1
|
Réus GZ, Abelaira HM, Tuon T, Titus SE, Ignácio ZM, Rodrigues ALS, Quevedo J. Glutamatergic NMDA Receptor as Therapeutic Target for Depression. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 103:169-202. [DOI: 10.1016/bs.apcsb.2015.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
2
|
Barker GRI, Warburton EC. Object-in-place associative recognition memory depends on glutamate receptor neurotransmission within two defined hippocampal-cortical circuits: a critical role for AMPA and NMDA receptors in the hippocampus, perirhinal, and prefrontal cortices. ACTA ACUST UNITED AC 2013; 25:472-81. [PMID: 24035904 PMCID: PMC4380082 DOI: 10.1093/cercor/bht245] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Object-in-place associative recognition memory depends on an interaction between the hippocampus (HPC), perirhinal (PRH), and medial prefrontal (mPFC) cortices, yet the contribution of glutamate receptor neurotransmission to these interactions is unknown. NMDA receptors (NMDAR) in the HPC were critical for encoding of object-in-place memory but not for single-item object recognition. Next, a disconnection procedure was used to examine the importance of “concurrent” glutamate neurotransmission in the HPC-mPFC and HPC-PRH. Contralateral unilateral infusions of NBQX (AMPAR antagonist), into the HPC-mPFC, or HPC-PRH, either before acquisition or test, impaired object-in-place performance. Thus, both circuits are necessary for encoding and retrieval. Crossed unilateral AP5 (NMDAR antagonist) infusions into the HPC-mPFC or HPC-PRH impaired encoding, but not retrieval. Specifically crossed HPC-mPFC infusions impaired both short-term (5 min) and longer term (1 h) memory while HPC-PRH infusions impaired longer term memory only. This delay-dependent effect of AP5 in the HPC-PRH on object-in-place memory, accords with its effects in the PRH, on single item object recognition memory, thereby suggesting that a single PRH synaptic plasticity mechanism underpins different recognition memory processes. Further, blocking excitatory neurotransmission in any pair of structures within the networks impaired “both” encoding and retrieval, thus object-in-place memory clearly requires network interdependency across multiple structures.
Collapse
Affiliation(s)
- Gareth Robert Issac Barker
- MRC Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Elizabeth Clea Warburton
- MRC Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
3
|
Noh SJ, Lee JM, Lee KS, Hong HS, Lee CK, Cho IH, Kim HS, Suh YH. SP-8203 shows neuroprotective effects and improves cognitive impairment in ischemic brain injury through NMDA receptor. Pharmacol Biochem Behav 2011; 100:73-80. [PMID: 21835192 DOI: 10.1016/j.pbb.2011.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 07/20/2011] [Accepted: 07/26/2011] [Indexed: 11/15/2022]
Abstract
The extracts of earth worms, Eisenia andrei, have been used as a therapeutic agent for stroke in the traditional medicine. It is also reported that the protease fraction separated from the extracts has strong anti-thrombotic activity. Besides anti-thrombotic actions, we found that SP-8203, N-[3-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)propyl]-N-{4-[3-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)propylamino]butyl}acetamide, derived from the extracts of earth worms blocked N-methyl-(D)-aspartate (NMDA) receptor-mediated excitotoxicity in a competitive manner. The neuroprotective effects of SP-8203 were attributable to prevention of Ca(2+) influx through NMDA receptors. The systemic administration of SP-8203 markedly reduced neuronal death following middle cerebral artery occlusion in rats. SP-8203 significantly improved spatial learning and memory in the water maze test. These results provided strong pharmacological basis for its potential therapeutic roles in cerebral ischemia.
