facilitates better encoding of the temporal structure of new non-music information.
Collapse
|
3
|
He H, Hong L, Sajda P. Pupillary response is associated with the reset and switching of functional brain networks during salience processing. PLoS Comput Biol 2023; 19:e1011081. [PMID: 37172067 DOI: 10.1371/journal.pcbi.1011081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/24/2023] [Accepted: 04/06/2023] [Indexed: 05/14/2023] Open
Abstract
The interface between processing internal goals and salient events in the environment involves various top-down processes. Previous studies have identified multiple brain areas for salience processing, including the salience network (SN), dorsal attention network, and the locus coeruleus-norepinephrine (LC-NE) system. However, interactions among these systems in salience processing remain unclear. Here, we simultaneously recorded pupillometry, EEG, and fMRI during an auditory oddball paradigm. The analyses of EEG and fMRI data uncovered spatiotemporally organized target-associated neural correlates. By modeling the target-modulated effective connectivity, we found that the target-evoked pupillary response is associated with the network directional couplings from late to early subsystems in the trial, as well as the network switching initiated by the SN. These findings indicate that the SN might cooperate with the pupil-indexed LC-NE system in the reset and switching of cortical networks, and shed light on their implications in various cognitive processes and neurological diseases.
Collapse
Affiliation(s)
- Hengda He
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Linbi Hong
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
- Department of Electrical Engineering, Columbia University, New York, New York, United States of America
- Department of Radiology, Columbia University, New York, New York, United States of America
- Data Science Institute, Columbia University, New York, New York, United States of America
| |
Collapse
|
4
|
Esparza-Iaizzo M, Vigué-Guix I, Ruzzoli M, Torralba-Cuello M, Soto-Faraco S. Long-Range α-Synchronization as Control Signal for BCI: A Feasibility Study. eNeuro 2023; 10:ENEURO.0203-22.2023. [PMID: 36750362 PMCID: PMC9997698 DOI: 10.1523/eneuro.0203-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 02/09/2023] Open
Abstract
Shifts in spatial attention are associated with variations in α band (α, 8-14 Hz) activity, specifically in interhemispheric imbalance. The underlying mechanism is attributed to local α-synchronization, which regulates local inhibition of neural excitability, and frontoparietal synchronization reflecting long-range communication. The direction-specific nature of this neural correlate brings forward its potential as a control signal in brain-computer interfaces (BCIs). In the present study, we explored whether long-range α-synchronization presents lateralized patterns dependent on voluntary attention orienting and whether these neural patterns can be picked up at a single-trial level to provide a control signal for active BCI. We collected electroencephalography (EEG) data from a cohort of healthy adults (n = 10) while performing a covert visuospatial attention (CVSA) task. The data show a lateralized pattern of α-band phase coupling between frontal and parieto-occipital regions after target presentation, replicating previous findings. This pattern, however, was not evident during the cue-to-target orienting interval, the ideal time window for BCI. Furthermore, decoding the direction of attention trial-by-trial from cue-locked synchronization with support vector machines (SVMs) was at chance level. The present findings suggest EEG may not be capable of detecting long-range α-synchronization in attentional orienting on a single-trial basis and, thus, highlight the limitations of this metric as a reliable signal for BCI control.
Collapse
Affiliation(s)
| | - Irene Vigué-Guix
- Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain 08005
| | - Manuela Ruzzoli
- Basque Center on Cognition Brain and Language (BCBL), Donostia-San Sebastián, Spain 20009
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain 20009
| | | | - Salvador Soto-Faraco
- Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain 08005
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain 20009
| |
Collapse
|
5
|
Pedale T, Fontan A, Grill F, Bergström F, Eriksson J. Nonconscious information can be identified as task-relevant but not prioritized in working memory. Cereb Cortex 2023; 33:2287-2301. [PMID: 35667703 PMCID: PMC9977358 DOI: 10.1093/cercor/bhac208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Two critical features of working memory are the identification and appropriate use of task-relevant information while avoiding distraction. Here, in 3 experiments, we explored if these features can be achieved also for nonconscious stimuli. Participants performed a delayed match-to-sample task in which task relevance of 2 competing stimuli was indicated by a cue, and continuous flash suppression was used to manipulate the conscious/nonconscious visual experience. Experiment 1 revealed better-than-chance performance with nonconscious stimuli, demonstrating goal-directed use of nonconscious task-relevant information. Experiment 2 demonstrated that the cue that defined task relevance must be conscious to allow such goal-directed use. In Experiment 3, multi-voxel pattern analyses of brain activity revealed that only the target was prioritized and maintained during conscious trials. Conversely, during nonconscious trials, both target and distractor were maintained. However, decoding of task relevance during the probe/test phase demonstrated identification of both target and distractor information. These results show that identification of task-relevant information can operate also on nonconscious material. However, they do not support the prioritization of nonconscious task-relevant information, thus suggesting a mismatch in the attentional mechanisms involved during conscious and nonconscious working memory.
Collapse
Affiliation(s)
- Tiziana Pedale
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden.,Department of Integrative Medical Biology, Physiology Section, Umeå University, 901 87 Umeå, Sweden
| | - Aurelie Fontan
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden.,Department of Integrative Medical Biology, Physiology Section, Umeå University, 901 87 Umeå, Sweden
| | - Filip Grill
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden.,Department of Radiation Sciences, Diagnostic Radiology, Umeå University, 901 87 Umeå, Sweden
| | - Fredrik Bergström
- CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Rua do Colégio Novo, 3001-802 Coimbra, Portugal
| | - Johan Eriksson
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden.,Department of Integrative Medical Biology, Physiology Section, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
6
|
Schumacher R, Halai AD, Lambon Ralph MA. Attention to attention in aphasia - elucidating impairment patterns, modality differences and neural correlates. Neuropsychologia 2022; 177:108413. [PMID: 36336090 PMCID: PMC7614452 DOI: 10.1016/j.neuropsychologia.2022.108413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
It is increasingly acknowledged that patients with aphasia following a left-hemisphere stroke often have difficulties in other cognitive domains. One of these domains is attention, the very fundamental ability to detect, select, and react to the abundance of stimuli present in the environment. Basic and more complex attentional functions are usually distinguished, and a variety of tests has been developed to assess attentional performance at a behavioural level. Attentional performance in aphasia has been investigated previously, but often only one specific task, stimulus modality, or type of measure was considered and usually only group-level analyses or data based on experimental tasks were presented. Also, information on brain-behaviour relationships for this cognitive domain and patient group is scarce. We report detailed analyses on a comprehensive dataset including patients' performance on various subtests of two well-known, standardised neuropsychological test batteries assessing attention. These tasks allowed us to explore: 1) how many patients show impaired performance in comparison to normative data, in which tasks and on what measure; 2) how the different tasks and measures relate to each other and to patients' language abilities; 3) the neural correlates associated with attentional performance. Up to 32 patients with varying aphasia severity were assessed with subtests from the Test of Attentional Performance (TAP) as well as the Test of Everyday Attention (TEA). Performance was compared to normative data, relationships between attention measures and other background data were explored with principal component analyses and correlations, and brain-behaviour relationships were assessed by means of voxel-based correlational methodology. Depending on the task and measure, between 3 and 53 percent of the patients showed impaired performance compared to normative data. The highest proportion of impaired performance was noted for complex attention tasks involving auditory stimuli. Patients differed in their patterns of performance and only the performance in the divided attention tests was (weakly) associated with their overall language impairment. Principal components analyses yielded four underlying factors, each being associated with distinct neural correlates. We thus extend previous research in characterizing different aspects of attentional performance within one sample of patients with chronic post stroke aphasia. Performance on a broad range of attention tasks and measures was variable and largely independent of patients' language abilities, which underlines the importance of assessing this cognitive domain in aphasic patients. Notably, a considerable proportion of patients showed difficulties with attention allocation to auditory stimuli. The reasons for these potentially modality-specific difficulties are currently not well understood and warrant additional investigations.
Collapse
Affiliation(s)
- Rahel Schumacher
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom; Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Freiburgstrasse, 3010, Bern, Switzerland.
| | - Ajay D Halai
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
7
|
Yu J, Wu Y, Wu B, Xu C, Cai J, Wen X, Meng F, Zhang L, He F, Hong L, Gao J, Li J, Yu J, Luo B. Sleep patterns correlates with the efficacy of tDCS on post-stroke patients with prolonged disorders of consciousness. J Transl Med 2022; 20:601. [PMID: 36522680 PMCID: PMC9756665 DOI: 10.1186/s12967-022-03710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The subclassification of prolonged disorders of consciousness (DoC) based on sleep patterns is important for the evaluation and treatment of the disease. This study evaluates the correlation between polysomnographic patterns and the efficacy of transcranial direct current stimulation (tDCS) in patients with prolonged DoC due to stroke. METHODS In total, 33 patients in the vegetative state (VS) with sleep cycles or without sleep cycles were randomly assigned to either active or sham tDCS groups. Polysomnography was used to monitor sleep changes before and after intervention. Additionally, clinical scale scores and electroencephalogram (EEG) analysis were performed before and after intervention to evaluate the efficacy of tDCS on the patients subclassified according to their sleep patterns. RESULTS The results suggest that tDCS improved the sleep structure, significantly prolonged total sleep time (TST) (95%CI: 14.387-283.527, P = 0.013) and NREM sleep stage 2 (95%CI: 3.157-246.165, P = 0.040) of the VS patients with sleep cycles. It also significantly enhanced brain function of patients with sleep cycles, which were reflected by the increased clinical scores (95%CI: 0.340-3.440, P < 0.001), the EEG powers and functional connectivity in the brain and the 6-month prognosis. Moreover, the changes in NREM sleep stage 2 had a significant positive correlation with each index of the β band. CONCLUSION This study reveals the importance of sleep patterns in the prognosis and treatment of prolonged DoC and provides new evidence for the efficacy of tDCS in post-stroke patients with VS patients subclassified by sleep pattern. Trial registration URL: https://www. CLINICALTRIALS gov . Unique identifier: NCT03809936. Registered 18 January 2019.
Collapse
Affiliation(s)
- Jie Yu
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang China
| | - Yuehao Wu
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang China ,Department of Neurology, First People’s Hospital of Linping District, Hangzhou, 310003 Zhejiang China
| | - Biwen Wu
- grid.415999.90000 0004 1798 9361Center for Sleep Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Chuan Xu
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang China
| | - Jiaye Cai
- grid.415999.90000 0004 1798 9361Center for Sleep Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Xinrui Wen
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang China
| | - Fanxia Meng
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang China
| | - Li Zhang
- grid.417401.70000 0004 1798 6507Rehabilitation Medicine Center, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang China
| | - Fangping He
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang China
| | - Lirong Hong
- Department of Rehabilitation, Hangzhou Hospital of Zhejiang Armed Police Corps, Hangzhou, 310051 China
| | - Jian Gao
- Department of Rehabilitation, Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou, 311215 China
| | - Jingqi Li
- Department of Rehabilitation, Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou, 311215 China
| | - Jintai Yu
- grid.411405.50000 0004 1757 8861Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031 China
| | - Benyan Luo
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang China
| |
Collapse
|
8
|
Areshenkoff C, Gale DJ, Standage D, Nashed JY, Flanagan JR, Gallivan JP. Neural excursions from manifold structure explain patterns of learning during human sensorimotor adaptation. eLife 2022; 11:e74591. [PMID: 35438633 PMCID: PMC9018069 DOI: 10.7554/elife.74591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Humans vary greatly in their motor learning abilities, yet little is known about the neural mechanisms that underlie this variability. Recent neuroimaging and electrophysiological studies demonstrate that large-scale neural dynamics inhabit a low-dimensional subspace or manifold, and that learning is constrained by this intrinsic manifold architecture. Here, we asked, using functional MRI, whether subject-level differences in neural excursion from manifold structure can explain differences in learning across participants. We had subjects perform a sensorimotor adaptation task in the MRI scanner on 2 consecutive days, allowing us to assess their learning performance across days, as well as continuously measure brain activity. We find that the overall neural excursion from manifold activity in both cognitive and sensorimotor brain networks is associated with differences in subjects' patterns of learning and relearning across days. These findings suggest that off-manifold activity provides an index of the relative engagement of different neural systems during learning, and that subject differences in patterns of learning and relearning are related to reconfiguration processes occurring in cognitive and sensorimotor networks.
Collapse
Affiliation(s)
- Corson Areshenkoff
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
- Department of Psychology, Queen's UniversityKingstonCanada
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
| | - Dominic Standage
- School of Psychology, Centre for Computational Neuroscience and Cognitive Robotics, University of BirminghamBirminghamUnited Kingdom
| | - Joseph Y Nashed
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
- Department of Psychology, Queen's UniversityKingstonCanada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
- Department of Psychology, Queen's UniversityKingstonCanada
- Department of Biomedical and Molecular Sciences, Queen's UniversityKingstonCanada
| |
Collapse
|
9
|
Yang L, Xiao A, Li QY, Zhong HF, Su T, Shi WQ, Ying P, Liang RB, Xu SH, Shao Y, Zhou Q. Hyperintensities of middle frontal gyrus in patients with diabetic optic neuropathy: a dynamic amplitude of low-frequency fluctuation study. Aging (Albany NY) 2022; 14:1336-1350. [PMID: 35120020 PMCID: PMC8876911 DOI: 10.18632/aging.203877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
Diabetic optic neuropathy (DON) is a diverse complication of diabetes and its pathogenesis has not been fully elucidated. The purpose of this study was to explore dynamic cerebral activity changes in DON patients using dynamic amplitude of low-frequency fluctuation (dALFF). In total, 22 DON patients and 22 healthy controls were enrolled. The dALFF approach was used in all participants to investigate dynamic intrinsic brain activity differences between the two groups. Compared with HCs, DON patients exhibited significantly increased dALFF variability in the right middle frontal gyrus (P < 0.01). Conversely, DON patients exhibited obviously decreased dALFF variability in the right precuneus (P < 0.01). We also found that there were significant negative correlations between HADS scores and dALFF values of the right middle frontal gyrus in the DON patients (r = -0.6404, P <0.01 for anxiety and r = -0.6346, P <0.01 for depression; HADS, Hospital Anxiety and Depression Scale). Abnormal variability of dALFF was observed in specific areas of the cerebrum in DON patients, which may contribute to distinguishing patients with DON from HCs and a better understanding of DON, hyperintensities of right middle frontal gyrus may be potential diagnostic marker for DON.
Collapse
Affiliation(s)
- Lin Yang
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Ang Xiao
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Qiu-Yu Li
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Hui-Feng Zhong
- Department of Intensive Care, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Ting Su
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Wen-Qing Shi
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Ping Ying
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Rong-Bin Liang
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - San-Hua Xu
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yi Shao
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Qiong Zhou
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
10
|
Taylor BK, Eastman JA, Frenzel MR, Embury CM, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Neural oscillations underlying selective attention follow sexually divergent developmental trajectories during adolescence. Dev Cogn Neurosci 2021; 49:100961. [PMID: 33984667 PMCID: PMC8131898 DOI: 10.1016/j.dcn.2021.100961] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/02/2021] [Accepted: 04/15/2021] [Indexed: 01/06/2023] Open
Abstract
A cohort of 9- to 16-year-olds completed a classic flanker task during MEG. There were developmentally-sensitive interference effects in key attention regions. Youth showed sexually-divergent patterns of age-related interference activity. Maturational differences among males supported improved task behavior.
Selective attention processes are critical to everyday functioning and are known to develop through at least young adulthood. Although numerous investigations have studied the maturation of attention systems in the brain, these studies have largely focused on the spatial configuration of these systems; there is a paucity of research on the neural oscillatory dynamics serving selective attention, particularly among youth. Herein, we examined the developmental trajectory of neural oscillatory activity serving selective attention in 53 typically developing youth age 9-to-16 years-old. Participants completed the classic arrow-based flanker task during magnetoencephalography, and the resulting data were imaged in the time-frequency domain. Flanker interference significantly modulated theta and alpha/beta oscillations within prefrontal, mid-cingulate, cuneus, and occipital regions. Interference-related neural activity also increased with age in the temporoparietal junction and the rostral anterior cingulate. Sex-specific effects indicated that females had greater theta interference activity in the anterior insula, whereas males showed differential effects in theta and alpha/beta oscillations across frontoparietal regions. Finally, males showed age-related changes in alpha/beta interference in the cuneus and middle frontal gyrus, which predicted improved behavioral performance. Taken together, these data suggest sexually-divergent developmental trajectories underlying selective attention in youth.
Collapse
Affiliation(s)
- Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Mind Research Network, Albuquerque, NM, USA; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA.
| |
Collapse
|
11
|
Wang Y, Yan J, Yin Z, Ren S, Dong M, Zheng C, Zhang W, Liang J. How Native Background Affects Human Performance in Real-World Visual Object Detection: An Event-Related Potential Study. Front Neurosci 2021; 15:665084. [PMID: 33994938 PMCID: PMC8119748 DOI: 10.3389/fnins.2021.665084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Visual processing refers to the process of perceiving, analyzing, synthesizing, manipulating, transforming, and thinking of visual objects. It is modulated by both stimulus-driven and goal-directed factors and manifested in neural activities that extend from visual cortex to high-level cognitive areas. Extensive body of studies have investigated the neural mechanisms of visual object processing using synthetic or curated visual stimuli. However, synthetic or curated images generally do not accurately reflect the semantic links between objects and their backgrounds, and previous studies have not provided answers to the question of how the native background affects visual target detection. The current study bridged this gap by constructing a stimulus set of natural scenes with two levels of complexity and modulating participants' attention to actively or passively attend to the background contents. Behaviorally, the decision time was elongated when the background was complex or when the participants' attention was distracted from the detection task, and the object detection accuracy was decreased when the background was complex. The results of event-related potentials (ERP) analysis explicated the effects of scene complexity and attentional state on the brain responses in occipital and centro-parietal areas, which were suggested to be associated with varied attentional cueing and sensory evidence accumulation effects in different experimental conditions. Our results implied that efficient visual processing of real-world objects may involve a competition process between context and distractors that co-exist in the native background, and extensive attentional cues and fine-grained but semantically irrelevant scene information were perhaps detrimental to real-world object detection.
Collapse
Affiliation(s)
- Yue Wang
- School of Electronic Engineering, Xidian University, Xi'an, China
| | - Jianpu Yan
- School of Electronic Engineering, Xidian University, Xi'an, China
| | - Zhongliang Yin
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Shenghan Ren
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Minghao Dong
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Changli Zheng
- Southwest China Research Institute of Electronic Equipment, Chengdu, China
| | - Wei Zhang
- Southwest China Research Institute of Electronic Equipment, Chengdu, China
| | - Jimin Liang
- School of Electronic Engineering, Xidian University, Xi'an, China
| |
Collapse
|
12
|
Alvarez TL, Scheiman M, Morales C, Gohel S, Sangoi A, Santos EM, Yaramothu C, d'Antonio-Bertagnolli JV, Li X, Biswal BB. Underlying neurological mechanisms associated with symptomatic convergence insufficiency. Sci Rep 2021; 11:6545. [PMID: 33753864 PMCID: PMC7985149 DOI: 10.1038/s41598-021-86171-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/22/2021] [Indexed: 11/10/2022] Open
Abstract
Convergence insufficiency (CI) is the most common binocular vision problem, associated with blurred/double vision, headaches, and sore eyes that are exacerbated when doing prolonged near work, such as reading. The Convergence Insufficiency Neuro-mechanism Adult Population Study (NCT03593031) investigates the mechanistic neural differences between 50 binocularly normal controls (BNC) and 50 symptomatic CI participants by examining the fast and slow fusional disparity vergence systems. The fast fusional system is preprogrammed and is assessed with convergence peak velocity. The slow fusional system optimizes vergence effort and is assessed by measuring the phoria adaptation magnitude and rate. For the fast fusional system, significant differences are observed between the BNC and CI groups for convergence peak velocity, final position amplitude, and functional imaging activity within the secondary visual cortex, right cuneus, and oculomotor vermis. For the slow fusional system, the phoria adaptation magnitude and rate, and the medial cuneus functional activity, are significantly different between the groups. Significant correlations are observed between vergence peak velocity and right cuneus functional activity (p = 0.002) and the rate of phoria adaptation and medial cuneus functional activity (p = 0.02). These results map the brain-behavior of vergence. Future therapeutic interventions may consider implementing procedures that increase cuneus activity for this debilitating disorder.