Collapse
Affiliation(s)
- Su-Jin Noh
- Department of Pharmacology, College of Medicine, National Creative Research Initiative Center for Alzheimer's Dementia and Neuroscience Research Institute, MRC, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Leung LS, Shen B. N-methyl-D-aspartate receptor antagonists are less effective in blocking long-term potentiation at apical than basal dendrites in hippocampal CA1 of awake rats. Hippocampus 2000; 9:617-30. [PMID: 10641754 DOI: 10.1002/(sici)1098-1063(1999)9:6<617::aid-hipo2>3.0.co;2-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Long-term potentiation (LTP) of field excitatory postsynaptic potentials (fEPSPs) at the apical or basal dendrites of CA1 pyramidal cells was induced by stimulation with a 1-s train of 200-Hz pulses in awake rats, with or without the presence of various doses of an N-methyl-D-aspartate (NMDA) receptor antagonist. Apical LTP was blocked by an intracerebroventricular (i.c.v.) dose of 40 microg D-2-amino-5-phosphonopentanoic acid (D-AP5) or 20 mg/kg i.p. D-2-amino-4-methyl-5-phosphono-3-pentanoic acid (CGP-40116), whereas basal LTP was blocked by half the dose of D-AP5 or CGP-40116. The noncompetitive antagonist MK-801 (< or =1 mg/kg i.p.) had no significant effect on apical LTP. Apical LTP was not blocked by i.c.v. nifedipine. The effect of an NMDA receptor antagonist alone on apical and basal fEPSPs was also evaluated, to assess the net effect of the NMDA receptor antagonist in blocking LTP. MK-801 (0.5-1 mg/kg i.p.) or CGP-40116 (10-20 mg/kg i.p.) but not D-AP5 suppressed apical fEPSPs for several hours and confounded the expression of apical LTP during this time. We concluded that hippocampal LTP at different synapses has different sensitivity to NMDA receptor antagonists and that a general blockade of hippocampal NMDA receptor functions cannot be inferred by a single hippocampal LTP measure.
Collapse
Affiliation(s)
- L S Leung
- Department of Physiology and Clinical Neurological Sciences, University of Western Ontario, London, Canada.
| | | |
Collapse
|
5
|
D'Hooge R, Raes A, Van de Vijver G, Van Bogaert PP, De Deyn PP. Effects of competitive NMDA receptor antagonists on excitatory amino acid-evoked currents in mouse spinal cord neurones. Fundam Clin Pharmacol 1999; 13:67-74. [PMID: 10027090 DOI: 10.1111/j.1472-8206.1999.tb00322.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effects of CGP 37849 [DL-(E)-2-amino-4-methyl-5-phosphono-3-pentenoate] and its ethylester CGP 39551 on whole-cell currents evoked by the endogenous excitatory amino acids, L-glutamate and L-aspartate, were studied in cultured mouse spinal cord neurones. Although CGP 37849 was the more potent compound, both antagonists inhibited 20 microM L-aspartate or 2 microM L-glutamate currents concentration-dependently and reversibly. We calculated IC50 values of 370 +/- 180 nM for CGP 37849 and 2200 +/- 140 nM for CGP 39551 (inhibition of L-aspartate current), and 210 +/- 25 nM for CGP 37849 and 6000 +/- 4700 nM for CGP 39551 (inhibition of L-glutamate current). Both CGP 37849 and CGP 39551 selectively blocked N-methyl-D-aspartate (NMDA)-evoked inward current. Current evoked by 5 microM kainate or 5 microM alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) was unaffected by 10 microM CGP 39551. Current evoked by NMDA was concentration-dependently blocked by CGP 39551 with an IC50 of 2100 +/- 220 nM. After application of 10 microM CGP 37849, 17 +/- 6% of the current evoked by 5 microM L-glutamate remained. This residual current was due to non-NMDA receptor activation since application of 25 microM 2-amino-5-phosphonovalerate (APV) together with CGP 37849 did not significantly alter the residual current, whereas application of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) with CGP 37849 did significantly inhibit this current. Clamping cells at potentials ranging from -80 to +60 mV showed a linear potential--current relationship for the 20 microM L-aspartate-evoked current with reversal potential around 0 mV. The proportion of the L-aspartate current antagonized by CGP 37849 or CGP 39551 appeared to be independent of clamping potential. The concentration--current relationship of L-aspartate in the absence of the antagonists showed an EC50 of 49 +/- 14 microM. Upon application of 1 microM CGP 37849 and 10 microM CGP 39551, the L-aspartate concentration--current curve shifted to higher concentrations, and resulted in a 5- and 13-fold increase in the EC50 of L-aspartate, respectively, whereas Imax was not changed by application of the antagonists. Thus, the potent NMDA antagonists CGP 37849 and CGP 39551 were shown to inhibit excitatory amino acid responses specifically by competitive binding to the neurotransmitter recognition site of the NMDA receptor. Selective, competitive antagonism of L-glutamate- and L-aspartate-evoked NMDA receptor responses probably underlies the effects of CGP 37849 and CGP 39551 such as their anticonvulsant, neuroprotectant and antidepressant actions.