Collapse
Affiliation(s)
- Tara L Alvarez
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA.
| | - Mitchell Scheiman
- Pennsylvania College of Optometry, Salus University, Philadelphia, PA, USA
| | - Cristian Morales
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Suril Gohel
- Department of Health Informatics, Rutgers University School of Health Professions, Newark, NJ, USA
| | - Ayushi Sangoi
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Elio M Santos
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Chang Yaramothu
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | | | - Xiaobo Li
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Bharat B Biswal
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
13
|
Sustained visuospatial attention enhances lateralized anticipatory ERP activity in sensory areas. Brain Struct Funct 2021; 226:457-470. [PMID: 33392666 DOI: 10.1007/s00429-020-02192-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/27/2020] [Indexed: 01/02/2023]
Abstract
The existence of neural correlates of spatial attention is not limited to the reactive stage of stimulus processing: neural activities subtending spatial attention are deployed well ahead of stimulus onset. ERP evidence supporting this proactive (top-down) attentional control is based on trial-by-trial S1-S2 paradigms, where the onset of a directional cue (S1) indicates on which side attention must be directed to respond to an upcoming target stimulus (S2). Crucially, S1 onset trigger both attention and motor preparation, therefore, these paradigms are not ideal to demonstrate the effect of attention at preparatory stage of processing. To isolate top-down anticipatory attention, the present study used a sustained attention paradigm based on a steady cue that indicates the attended side constantly throughout an entire block of trials, without any onset of an attentional cue. The main result consists in the description of the attention effect on the visual negativity (vN) component, a growing neural activity starting before stimulus presentation in extrastriate visual areas. The vN was consistently lateralized in the hemisphere contralateral to the attended side, regardless of the hand to be used. At the opposite, the lateralized motor activity emerged long after, confirming that the hand-selection process followed the spatial attention orientation process. The present study confirms the anticipatory nature of the vN component and corroborate its role in terms of preparatory visuospatial attention.
Collapse
|
14
|
Di Russo F, Berchicci M, Bianco V, Perri RL, Pitzalis S, Mussini E. Modulation of anticipatory visuospatial attention in sustained and transient tasks. Cortex 2020; 135:1-9. [PMID: 33341592 DOI: 10.1016/j.cortex.2020.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/08/2020] [Accepted: 11/06/2020] [Indexed: 10/22/2022]
Abstract
The anticipation of upcoming events is a key-feature of cognition. Previous investigations on anticipatory visuospatial attention mainly adopted transient and-more rarely-sustained tasks, whose main difference consists in the presence of transient or sustained cue stimuli and different involvement of top-down or bottom-up forms of attention. In particular, while top-down control has been suggested to drive sustained attention, it is not clear whether both endogenous and exogenous controls are recruited in transient attention task, or whether the cue-evoked attention may be interpreted as a mainly bottom-up guided process. To solve this issue, the present study focused on the preparatory brain activity of participants performing a sustained and a transient attention task. To this aim, the focus was on pre-stimulus event-related potential (ERP) components, i.e., the prefrontal negativity (pN) and the visual negativity (vN), associated with cognitive and sensorial preparation, emerging from prefrontal and visual areas, respectively. Results indicated that the pN was specific for the sustained task, while the vN emerged for both tasks, although smaller in the transient task, with a hemispheric lateralization contralateral to the attended hemifield. The present findings support the interpretation of the vN as a modality-specific index of attentional preparation, and suggest the presence of cognitive endogenous control in sustained tasks only, as revealed by the presence of a prefrontal activity that was interpreted as the locus of the top-down attentional modulation during the stimulus expectancy stage.
Collapse
Affiliation(s)
- Francesco Di Russo
- Cognition and Action Neuroscience Lab, Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy; Electrophysiology of Cognition Lab, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Marika Berchicci
- Cognition and Action Neuroscience Lab, Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Valentina Bianco
- Electrophysiology of Cognition Lab, IRCCS Fondazione Santa Lucia, Rome, Italy; Cognitive Neuroscience Lab, Dept. of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
| | - Rinaldo L Perri
- Cognition and Action Neuroscience Lab, Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy; University "Niccolò Cusano", Rome, Italy
| | - Sabrina Pitzalis
- Cognition and Action Neuroscience Lab, Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy; Electrophysiology of Cognition Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Elena Mussini
- Cognition and Action Neuroscience Lab, Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| |
Collapse
|
15
|
The age-related trajectory of visual attention neural function is altered in adults living with HIV: A cross-sectional MEG study. EBioMedicine 2020; 61:103065. [PMID: 33099087 PMCID: PMC7585051 DOI: 10.1016/j.ebiom.2020.103065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background Despite living a normal lifespan, at least 35% of persons with HIV (PWH) in resource-rich countries develop HIV-associated neurocognitive disorder (HAND). This high prevalence of cognitive decline may reflect accelerated ageing in PWH, but the evidence supporting an altered ageing phenotype in PWH has been mixed. Methods We examined the impact of ageing on the orienting of visual attention in PWH using dynamic functional mapping with magnetoencephalography (MEG) in 173 participants age 22–72 years-old (94 uninfected controls, 51 cognitively-unimpaired PWH, and 28 with HAND). All MEG data were imaged using a state-of-the-art beamforming approach and neural oscillatory responses during attentional orienting were examined for ageing, HIV, and cognitive status effects. Findings All participants responded slower during trials that required attentional reorienting. Our functional mapping results revealed HIV-by-age interactions in left prefrontal theta activity, alpha oscillations in the left parietal, right cuneus, and right frontal eye-fields, and left dorsolateral prefrontal beta activity (p<.005). Critically, within PWH, we observed a cognitive status-by-age interaction, which revealed that ageing impacted the oscillatory gamma activity serving attentional reorienting differently in cognitively-normal PWH relative to those with HAND in the left temporoparietal, inferior frontal gyrus, and right prefrontal cortices (p<.005). Interpretation This study provides key evidence supporting altered ageing trajectories across vital attention circuitry in PWH, and further suggests that those with HAND exhibit unique age-related changes in the oscillatory dynamics serving attention function. Additionally, our neural findings suggest that age-related changes in PWH may serve a compensatory function. Funding National Institutes of Health, USA.
Collapse
|
16
|
Mengotti P, Käsbauer AS, Fink GR, Vossel S. Lateralization, functional specialization, and dysfunction of attentional networks. Cortex 2020; 132:206-222. [PMID: 32998061 DOI: 10.1016/j.cortex.2020.08.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/20/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022]
Abstract
The present review covers the latest findings on the lateralization of the dorsal and ventral attention systems, their functional specialization, and their clinical relevance for stroke-induced attentional dysfunction. First, the original assumption of a bilateral dorsal system for top-down attention and a right-lateralized ventral system for stimulus-driven attention is critically reviewed. The evidence for the involvement of the left parietal cortex in attentional functions is discussed and findings on putative pathways linking the dorsal and ventral network are presented. In the second part of the review, we focus on the different attentional subsystems and their lateralization, discussing the differences between spatial, feature- and object-based attention, and motor attention. We also review studies based on predictive coding frameworks of attentional functions. Finally, in the third section, we provide an overview of the consequences of specific disruption within the attention networks after stroke. The role of the interhemispheric (im)balance is discussed, and the results of new promising therapeutic approaches employing brain stimulation techniques such as transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) are presented.
Collapse
Affiliation(s)
- Paola Mengotti
- Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany.
| | - Anne-Sophie Käsbauer
- Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simone Vossel
- Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; Department of Psychology, Faculty of Human Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Balan PF, Gerits A, Zhu Q, Kolster H, Orban GA, Wardak C, Vanduffel W. Fast Compensatory Functional Network Changes Caused by Reversible Inactivation of Monkey Parietal Cortex. Cereb Cortex 2020; 29:2588-2606. [PMID: 29901747 DOI: 10.1093/cercor/bhy128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 11/13/2022] Open
Abstract
The brain has a remarkable capacity to recover after lesions. However, little is known about compensatory neural adaptations at the systems level. We addressed this question by investigating behavioral and (correlated) functional changes throughout the cortex that are induced by focal, reversible inactivations. Specifically, monkeys performed a demanding covert spatial attention task while the lateral intraparietal area (LIP) was inactivated with muscimol and whole-brain fMRI activity was recorded. The inactivation caused LIP-specific decreases in task-related fMRI activity. In addition, these local effects triggered large-scale network changes. Unlike most studies in which animals were mainly passive relative to the stimuli, we observed heterogeneous effects with more profound muscimol-induced increases of task-related fMRI activity in areas connected to LIP, especially FEF. Furthermore, in areas such as FEF and V4, muscimol-induced changes in fMRI activity correlated with changes in behavioral performance. Notably, the activity changes in remote areas did not correlate with the decreased activity at the site of the inactivation, suggesting that such changes arise via neuronal mechanisms lying in the intact portion of the functional task network, with FEF a likely key player. The excitation-inhibition dynamics unmasking existing excitatory connections across the functional network might initiate these rapid adaptive changes.
Collapse
Affiliation(s)
- Puiu F Balan
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| | - Annelies Gerits
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium
| | - Qi Zhu
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| | - Hauke Kolster
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium
| | - Guy A Orban
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium.,Department of Medicine and Surgery, University of Parma, via Volturno, 39E Parma, Italy
| | - Claire Wardak
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium
| | - Wim Vanduffel
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
18
|
Schumacher R, Halai AD, Lambon Ralph MA. Assessing and mapping language, attention and executive multidimensional deficits in stroke aphasia. Brain 2020; 142:3202-3216. [PMID: 31504247 PMCID: PMC6794940 DOI: 10.1093/brain/awz258] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 01/06/2023] Open
Abstract
There is growing awareness that aphasia following a stroke can include deficits in other cognitive functions and that these are predictive of certain aspects of language function, recovery and rehabilitation. However, data on attentional and executive (dys)functions in individuals with stroke aphasia are still scarce and the relationship to underlying lesions is rarely explored. Accordingly in this investigation, an extensive selection of standardized non-verbal neuropsychological tests was administered to 38 individuals with chronic post-stroke aphasia, in addition to detailed language testing and MRI. To establish the core components underlying the variable patients’ performance, behavioural data were explored with rotated principal component analyses, first separately for the non-verbal and language tests, then in a combined analysis including all tests. Three orthogonal components for the non-verbal tests were extracted, which were interpreted as shift-update, inhibit-generate and speed. Three components were also extracted for the language tests, representing phonology, semantics and speech quanta. Individual continuous scores on each component were then included in a voxel-based correlational methodology analysis, yielding significant clusters for all components. The shift-update component was associated with a posterior left temporo-occipital and bilateral medial parietal cluster, the inhibit-generate component was mainly associated with left frontal and bilateral medial frontal regions, and the speed component with several small right-sided fronto-parieto-occipital clusters. Two complementary multivariate brain-behaviour mapping methods were also used, which showed converging results. Together the results suggest that a range of brain regions are involved in attention and executive functioning, and that these non-language domains play a role in the abilities of patients with chronic aphasia. In conclusion, our findings confirm and extend our understanding of the multidimensionality of stroke aphasia, emphasize the importance of assessing non-verbal cognition in this patient group and provide directions for future research and clinical practice. We also briefly compare and discuss univariate and multivariate methods for brain-behaviour mapping.
Collapse
Affiliation(s)
- Rahel Schumacher
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.,Neuroscience and Aphasia Research Unit, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Ajay D Halai
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
19
|
Zani A, Tumminelli C, Proverbio AM. Electroencephalogram (EEG) Alpha Power as a Marker of Visuospatial Attention Orienting and Suppression in Normoxia and Hypoxia. An Exploratory Study. Brain Sci 2020; 10:brainsci10030140. [PMID: 32121650 PMCID: PMC7139314 DOI: 10.3390/brainsci10030140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 11/16/2022] Open
Abstract
While electroencephalogram (EEG) alpha desynchronization has been related to anticipatory orienting of visuospatial attention, an increase in alpha power has been associated to its inhibition. A separate line of findings indicated that alpha is affected by a deficient oxygenation of the brain or hypoxia, although leaving unclear whether the latter increases or decreases alpha synchronization. Here, we carried out an exploratory study on these issues by monitoring attention alerting, orienting, and control networks functionality by means of EEG recorded both in normoxia and hypoxia in college students engaged in four attentional cue-target conditions induced by a redesigned Attention Network Test. Alpha power was computed through Fast Fourier Transform. Regardless of brain oxygenation condition, alpha desynchronization was the highest during exogenous, uncued orienting of spatial attention, the lowest during alerting but spatially unpredictable, cued exogenous orienting of attention, and of intermediate level during validly cued endogenous orienting of attention, no matter the motor response workload demanded by the latter, especially over the left hemisphere. Hypoxia induced an increase in alpha power over the right-sided occipital and parietal scalp areas independent of attention cueing and conflict conditions. All in all, these findings prove that attention orienting is undergirded by alpha desynchronization and that alpha right-sided synchronization in hypoxia might sub-serve either the effort to sustain attention over time or an overall suppression of attention networks functionality.
Collapse
Affiliation(s)
- Alberto Zani
- School of Psychology, Vita e Salute San Raffaele University, 20132 Milan, Italy
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20090 Milan, Italy
- Correspondence:
| | - Clara Tumminelli
- Dept. of Psychology, University of Milano-Bicocca, 20126 Milan, Italy; (C.T.); (A.M.P.)
| | - Alice Mado Proverbio
- Dept. of Psychology, University of Milano-Bicocca, 20126 Milan, Italy; (C.T.); (A.M.P.)
| |
Collapse
|
20
|
Modality-specific sensory readiness for upcoming events revealed by slow cortical potentials. Brain Struct Funct 2019; 225:149-159. [DOI: 10.1007/s00429-019-01993-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/22/2019] [Indexed: 02/02/2023]
|
21
|
Ahrens MM, Veniero D, Freund IM, Harvey M, Thut G. Both dorsal and ventral attention network nodes are implicated in exogenously driven visuospatial anticipation. Cortex 2019; 117:168-181. [DOI: 10.1016/j.cortex.2019.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/28/2019] [Accepted: 02/18/2019] [Indexed: 11/29/2022]
|
22
|
D'Andrea A, Chella F, Marshall TR, Pizzella V, Romani GL, Jensen O, Marzetti L. Alpha and alpha-beta phase synchronization mediate the recruitment of the visuospatial attention network through the Superior Longitudinal Fasciculus. Neuroimage 2019; 188:722-732. [DOI: 10.1016/j.neuroimage.2018.12.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022] Open
|
23
|
Onder H, Buyuk F. Gait Dyspraxia due to Right Occipital Infarct. J Mov Disord 2019; 12:54-56. [PMID: 30732434 PMCID: PMC6369384 DOI: 10.14802/jmd.18033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/04/2018] [Indexed: 11/24/2022] Open
Affiliation(s)
- Halil Onder
- Neurology Clinic, Yozgat City Hospital, Yozgat, Turkey
| | - Ferda Buyuk
- Physical Therapy and Rehabilitation, Yozgat City Hospital, Yozgat, Turkey
| |
Collapse
|
24
|
Scult MA, Fresco DM, Gunning FM, Liston C, Seeley SH, García E, Mennin DS. Changes in Functional Connectivity Following Treatment With Emotion Regulation Therapy. Front Behav Neurosci 2019; 13:10. [PMID: 30778290 PMCID: PMC6369363 DOI: 10.3389/fnbeh.2019.00010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/15/2019] [Indexed: 12/21/2022] Open
Abstract
Emotion regulation therapy (ERT) is an efficacious treatment for distress disorders (i.e., depression and anxiety), predicated on a conceptual model wherein difficult to treat distress arises from intense emotionality (e.g., neuroticism, dispositional negativity) and is prolonged by negative self-referentiality (e.g., worry, rumination). Individuals with distress disorders exhibit disruptions in two corresponding brain networks including the salience network (SN) reflecting emotion/motivation and the default mode network (DMN) reflecting self-referentiality. Using resting-state functional connectivity (rsFC) analyses, seeded with primary regions in each of these networks, we investigated whether ERT was associated with theoretically consistent changes across nodes of these networks and whether these changes related to improvements in clinical outcomes. This study examined 21 generalized anxiety disorder (GAD) patients [with and without major depressive disorder (MDD)] drawn from a larger intervention trial (Renna et al., 2018a), who completed resting state fMRI scans before and after receiving 16 sessions of ERT. We utilized seed-based connectivity analysis with seeds in the posterior cingulate cortex (PCC), right anterior insula, and right posterior insula, to investigate whether ERT was associated with changes in connectivity of nodes of the DMN and SN networks to regions across the brain. Findings revealed statistically significant treatment linked changes in both the DMN and SN network nodes, and these changes were associated with clinical improvement corresponding to medium effect sizes. The results are discussed in light of a nuanced understanding of the role of connectivity changes in GAD and MDD, and begin to provide neural network support for the hypothesized treatment model predicated by ERT.
Collapse
Affiliation(s)
- Matthew A Scult
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, United States.,Department of Psychology & Neuroscience, Duke University, Durham, NC, United States
| | - David M Fresco
- Department of Psychological Science, Kent State University, Kent, OH, United States.,Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, United States
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, United States.,Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Saren H Seeley
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Emmanuel García
- The Graduate Center, City College of New York, City University of New York (CUNY), New York, NY, United States.,Hunter College, City University of New York, New York, NY, United States
| | - Douglas S Mennin
- Department of Counseling and Clinical Psychology, Teachers College, Columbia University, New York, NY, United States
| |
Collapse
|
25
|
Scult MA, Fresco DM, Gunning FM, Liston C, Seeley SH, García E, Mennin DS. Changes in Functional Connectivity Following Treatment With Emotion Regulation Therapy. Front Behav Neurosci 2019; 13:10. [PMID: 30778290 DOI: 10.3389/fnbeh.2019.00010/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/15/2019] [Indexed: 05/20/2023] Open
Abstract
Emotion regulation therapy (ERT) is an efficacious treatment for distress disorders (i.e., depression and anxiety), predicated on a conceptual model wherein difficult to treat distress arises from intense emotionality (e.g., neuroticism, dispositional negativity) and is prolonged by negative self-referentiality (e.g., worry, rumination). Individuals with distress disorders exhibit disruptions in two corresponding brain networks including the salience network (SN) reflecting emotion/motivation and the default mode network (DMN) reflecting self-referentiality. Using resting-state functional connectivity (rsFC) analyses, seeded with primary regions in each of these networks, we investigated whether ERT was associated with theoretically consistent changes across nodes of these networks and whether these changes related to improvements in clinical outcomes. This study examined 21 generalized anxiety disorder (GAD) patients [with and without major depressive disorder (MDD)] drawn from a larger intervention trial (Renna et al., 2018a), who completed resting state fMRI scans before and after receiving 16 sessions of ERT. We utilized seed-based connectivity analysis with seeds in the posterior cingulate cortex (PCC), right anterior insula, and right posterior insula, to investigate whether ERT was associated with changes in connectivity of nodes of the DMN and SN networks to regions across the brain. Findings revealed statistically significant treatment linked changes in both the DMN and SN network nodes, and these changes were associated with clinical improvement corresponding to medium effect sizes. The results are discussed in light of a nuanced understanding of the role of connectivity changes in GAD and MDD, and begin to provide neural network support for the hypothesized treatment model predicated by ERT.
Collapse
Affiliation(s)
- Matthew A Scult
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, United States
- Department of Psychology & Neuroscience, Duke University, Durham, NC, United States
| | - David M Fresco
- Department of Psychological Science, Kent State University, Kent, OH, United States
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, United States
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, United States
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Saren H Seeley
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Emmanuel García
- The Graduate Center, City College of New York, City University of New York (CUNY), New York, NY, United States
- Hunter College, City University of New York, New York, NY, United States
| | - Douglas S Mennin
- Department of Counseling and Clinical Psychology, Teachers College, Columbia University, New York, NY, United States
| |
Collapse
|
26
|
López ME, Pusil S, Pereda E, Maestú F, Barceló F. Dynamic low frequency EEG phase synchronization patterns during proactive control of task switching. Neuroimage 2018; 186:70-82. [PMID: 30394328 DOI: 10.1016/j.neuroimage.2018.10.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 10/04/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022] Open
Abstract
Cognitive flexibility is critical for humans living in complex societies with ever-growing multitasking demands. Yet the low-frequency neural dynamics of distinct task-specific and domain-general mechanisms sub-serving mental flexibility are still ill-defined. Here we estimated phase electroencephalogram synchronization by using inter-trial phase coherence (ITPC) at the source space while twenty six young participants were intermittently cued to switch or repeat their perceptual categorization rule of Gabor gratings varying in color and thickness (switch task). Therefore, the aim of this study was to examine whether a proactive control is associated with connectivity only in the frontoparietal theta network, or also involves distinct neural connectivity within the delta band, as distinct neural signatures while preparing to switch or repeat a task set, respectively. To this end, we focused the analysis on late-latencies (from 500 to 800 msec post-cue onset), since they are known to be associated with top-down cognitive control processes. We confirmed that proactive control during a task switch was associated with frontoparietal theta connectivity. But importantly, we also found a distinct role of delta band oscillatory synchronization in proactive control, engaging more posterior frontotemporal regions as opposed to frontoparietal theta connectivity. Additionally, we built a regression model by using the ITPC results in delta and theta bands as predictors, and the behavioral accuracy in the switch task as the criterion, obtaining significant results for both frequency bands. All these findings support the existence of distinct proactive cognitive control processes related to functionally distinct though highly complementary theta and delta frontoparietal and temporoparietal oscillatory networks at late-latency temporal scales.