Collapse
Affiliation(s)
- R D'Hooge
- Laboratory of Neurochemistry and Behaviour, Born-Bunge Foundation, University of Antwerp, Wilrijk, Belgium
| | | | | | | | | |
Collapse
|
6
|
Hauben U, D'Hooge R, Soetens E, De Deyn PP. Effects of oral administration of the competitive N-methyl-D-aspartate antagonist, CGP 40116, on passive avoidance, spatial learning, and neuromotor abilities in mice. Brain Res Bull 1999; 48:333-41. [PMID: 10229343 DOI: 10.1016/s0361-9230(99)00008-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects were investigated of the potent competitive N-methyl-D-aspartate (NMDA) receptor antagonist CGP 40116[D-(E)-2-amino-4-methyl-5-phosphono-3-pentenoic acid] on the performance of mice in water maze and passive avoidance tasks, and in wire suspension, rotarod, and cage activity tests. The drug was administered per os (p.o.) in its anticonvulsant dose range. CGP 40116 dose-dependently impaired passive avoidance learning when given before, but not when given after training. The antagonist (5, 10, and 20 mg/kg, administered 4 h before each training session) dose-dependently affected water maze acquisition, and impaired retention test performance in both hidden- and visible-platform water maze tasks. In addition, the drug dose-dependently decreased swimming speed during water maze acquisition. Repeated administration of CGP 40116 (20 mg/kg, p.o.) persistently decreased cage activity and wire suspension test performance, whereas motor coordination and equilibrium on the rotarod apparatus remained unimpaired. In our administration protocol, no tolerance was found to the effects of the drug on passive avoidance learning and neuromotor abilities. The parallel effects of CGP 40116 on memory and motor performance are discussed, and it was concluded that the antagonist impairs neuromotor abilities and also induces memory impairments which cannot be entirely reduced to motor interference.
Collapse
Affiliation(s)
- U Hauben
- Born-Bunge Foundation, and Department of Neurology-Memory Clinic, Middelheim General Hospital, University of Antwerp, Belgium
| | | | | | | |
Collapse
|
7
|
Gaffan D, Hornak J. Amnesia and neglect: beyond the Delay-Brion system and the Hebb synapse. Philos Trans R Soc Lond B Biol Sci 1997; 352:1481-8. [PMID: 9368937 PMCID: PMC1692054 DOI: 10.1098/rstb.1997.0135] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hippocampal damage in people causes impairments of episodic memory, but in rats it causes impairments of spatial learning. Experiments in macaque monkeys show that these two kinds of impairment are functionally similar to each other. After any lesion that interrupts the Delay-Brion system (hippocampus, fornix, mamillary bodies and anterior thalamus) monkeys are impaired in scene-specific memory, where an event takes place against a background that is specific to that event. Scene-specific memory in the monkey corresponds to human episodic memory, which is the memory of a unique event set in a particular scene, as opposed to scene-independent human knowledge, which is abstracted from many different scenes. However, interruption of the Delay-Brion system is not sufficient to explain all of the memory impairments that are seen in amnesic patients. To explain amnesia the specialized function of the hippocampus in scene memory needs to be considered alongside the other, qualitatively different functional specializations of other memory systems of the temporal lobe, including the perirhinal cortex and the amygdala. In all these specialized areas, however, including the hippocampus, there is no fundamental distinction between memory systems and perceptual systems. In explaining memory disorders in amnesia it is also important to consider them alongside the memory disorders of neglect patients. Neglect patients fail to represent in memory the side of the world that is contralateral to the current fixation point, in both short- and long-term memory retrieval. Neglect was produced experimentally by