Collapse
Affiliation(s)
- María Eugenia López
- Department of Experimental Psychology, Psychological Processes and Speech Therapy, Universidad Complutense of Madrid, Spain; Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| | - Sandra Pusil
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Madrid, Spain; Laboratory of Neuropsychology, University of the Balearic Islands, Spain
| | - Ernesto Pereda
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Madrid, Spain; Electrical Engineering and Bioengineering Group, Department of Industrial Engineering & IUNE, Universidad de La Laguna, Tenerife, Spain
| | - Fernando Maestú
- Department of Experimental Psychology, Psychological Processes and Speech Therapy, Universidad Complutense of Madrid, Spain; Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Francisco Barceló
- Laboratory of Neuropsychology, University of the Balearic Islands, Spain.
| |
Collapse
|
27
|
Talalay IV, Kurgansky AV, Machinskaya RI. Alpha-band functional connectivity during cued versus implicit modality-specific anticipatory attention: EEG-source coherence analysis. Psychophysiology 2018; 55:e13269. [PMID: 30010197 DOI: 10.1111/psyp.13269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 11/28/2022]
Abstract
The anticipation of future events based on a background experience is one of the main components of any goal-directed behavior. Anticipatory attention can be either voluntary (explicit) or involuntary (implicit). We presumed that these two types of anticipatory attention differed in terms of cortical functional organization. We examined this assumption with an experimental model consisting of three experimental sessions (cued attention, implicit learning, and baseline) that were equal in terms of stimuli, motor responses, and cognitive task. Participants were asked to discriminate the temporal order of stimuli within a pair presented in either the visual or auditory sensory modality. Prestimulus functional connectivity was assessed via alpha-band coherence computed in the source space for preselected regions of interests. Functional links between the cortices of the frontoparietal control system increased during the cued attention condition and did not increase during the implicit anticipation condition. The buildup of implicit anticipation was accompanied by the strengthening of functional links between the intraparietal, ventral premotor, and presupplementary motor areas. It was discovered that both cued and implicit types of anticipation were underlain by functional modality-specific cortical links.
Collapse
Affiliation(s)
- I V Talalay
- Institute of Developmental Physiology, Laboratory of Neurophysiology of Cognitive Processes, Moscow, Russia
| | - A V Kurgansky
- Institute of Developmental Physiology, Laboratory of Neurophysiology of Cognitive Processes, Moscow, Russia
| | - R I Machinskaya
- Institute of Developmental Physiology, Laboratory of Neurophysiology of Cognitive Processes, Moscow, Russia
| |
Collapse
|
28
|
Ghumare EG, Schrooten M, Vandenberghe R, Dupont P. A Time-Varying Connectivity Analysis from Distributed EEG Sources: A Simulation Study. Brain Topogr 2018; 31:721-737. [PMID: 29374816 PMCID: PMC6097773 DOI: 10.1007/s10548-018-0621-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/15/2018] [Indexed: 11/10/2022]
Abstract
Time-varying connectivity analysis based on sources reconstructed using inverse modeling of electroencephalographic (EEG) data is important to understand the dynamic behaviour of the brain. We simulated cortical data from a visual spatial attention network with a time-varying connectivity structure, and then simulated the propagation to the scalp to obtain EEG data. Distributed EEG source modeling using sLORETA was applied. We compared different dipole (representing a source) selection strategies based on their time series in a region of interest. Next, we estimated multivariate autoregressive (MVAR) parameters using classical Kalman filter and general linear Kalman filter approaches followed by the calculation of partial directed coherence (PDC). MVAR parameters and PDC values for the selected sources were compared with the ground-truth. We found that the best strategy to extract the time series of a region of interest was to select a dipole with time series showing the highest correlation with the average time series in the region of interest. Dipole selection based on power or based on the largest singular value offer comparable alternatives. Among the different Kalman filter approaches, the use of a general linear Kalman filter was preferred to estimate PDC based connectivity except when only a small number of trials are available. In the latter case, the classical Kalman filter can be an alternative.
Collapse
Affiliation(s)
- Eshwar G Ghumare
- The Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Maarten Schrooten
- The Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,The Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- The Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,The Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Dupont
- The Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
29
|
Lobier M, Palva JM, Palva S. High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention. Neuroimage 2018; 165:222-237. [DOI: 10.1016/j.neuroimage.2017.10.044] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 01/02/2023] Open
|
30
|
Changes in White Matter Microstructure Impact Cognition by Disrupting the Ability of Neural Assemblies to Synchronize. J Neurosci 2017; 37:8227-8238. [PMID: 28743724 DOI: 10.1523/jneurosci.0560-17.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 12/27/2022] Open
Abstract
Cognition is compromised by white matter (WM) injury but the neurophysiological alterations linking them remain unclear. We hypothesized that reduced neural synchronization caused by disruption of neural signal propagation is involved. To test this, we evaluated group differences in: diffusion tensor WM microstructure measures within the optic radiations, primary visual area (V1), and cuneus; neural phase synchrony to a visual attention cue during visual-motor task; and reaction time to a response cue during the same task between 26 pediatric patients (17/9: male/female) treated with cranial radiation treatment for a brain tumor (12.67 ± 2.76 years), and 26 healthy children (16/10: male/female; 12.01 ± 3.9 years). We corroborated our findings using a corticocortical computational model representing perturbed signal conduction from myelin. Patients show delayed reaction time, WM compromise, and reduced phase synchrony during visual attention compared with healthy children. Notably, using partial least-squares-path modeling we found that WM insult within the optic radiations, V1, and cuneus is a strong predictor of the slower reaction times via disruption of neural synchrony in visual cortex. Observed changes in synchronization were reproduced in a computational model of WM injury. These findings provide new evidence linking cognition with WM via the reliance of neural synchronization on propagation of neural signals.SIGNIFICANCE STATEMENT By comparing brain tumor patients to healthy children, we establish that changes in the microstructure of the optic radiations and neural synchrony during visual attention predict reaction time. Furthermore, by testing the directionality of these links through statistical modeling and verifying our findings with computational modeling, we infer a causal relationship, namely that changes in white matter microstructure impact cognition in part by disturbing the ability of neural assemblies to synchronize. Together, our human imaging data and computer simulations show a fundamental connection between WM microstructure and neural synchronization that is critical for cognitive processing.
Collapse
|
31
|
Schrooten M, Ghumare EG, Seynaeve L, Theys T, Dupont P, Van Paesschen W, Vandenberghe R. Electrocorticography of Spatial Shifting and Attentional Selection in Human Superior Parietal Cortex. Front Hum Neurosci 2017; 11:240. [PMID: 28553217 PMCID: PMC5425472 DOI: 10.3389/fnhum.2017.00240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/25/2017] [Indexed: 12/01/2022] Open
Abstract
Spatial-attentional reorienting and selection between competing stimuli are two distinct attentional processes of clinical and fundamental relevance. In the past, reorienting has been mainly associated with inferior parietal cortex. In a patient with a subdural grid covering the upper and lower bank of the left anterior and middle intraparietal sulcus (IPS) and the superior parietal lobule (SPL), we examined the involvement of superior parietal cortex using a hybrid spatial cueing paradigm identical to that previously applied in stroke and in healthy controls. In SPL, as early as 164 ms following target onset, an invalidly compared to a validly cued target elicited a positive event-related potential (ERP) and an increase in intertrial coherence (ITC) in the theta band, regardless of the direction of attention. From around 400–650 ms, functional connectivity [weighted phase lag index (wPLI) analysis] between SPL and IPS briefly inverted such that SPL activity was driving IPS activity. In contrast, the presence of a competing distracter elicited a robust change mainly in IPS from 300 to 600 ms. Within superior parietal cortex reorienting of attention is associated with a distinct and early electrophysiological response in SPL while attentional selection is indexed by a relatively late electrophysiological response in the IPS. The long latency suggests a role of IPS in working memory or cognitive control rather than early selection.
Collapse
Affiliation(s)
- Maarten Schrooten
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU LeuvenLeuven, Belgium.,Neurology Department, University Hospitals LeuvenLeuven, Belgium
| | - Eshwar G Ghumare
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU LeuvenLeuven, Belgium
| | - Laura Seynaeve
- Neurology Department, University Hospitals LeuvenLeuven, Belgium.,Laboratory for Epilepsy Research, KU LeuvenLeuven, Belgium
| | - Tom Theys
- Neurosurgery Department, University Hospitals LeuvenLeuven, Belgium.,Laboratory for Neuro- and Psychophysiology, KU LeuvenLeuven, Belgium
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU LeuvenLeuven, Belgium
| | - Wim Van Paesschen
- Neurology Department, University Hospitals LeuvenLeuven, Belgium.,Laboratory for Epilepsy Research, KU LeuvenLeuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU LeuvenLeuven, Belgium.,Neurology Department, University Hospitals LeuvenLeuven, Belgium
| |
Collapse
|
32
|
Marzecová A, Widmann A, SanMiguel I, Kotz SA, Schröger E. Interrelation of attention and prediction in visual processing: Effects of task-relevance and stimulus probability. Biol Psychol 2017; 125:76-90. [PMID: 28257808 DOI: 10.1016/j.biopsycho.2017.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 11/19/2022]
Abstract
The potentially interactive influence of attention and prediction was investigated by measuring event-related potentials (ERPs) in a spatial cueing task with attention (task-relevant) and prediction (probabilistic) cues. We identified distinct processing stages of this interactive influence. Firstly, in line with the attentional gain hypothesis, a larger amplitude response of the contralateral N1, and Nd1 for attended gratings was observed. Secondly, conforming to the attenuation-by-prediction hypothesis, a smaller negativity in the time window directly following the peak of the N1 component for predicted compared to unpredicted gratings was observed. In line with the hypothesis that attention and prediction interface, unpredicted/unattended stimuli elicited a larger negativity at central-parietal sites, presumably reflecting an increased prediction error signal. Thirdly, larger P3 responses to unpredicted stimuli pointed to the updating of an internal model. Attention and prediction can be considered as differentiated mechanisms that may interact at different processing stages to optimise perception.
Collapse
Affiliation(s)
- Anna Marzecová
- Institute of Psychology, University of Leipzig, Neumarkt 9-19, 04109 Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany.
| | - Andreas Widmann
- Institute of Psychology, University of Leipzig, Neumarkt 9-19, 04109 Leipzig, Germany
| | - Iria SanMiguel
- Brainlab-Cognitive Neuroscience Research Group, Dept. of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain
| | - Sonja A Kotz
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany; Faculty of Psychology and Neuroscience, Department of Neuropsychology & Psychopharmacology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Erich Schröger
- Institute of Psychology, University of Leipzig, Neumarkt 9-19, 04109 Leipzig, Germany
| |
Collapse
|
33
|
Lemos J, Pereira D, Almendra L, Rebelo D, Patrício M, Castelhano J, Cunha G, Januário C, Cunha L, Freire A, Castelo-Branco M. Distinct functional properties of the vertical and horizontal saccadic network in Health and Parkinson's disease: An eye-tracking and fMRI study. Brain Res 2016; 1648:469-484. [DOI: 10.1016/j.brainres.2016.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
|
34
|
Griffis JC, Elkhetali AS, Burge WK, Chen RH, Bowman AD, Szaflarski JP, Visscher KM. Retinotopic patterns of functional connectivity between V1 and large-scale brain networks during resting fixation. Neuroimage 2016; 146:1071-1083. [PMID: 27554527 DOI: 10.1016/j.neuroimage.2016.08.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/18/2016] [Indexed: 11/16/2022] Open
Abstract
Psychophysical and neurobiological evidence suggests that central and peripheral vision are specialized for different functions. This specialization of function might be expected to lead to differences in the large-scale functional interactions of early cortical areas that represent central and peripheral visual space. Here, we characterize differences in whole-brain functional connectivity among sectors in primary visual cortex (V1) corresponding to central, near-peripheral, and far-peripheral vision during resting fixation. Importantly, our analyses reveal that eccentricity sectors in V1 have different functional connectivity with non-visual areas associated with large-scale brain networks. Regions associated with the fronto-parietal control network are most strongly connected with central sectors of V1, regions associated with the cingulo-opercular control network are most strongly connected with near-peripheral sectors of V1, and regions associated with the default mode and auditory networks are most strongly connected with far-peripheral sectors of V1. Additional analyses suggest that similar patterns are present during eyes-closed rest. These results suggest that different types of visual information may be prioritized by large-scale brain networks with distinct functional profiles, and provide insights into how the small-scale functional specialization within early visual regions such as V1 relates to the large-scale organization of functionally distinct whole-brain networks.
Collapse
Affiliation(s)
- Joseph C Griffis
- Department of Psychology, University of Alabama at Birmingham, United States
| | | | - Wesley K Burge
- Department of Psychology, University of Alabama at Birmingham, United States
| | - Richard H Chen
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Anthony D Bowman
- Department of Biomedical Engineering, University of Alabama at Birmingham, United States
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, United States
| | - Kristina M Visscher
- Department of Neurobiology, University of Alabama at Birmingham, United States.
| |
Collapse
|
35
|
Nan J, Zhang L, Zhu F, Tian X, Zheng Q, Deneen KMV, Liu J, Zhang M. Topological Alterations of the Intrinsic Brain Network in Patients with Functional Dyspepsia. J Neurogastroenterol Motil 2015; 22:118-28. [PMID: 26510984 PMCID: PMC4699729 DOI: 10.5056/jnm15118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND/AIMS Previous studies reported that integrated information in the brain ultimately determines the subjective experience of patients with chronic pain, but how the information is integrated in the brain connectome of functional dyspepsia (FD) patients remains largely unclear. The study aimed to quantify the topological changes of the brain network in FD patients. METHODS Small-world properties, network efficiency and nodal centrality were utilized to measure the changes in topological architecture in 25 FD patients and 25 healthy controls based on functional magnetic resonance imaging. Pearson's correlation assessed the relationship of each topological property with clinical symptoms. RESULTS FD patients showed an increase of clustering coefficients and local efficiency relative to controls from the perspective of a whole network as well as elevated nodal centrality in the right orbital part of the inferior frontal gyrus, left anterior cingulate gyrus and left hippocampus, and decreased nodal centrality in the right posterior cingulate gyrus, left cuneus, right putamen, left middle occipital gyrus and right inferior occipital gyrus. Moreover, the centrality in the anterior cingulate gyrus was significantly associated with symptom severity and duration in FD patients. Nevertheless, the inclusion of anxiety and depression scores as covariates erased the group differences in nodal centralities in the orbital part of the inferior frontal gyrus and hippocampus. CONCLUSIONS The results suggest topological disruption of the functional brain networks in FD patients, presumably in response to disturbances of sensory information integrated with emotion, memory, pain modulation, and selective attention in patients.
Collapse
Affiliation(s)
- Jiaofen Nan
- Zhengzhou University of Light Industry, Zhengzhou, China
| | - Li Zhang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fubao Zhu
- Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaorui Tian
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Zheng
- Zhengzhou University of Light Industry, Zhengzhou, China
| | | | - Jixin Liu
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Ming Zhang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
36
|
Silverstein DN, Ingvar M. A multi-pathway hypothesis for human visual fear signaling. Front Syst Neurosci 2015; 9:101. [PMID: 26379513 PMCID: PMC4547041 DOI: 10.3389/fnsys.2015.00101] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/29/2015] [Indexed: 12/18/2022] Open
Abstract
A hypothesis is proposed for five visual fear signaling pathways in humans, based on an analysis of anatomical connectivity from primate studies and human functional connectvity and tractography from brain imaging studies. Earlier work has identified possible subcortical and cortical fear pathways known as the "low road" and "high road," which arrive at the amygdala independently. In addition to a subcortical pathway, we propose four cortical signaling pathways in humans along the visual ventral stream. All four of these traverse through the LGN to the visual cortex (VC) and branching off at the inferior temporal area, with one projection directly to the amygdala; another traversing the orbitofrontal cortex; and two others passing through the parietal and then prefrontal cortex, one excitatory pathway via the ventral-medial area and one regulatory pathway via the ventral-lateral area. These pathways have progressively longer propagation latencies and may have progressively evolved with brain development to take advantage of higher-level processing. Using the anatomical path lengths and latency estimates for each of these five pathways, predictions are made for the relative processing times at selective ROIs and arrival at the amygdala, based on the presentation of a fear-relevant visual stimulus. Partial verification of the temporal dynamics of this hypothesis might be accomplished using experimental MEG analysis. Possible experimental protocols are suggested.
Collapse
Affiliation(s)
- David N Silverstein
- PDC Center for High Performance Computing and Department of Computational Biology, KTH Royal Institute of Technology Stockholm, Sweden ; Stockholm Brain Institute, Karolinska Institutet Solna, Sweden
| | - Martin Ingvar
- Stockholm Brain Institute, Karolinska Institutet Solna, Sweden ; Department of Clinical Neuroscience, Karolinska Institutet Solna, Sweden
| |
Collapse
|
37
|
Gui D, Xu S, Zhu S, Fang Z, Spaeth AM, Xin Y, Feng T, Rao H. Resting spontaneous activity in the default mode network predicts performance decline during prolonged attention workload. Neuroimage 2015. [PMID: 26196666 DOI: 10.1016/j.neuroimage.2015.07.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
After continuous and prolonged cognitive workload, people typically show reduced behavioral performance and increased feelings of fatigue, which are known as "time-on-task (TOT) effects". Although TOT effects are pervasive in modern life, their underlying neural mechanisms remain elusive. In this study, we induced TOT effects by administering a 20-min continuous psychomotor vigilance test (PVT) to a group of 16 healthy adults and used resting-state blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to examine spontaneous brain activity changes associated with fatigue and performance. Behaviorally, subjects displayed robust TOT effects, as reflected by increasingly slower reaction times as the test progressed and higher self-reported mental fatigue ratings after the 20-min PVT. Compared to pre-test measurements, subjects exhibited reduced amplitudes of low-frequency fluctuation (ALFF) in the default mode network (DMN) and increased ALFF in the thalamus after the test. Subjects also exhibited reduced anti-correlations between the posterior cingulate cortex (PCC) and right middle prefrontal cortex after the test. Moreover, pre-test resting ALFF in the PCC and medial prefrontal cortex (MePFC) predicted subjects' subsequent performance decline; individuals with higher ALFF in these regions exhibited more stable reaction times throughout the 20-min PVT. These results support the important role of both task-positive and task-negative networks in mediating TOT effects and suggest that spontaneous activity measured by resting-state BOLD fMRI may be a marker of mental fatigue.
Collapse
Affiliation(s)
- Danyang Gui
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Sihua Xu
- Department of Applied Psychology, Guangdong University of Finance and Economics, Guangzhou, China.,Department of Psychology, Sun Yat-Sen University, Guangzhou, China
| | - Senhua Zhu
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychology, Sun Yat-Sen University, Guangzhou, China
| | - Zhuo Fang
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychology, Sun Yat-Sen University, Guangzhou, China
| | - Andrea M Spaeth
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yuanyuan Xin
- School of Psychology, Southwest University, Chongqing, China
| | - Tingyong Feng
- School of Psychology, Southwest University, Chongqing, China
| | - Hengyi Rao
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Laboratory of Applied Brain and Cognitive Sciences, College of International Business, Shanghai International Studies University, Shanghai, China.,Department of Psychology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
38
|
Sepede G, De Berardis D, Campanella D, Perrucci MG, Ferretti A, Salerno RM, Di Giannantonio M, Romani GL, Gambi F. Neural correlates of negative emotion processing in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2015; 60:1-10. [PMID: 25661850 DOI: 10.1016/j.pnpbp.2015.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/23/2015] [Accepted: 01/31/2015] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Bipolar disorder type I (BD-I) is characterized by a severe impairment in emotional processing during both acute and euthymic phases of the illness. The aim of the present study was to investigate negative emotion processing in both euthymic patients and non-affected first-degree relatives, looking for state and trait markers of BD-I. METHODS 22 healthy relatives of BD-I patients (mean age 31.5±7.3 years; 15 females), 23 euthymic BD-I patients (mean age 35.2±7.9 years; 14 females), and 24 matched controls (mean age 32.5±6.2 years; 16 females) performed an IAPS-based emotional task during 1.5T fMRI. They were required to identify vegetable items (targets) inside neutral or negative pictures. RESULTS Euthymic BD-I patients showed a significant reduced accuracy in target detection during both neutral and negative images presentation, whereas first-degree relatives performed similarly to normal comparisons. We found a reduced activation of Left precuneus during negative images condition in the patients only. By contrast, both patients and relatives hyperactivated the Left insula and hypoactivated the Right supramarginal gyrus with respect to controls. Moreover, relatives showed an increased activation of Right lingual gyrus and lower activation of pre-supplementary motor area and Right superior frontal gyrus. CONCLUSIONS During a negative emotion task, euthymic BD-I patients and non-affected first-degree relatives shared an abnormal activation of a limbic area (Left insula) coupled with a reduced activation of a parietal region (Right supramarginal gyrus), thus suggesting a trait-like anomalous processing of affective contents. On the other hand, functional abnormalities found only in unaffected relatives and not in patients and controls may correspond to resilience factors.