unilateral visual disconnection in the monkey, confirming the idea that visual memory retrieval is retinotopically organized; patients with unilateral medial temporal-lobe removals showed lateralized memory impairments for half-scenes in the visual hemifield contralateral to the removal. Thus, in scene-memory retrieval the Delay-Brion system contributes to the retrieval of visual memories into the retinotopically organized visual cortex. This scene memory interpretation of hippocampal function needs to be contrasted with the cognitive-map hypothesis. The cognitive-map model of hippocampal function shares some common assumptions with the Hebb-synapse model of association formation, and the Hebb-synapse model can be rejected on the basis of recent evidence that monkeys can form direct associations in memory between temporally discontiguous events. Our general conclusion is that the primate brain encompasses widespread and powerful memory mechanisms which will continue to be poorly understood if theory and experimentation continue to concentrate too much, as they have in the past, on the hippocampus and the Hebb synapse.
Collapse
Affiliation(s)
- D Gaffan
- Department of Experimental Psychology, Oxford University, UK.
| | | |
Collapse
|
8
|
Schumacher M, Guennoun R, Robel P, Baulieu EE. Neurosteroids in the Hippocampus: Neuronal Plasticity and Memory. Stress 1997; 2:65-78. [PMID: 9787256 DOI: 10.3109/10253899709014738] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The hippocampus, which is critically involved in learning and memory processes, is known to be a target for the neuromodulatory actions of steroid hormones produced by the adrenal glands and gonads. Much of the work of B.S. McEwen and collaborators has focused on the role of glucocorticosteroids and estrogen in modulating hippocampal plasticity and functions. In addition to hormones derived from the endocrine glands, cells in the hippocampus may be exposed to locally synthesized neurosteroids, including pregnenolone, dehydroepiandrosterone and their sulfated esters as well as progesterone and its reduced metabolites. In contrast to hormones derived from the circulation, neurosteroids have paracrine and/or autocrine activities. In the hippocampus, they have been shown to have trophic effects on neurons and glial cells and to modulate the activity of a variety of neurotransmitter receptors and ion channels, including type A gamma-aminobutyric acid, N-methyl-D-aspartate and sigma receptors and N- and L-type Ca2+ channels. There is accumulating evidence that some neurosteroids, in particular pregnenolone sulfate, have strong influences on learning and memory processes, most likely by regulating neurotransmission in the hippocampus. However, the hippocampus is not the only target for the mnesic effects of neurosteroids. Associated brain regions, the basal nuclei of the forebrain and the amygdaloid complex, are also involved. Some neurosteroids may thus be beneficial for treating age- or disease-related cognitive impairments.
Collapse
Affiliation(s)
- M Schumacher
- Lab. Hormones, INSERM U33, 80 rue du Général Leclerc, 94276 Bicêtre, France
| | | | | | | |
Collapse
|
9
|
Abstract
In the past year, several tests of the hypothesis that NMDA-dependent hippocampal long-term potentiation (LTP) underlies learning have been reported. Data from mutant mice point to a potential role for NMDA-dependent LTP in hippocampal place cell function and spatial learning, but evidence for a causal relation is not yet available. Other studies have shown that robust spatial learning is possible without NMDA-dependent hippocampal LTP. Although the current evidence for the role of LTP in learning is mixed, LTP remains the most promising neural mechanism for associative learning. Several new experimental approaches are now available for future research.
Collapse
Affiliation(s)
- D P Cain
- Department of Psychology, University of Western Ontario, London, Ontario, Canada N6A 5C2.
| |
Collapse
|