Collapse
Affiliation(s)
- Gianna Sepede
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University Chieti-Pescara, Italy; Department of Basic Medical Sciences, Neurosciences and Sense Organs, University "A. Moro", Bari, Italy.
| | | | | | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University Chieti-Pescara, Italy; ITAB - Institute for Advanced Biomedical Technologies, "G. D'Annunzio" University Chieti-Pescara, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University Chieti-Pescara, Italy; ITAB - Institute for Advanced Biomedical Technologies, "G. D'Annunzio" University Chieti-Pescara, Italy; Bioengineering Unit, IRCCS NEUROMED, Pozzilli, Isernia, Italy
| | - Rosa Maria Salerno
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University Chieti-Pescara, Italy
| | - Massimo Di Giannantonio
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University Chieti-Pescara, Italy; National Health Trust, Department of Mental Health, Chieti, Italy
| | - Gian Luca Romani
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University Chieti-Pescara, Italy; ITAB - Institute for Advanced Biomedical Technologies, "G. D'Annunzio" University Chieti-Pescara, Italy
| | - Francesco Gambi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University Chieti-Pescara, Italy
| |
Collapse
|
39
|
Griffis JC, Elkhetali AS, Burge WK, Chen RH, Visscher KM. Retinotopic patterns of background connectivity between V1 and fronto-parietal cortex are modulated by task demands. Front Hum Neurosci 2015; 9:338. [PMID: 26106320 PMCID: PMC4458688 DOI: 10.3389/fnhum.2015.00338] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/27/2015] [Indexed: 11/19/2022] Open
Abstract
Attention facilitates the processing of task-relevant visual information and suppresses interference from task-irrelevant information. Modulations of neural activity in visual cortex depend on attention, and likely result from signals originating in fronto-parietal and cingulo-opercular regions of cortex. Here, we tested the hypothesis that attentional facilitation of visual processing is accomplished in part by changes in how brain networks involved in attentional control interact with sectors of V1 that represent different retinal eccentricities. We measured the strength of background connectivity between fronto-parietal and cingulo-opercular regions with different eccentricity sectors in V1 using functional MRI data that were collected while participants performed tasks involving attention to either a centrally presented visual stimulus or a simultaneously presented auditory stimulus. We found that when the visual stimulus was attended, background connectivity between V1 and the left frontal eye fields (FEF), left intraparietal sulcus (IPS), and right IPS varied strongly across different eccentricity sectors in V1 so that foveal sectors were more strongly connected than peripheral sectors. This retinotopic gradient was weaker when the visual stimulus was ignored, indicating that it was driven by attentional effects. Greater task-driven differences between foveal and peripheral sectors in background connectivity to these regions were associated with better performance on the visual task and faster response times on correct trials. These findings are consistent with the notion that attention drives the configuration of task-specific functional pathways that enable the prioritized processing of task-relevant visual information, and show that the prioritization of visual information by attentional processes may be encoded in the retinotopic gradient of connectivty between V1 and fronto-parietal regions.
Collapse
Affiliation(s)
- Joseph C Griffis
- Department of Psychology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | - Wesley K Burge
- Department of Psychology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Richard H Chen
- Department of Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Kristina M Visscher
- Department of Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
40
|
Le A, Stojanoski BB, Khan S, Keough M, Niemeier M. A toggle switch of visual awareness? Cortex 2014; 64:169-78. [PMID: 25461717 DOI: 10.1016/j.cortex.2014.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
Abstract
Major clues to the human brain mechanisms of spatial attention and visual awareness have come from the syndrome of neglect, where patients ignore one half of space. A longstanding puzzle, though, is that neglect almost always comes from right-hemisphere damage, which suggests that the two sides of the brain play distinct roles. But tests of attention in healthy people have revealed only slight differences between the hemispheres. Here we show that major differences emerge if we look at the timing of brain activity in a task optimized to identify attentional functions. Using EEG to map cortical activity on a millisecond timescale, we found transient (20-30 ms) periods of interhemispheric competition, followed by short phases of marked right-sided activity in the ventral attentional network. Our data are the first to show interhemispheric interactions that, much like a toggle switch, quickly allocate neural resources to one or the other hemisphere.
Collapse
Affiliation(s)
- Ada Le
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Bobby B Stojanoski
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Saniah Khan
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Matthew Keough
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Matthias Niemeier
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada.
| |
Collapse
|
41
|
Li W, Li Y, Zhu W, Chen X. Changes in brain functional network connectivity after stroke. Neural Regen Res 2014; 9:51-60. [PMID: 25206743 PMCID: PMC4146323 DOI: 10.4103/1673-5374.125330] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2013] [Indexed: 01/15/2023] Open
Abstract
Studies have shown that functional network connection models can be used to study brain network changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore functional network connectivity changes in stroke patients. We used independent component analysis to find the motor areas of stroke patients, which is a novel way to determine these areas. In this study, we collected functional magnetic resonance imaging datasets from healthy controls and right-handed stroke patients following their first ever stroke. Using independent component analysis, six spatially independent components highly correlated to the experimental paradigm were extracted. Then, the functional network connectivity of both patients and controls was established to observe the differences between them. The results showed that there were 11 connections in the model in the stroke patients, while there were only four connections in the healthy controls. Further analysis found that some damaged connections may be compensated for by new indirect connections or circuits produced after stroke. These connections may have a direct correlation with the degree of stroke rehabilitation. Our findings suggest that functional network connectivity in stroke patients is more complex than that in hea-lthy controls, and that there is a compensation loop in the functional network following stroke. This implies that functional network reorganization plays a very important role in the process of rehabilitation after stroke.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Image Processing and Intelligent Control, Ministry of Education, Wuhan, Hubei Province, China ; Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yapeng Li
- Key Laboratory of Image Processing and Intelligent Control, Ministry of Education, Wuhan, Hubei Province, China ; Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xi Chen
- Key Laboratory of Image Processing and Intelligent Control, Ministry of Education, Wuhan, Hubei Province, China ; Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
42
|
Simos PG, Rezaie R, Papanicolaou AC, Fletcher JM. Does IQ affect the functional brain network involved in pseudoword reading in students with reading disability? A magnetoencephalography study. Front Hum Neurosci 2014; 7:932. [PMID: 24409136 PMCID: PMC3884211 DOI: 10.3389/fnhum.2013.00932] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 12/23/2013] [Indexed: 11/16/2022] Open
Abstract
The study examined whether individual differences in performance and verbal IQ affect the profiles of reading-related regional brain activation in 127 students experiencing reading difficulties and typical readers. Using magnetoencephalography in a pseudoword read-aloud task, we compared brain activation profiles of students experiencing word-level reading difficulties who did (n = 29) or did not (n = 36) meet the IQ-reading achievement discrepancy criterion. Typical readers assigned to a lower-IQ (n = 18) or a higher IQ (n = 44) subgroup served as controls. Minimum norm estimates of regional cortical activity revealed that the degree of hypoactivation in the left superior temporal and supramarginal gyri in both RD subgroups was not affected by IQ. Moreover, IQ did not moderate the positive association between degree of activation in the left fusiform gyrus and phonological decoding ability. We did find, however, that the hypoactivation of the left pars opercularis in RD was restricted to lower-IQ participants. In accordance with previous morphometric and fMRI studies, degree of activity in inferior frontal, and inferior parietal regions correlated with IQ across reading ability subgroups. Results are consistent with current views questioning the relevance of IQ-discrepancy criteria in the diagnosis of dyslexia.
Collapse
Affiliation(s)
- Panagiotis G Simos
- Department of Psychiatry, School of Medicine, University of Crete Herakleion, Crete, Greece
| | - Roozbeh Rezaie
- Department of Pediatrics, Division of Clinical Neurosciences, College of Medicine, University of Tennessee Health Science Center Memphis, TN, USA ; Neuroscience Institute-Le Bonheur Children's Hospital Memphis, TN, USA
| | - Andrew C Papanicolaou
- Department of Pediatrics, Division of Clinical Neurosciences, College of Medicine, University of Tennessee Health Science Center Memphis, TN, USA ; Neuroscience Institute-Le Bonheur Children's Hospital Memphis, TN, USA
| | - Jack M Fletcher
- Department of Psychology, University of Houston Houston, TX, USA
| |
Collapse
|
43
|
Macaluso E, Doricchi F. Attention and predictions: control of spatial attention beyond the endogenous-exogenous dichotomy. Front Hum Neurosci 2013; 7:685. [PMID: 24155707 PMCID: PMC3800774 DOI: 10.3389/fnhum.2013.00685] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/29/2013] [Indexed: 12/20/2022] Open
Abstract
The mechanisms of attention control have been extensively studied with a variety of methodologies in animals and in humans. Human studies using non-invasive imaging techniques highlighted a remarkable difference between the pattern of responses in dorsal fronto-parietal regions vs. ventral fronto-parietal (vFP) regions, primarily lateralized to the right hemisphere. Initially, this distinction at the neuro-physiological level has been related to the distinction between cognitive processes associated with strategic/endogenous vs. stimulus-driven/exogenous of attention control. Nonetheless, quite soon it has become evident that, in almost any situation, attention control entails a complex combination of factors related to both the current sensory input and endogenous aspects associated with the experimental context. Here, we review several of these aspects first discussing the joint contribution of endogenous and stimulus-driven factors during spatial orienting in complex environments and, then, turning to the role of expectations and predictions in spatial re-orienting. We emphasize that strategic factors play a pivotal role for the activation of the ventral system during stimulus-driven control, and that the dorsal system makes use of stimulus-driven signals for top-down control. We conclude that both the dorsal and the vFP networks integrate endogenous and exogenous signals during spatial attention control and that future investigations should manipulate both these factors concurrently, so as to reveal to full extent of these interactions.
Collapse
Affiliation(s)
- Emiliano Macaluso
- 1Neuroimaging Laboratory, Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Rome, Italy
| | | |
Collapse
|
44
|
Williams VJ, Juranek J, Stuebing K, Cirino PT, Dennis M, Fletcher JM. Examination of frontal and parietal tectocortical attention pathways in spina bifida meningomyelocele using probabilistic diffusion tractography. Brain Connect 2013; 3:512-22. [PMID: 23937233 DOI: 10.1089/brain.2013.0171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abnormalities of the midbrain tectum are common but variable malformations in spina bifida meningomyelocele (SBM) and have been linked to neuropsychological deficits in attention orienting. The degree to which variations in tectum structure influence white matter (WM) connectivity to cortical regions is unknown. To assess the relationship of tectal structure and connectivity to frontal and parietal cortical regions, probabilistic diffusion tractography was performed on 106 individuals (80 SBM, 26 typically developing [TD]) to isolate anterior versus posterior tectocortical WM pathways. Results showed that those with SBM exhibited significantly reduced tectal volume, along with decreased fractional anisotropy (FA) in posterior but not anterior tectocortical WM pathways when compared with TD individuals. The group with SBM also showed greater within-subject discrepancies between frontal and parietal WM integrity compared with the TD group. Of those with SBM, qualitative classification of tectal beaking based on radiological review was associated with increased axial diffusivity across both anterior and posterior tectocortical pathways, relative to individuals with SBM and a normal appearing tectum. These results support previous volumetric findings of greater impairment to posterior versus anterior brain regions in SBM, and quantifiably relate tectal volume, tectocortical WM integrity, and tectal malformations in this population.
Collapse
|
45
|
Affiliation(s)
- Christian C. Ruff
- Laboratory for Social and Neural Systems Research (SNS Lab); Department of Economics, University of Zurich; Zurich Switzerland
| |
Collapse
|
46
|
Vossel S, Geng JJ, Fink GR. Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neuroscientist 2013; 20:150-9. [PMID: 23835449 PMCID: PMC4107817 DOI: 10.1177/1073858413494269] [Citation(s) in RCA: 859] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The idea of two separate attention networks in the human brain for the voluntary
deployment of attention and the reorientation to unexpected events, respectively, has
inspired an enormous amount of research over the past years. In this review, we will
reconcile these theoretical ideas on the dorsal and ventral attentional system with recent
empirical findings from human neuroimaging experiments and studies in stroke patients. We
will highlight how novel methods—such as the analysis of effective connectivity or the
combination of neurostimulation with functional magnetic resonance imaging—have
contributed to our understanding of the functionality and interaction of the two systems.
We conclude that neither of the two networks controls attentional processes in isolation
and that the flexible interaction between both systems enables the dynamic control of
attention in relation to top-down goals and bottom-up sensory stimulation. We discuss
which brain regions potentially govern this interaction according to current task
demands.
Collapse
Affiliation(s)
- Simone Vossel
- 1Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Research Centre Juelich, Germany
| | | | | |
Collapse
|
47
|
Jerde TA, Curtis CE. Maps of space in human frontoparietal cortex. ACTA ACUST UNITED AC 2013; 107:510-6. [PMID: 23603831 DOI: 10.1016/j.jphysparis.2013.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 11/15/2022]
Abstract
Prefrontal cortex (PFC) and posterior parietal cortex (PPC) are neural substrates for spatial cognition. We here review studies in which we tested the hypothesis that human frontoparietal cortex may function as a priority map. According to priority map theory, objects or locations in the visual world are represented by neural activity that is proportional to their attentional priority. Using functional magnetic resonance imaging (fMRI), we first identified topographic maps in PFC and PPC as candidate priority maps of space. We then measured fMRI activity in candidate priority maps during the delay periods of a covert attention task, a spatial working memory task, and a motor planning task to test whether the activity depended on the particular spatial cognition. Our hypothesis was that some, but not all, candidate priority maps in PFC and PPC would be agnostic with regard to what was being prioritized, in that their activity would reflect the location in space across tasks rather than a particular kind of spatial cognition (e.g., covert attention). To test whether patterns of delay period activity were interchangeable during the spatial cognitive tasks, we used multivariate classifiers. We found that decoders trained to predict the locations on one task (e.g., working memory) cross-predicted the locations on the other tasks (e.g., covert attention and motor planning) in superior precentral sulcus (sPCS) and in a region of intraparietal sulcus (IPS2), suggesting that these patterns of maintenance activity may be interchangeable across the tasks. Such properties make sPCS in frontal cortex and IPS2 in parietal cortex viable priority map candidates, and suggest that these areas may be the human homologs of the monkey frontal eye field (FEF) and lateral intraparietal area (LIP).
Collapse
Affiliation(s)
- Trenton A Jerde
- Center for Cognitive Sciences, University of Minnesota, 75 East River Road, Minneapolis, MN 55455-0366, USA.
| | | |
Collapse
|
48
|
Yin X, Zhao L, Xu J, Evans AC, Fan L, Ge H, Tang Y, Khundrakpam B, Wang J, Liu S. Anatomical substrates of the alerting, orienting and executive control components of attention: focus on the posterior parietal lobe. PLoS One 2012; 7:e50590. [PMID: 23226322 PMCID: PMC3511515 DOI: 10.1371/journal.pone.0050590] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/23/2012] [Indexed: 01/17/2023] Open
Abstract
Both neuropsychological and functional neuroimaging studies have identified that the posterior parietal lobe (PPL) is critical for the attention function. However, the unique role of distinct parietal cortical subregions and their underlying white matter (WM) remains in question. In this study, we collected both magnetic resonance imaging and diffusion tensor imaging (DTI) data in normal participants, and evaluated their attention performance using attention network test (ANT), which could isolate three different attention components: alerting, orienting and executive control. Cortical thickness, surface area and DTI parameters were extracted from predefined PPL subregions and correlated with behavioural performance. Tract-based spatial statistics (TBSS) was used for the voxel-wise statistical analysis. Results indicated structure-behaviour relationships on multiple levels. First, a link between the cortical thickness and WM integrity of the right inferior parietal regions and orienting performance was observed. Specifically, probabilistic tractography demonstrated that the integrity of WM connectivity between the bilateral inferior parietal lobules mediated the orienting performance. Second, the scores of executive control were significantly associated with the WM diffusion metrics of the right supramarginal gyrus. Finally, TBSS analysis revealed that alerting performance was significant correlated with the fractional anisotropy of local WM connecting the right thalamus and supplementary motor area. We conclude that distinct areas and features within PPL are associated with different components of attention. These findings could yield a more complete understanding of the nature of the PPL contribution to visuospatial attention.
Collapse
Affiliation(s)
- Xuntao Yin
- Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Jinan, Shandong, China
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Radiology, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Lu Zhao
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Junhai Xu
- Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Jinan, Shandong, China
| | - Alan C. Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Lingzhong Fan
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Haitao Ge
- Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yuchun Tang
- Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Jinan, Shandong, China
| | - Budhachandra Khundrakpam
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jian Wang
- Department of Radiology, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Shuwei Liu
- Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Jinan, Shandong, China
| |
Collapse
|
49
|
Asghar AUR, Johnson RL, Woods W, Green GGR, Lewith G, Macpherson H. Oscillatory neuronal dynamics associated with manual acupuncture: a magnetoencephalography study using beamforming analysis. Front Hum Neurosci 2012; 6:303. [PMID: 23248594 PMCID: PMC3522113 DOI: 10.3389/fnhum.2012.00303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/19/2012] [Indexed: 11/13/2022] Open
Abstract
Magnetoencephalography (MEG) enables non-invasive recording of neuronal activity, with reconstruction methods providing estimates of underlying brain source locations and oscillatory dynamics from externally recorded neuromagnetic fields. The aim of our study was to use MEG to determine the effect of manual acupuncture on neuronal oscillatory dynamics. A major problem in MEG investigations of manual acupuncture is the absence of onset times for each needle manipulation. Given that beamforming (spatial filtering) analysis is not dependent upon stimulus-driven responses being phase-locked to stimulus onset, we postulated that beamforming could reveal source locations and induced changes in neuronal activity during manual acupuncture. In a beamformer analysis, a two-minute period of manual acupuncture needle manipulation delivered to the ipsilateral right LI-4 (Hegu) acupoint was contrasted with a two-minute baseline period. We considered oscillatory power changes in the theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-100 Hz) frequency bands. We found significant decreases in beta band power in the contralateral primary somatosensory cortex and superior frontal gyrus (SFG). In the ipsilateral cerebral hemisphere, we found significant power decreases in beta and gamma frequency bands in only the SFG. No significant power modulations were found in theta and alpha bands. Our results indicate that beamforming is a useful analytical tool to reconstruct underlying neuronal activity associated with manual acupuncture. Our main finding was of beta power decreases in primary somatosensory cortex and SFG, which opens up a line of future investigation regarding whether this contributes toward an underlying mechanism of acupuncture.
Collapse
Affiliation(s)
- Aziz U R Asghar
- Hull York Medical School, University of Hull Hull, UK ; York Neuroimaging Centre, University of York, The Biocentre, York Science Park York, UK
| | | | | | | | | | | |
Collapse
|
50
|
Deconstructing the architecture of dorsal and ventral attention systems with dynamic causal modeling. J Neurosci 2012; 32:10637-48. [PMID: 22855813 DOI: 10.1523/jneurosci.0414-12.2012] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Attentional orientation to a spatial cue and reorientation-after invalid cueing-are mediated by two distinct networks in the human brain. A bilateral dorsal frontoparietal network, comprising the intraparietal sulcus (IPS) and the frontal eye fields (FEF), controls the voluntary deployment of attention and may modulate visual cortex in preparation for upcoming stimulation. In contrast, reorienting attention to invalidly cued targets engages a right-lateralized ventral frontoparietal network comprising the temporoparietal junction (TPJ) and ventral frontal cortex. The present fMRI study investigated the functional architecture of these two attentional systems by characterizing effective connectivity during lateralized orienting and reorienting of attention, respectively. Subjects performed a modified version of Posner's location-cueing paradigm. Dynamic causal modeling (DCM) of regional responses in the dorsal and ventral network, identified in a conventional (SPM) whole-brain analysis, was used to compare different functional architectures. Bayesian model selection showed that top-down connections from left and right IPS to left and right visual cortex, respectively, were modulated by the direction of attention. Moreover, model evidence was highest for a model with directed influences from bilateral IPS to FEF, and reciprocal coupling between right and left FEF. Invalid cueing enhanced forward connections from visual areas to right TPJ, and directed influences from right TPJ to right IPS and IFG (inferior frontal gyrus). These findings shed further light on the functional organization of the dorsal and ventral attentional network and support a context-sensitive lateralization in the top-down (backward) mediation of attentional orienting and the bottom-up (forward) effects of invalid cueing.
Collapse
|