1
|
Maria SA, Kumar A, Wilfred PM, Shanthi M, Peedicayil J. Inhibition of Contractility of Isolated Caprine Detrusor by the Calcium Channel Blocker Cilnidipine and Reversal by Calcium Channel Openers. CURRENT THERAPEUTIC RESEARCH 2023; 99:100717. [PMID: 37869401 PMCID: PMC10589763 DOI: 10.1016/j.curtheres.2023.100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023]
Abstract
Background Cilnidipine is a fourth-generation calcium channel blocker that is clinically used to treat hypertension. It is a dihydropyridine that blocks L- and N-type calcium channels. The inhibitory effect of cilnidipine on isolated detrusor muscle contractility has not been studied. This study investigated the inhibitory effect of cilnidipine on isolated caprine (goat) detrusor muscle contractility and the reversal of the inhibition by calcium channel openers. Methods Fourteen caprine detrusor strips were made to contract using 80 mM potassium chloride before and after addition of three concentrations (20, 40, and 60 µM) of cilnidipine. Two reversal agents, the L-type calcium channel opener FPL64716, and the N-type calcium channel opener GV-58, were investigated for their ability to reverse the inhibitory effect of 40 µΜ cilnidipine on potassium chloride-induced detrusor contractility. Results Cilnidipine caused a dose-dependent and statistically significant inhibition of detrusor contractility at all concentrations of cilnidipine used (20, 40, and 60 µΜ). The inhibitory effect of 40 µM cilnidipine on detrusor contractility was significantly reversed by the addition of FPL64716 and GV-58. Conclusions Cilnidipine inhibits the contractility of the isolated detrusor by blocking L- and N-type calcium channels. Cilnidipine could be evaluated for treating clinical conditions requiring relaxation of the detrusor such as overactive bladder.
Collapse
Affiliation(s)
- Steffi A. Maria
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, India
| | - Aniket Kumar
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, India
| | - Premila M. Wilfred
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, India
| | - Margaret Shanthi
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, India
| | - Jacob Peedicayil
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, India
| |
Collapse
|
2
|
Chakrabarty B, Aitchison K, White P, McCarthy CJ, Kanai AJ, Fry CH. Frequency-dependent characteristics of nerve-mediated ATP and acetylcholine release from detrusor smooth muscle. Exp Physiol 2022; 107:350-358. [PMID: 35165960 PMCID: PMC9360561 DOI: 10.1113/ep090238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS The frequency-dependencies of acetylcholine (ACh) and ATP co-transmitter release are different. ACh release can be modelled to a one-compartment process, whereas ATP release requires a two-compartment model. Nerve-mediated release of ACh and ATP can be independently regulated, for example by the phosphodiesterase-type 5 inhibitor, sildenafil. What is the central question of this study? Is the frequency-dependency of co-transmitter release from postganglionic nerve fibres different for each transmitter? What is the main finding and its importance? Release of co-transmitters from the parasympathetic supply to detrusor smooth muscle can be independently regulated. This offers a targeted drug model to reduce selectively the release of transmitter associated with human pathologies (ATP) and may also be applicable to other smooth muscle-based disorders of visceral tissues. ABSTRACT Nerve-mediated contractions of detrusor smooth muscle are mediated by acetylcholine (ACh) and ATP release in most animals. However, with the normal human bladder only ACh is a functional transmitter but in benign pathologies such as overactive bladder (OAB), ATP re-emerges a secondary transmitter. The selective regulation of ATP release offers a therapeutic approach to manage OAB, in contrast to current primary strategies that target ACh actions. However, the release characteristics of nerve-mediated ACh and ATP are poorly defined and this study aimed to measure the frequency-dependence of ACh and ATP release and determine if selective regulation of ATP or ACh was possible. Experiments were carried out in vitro with mouse detrusor with nerve-mediated ATP and ACh release measured, simultaneously with tension recording. ATP was released in two frequency-dependent components, both at lower frequencies (mid-range 0.4 and 5.5 Hz stimulation) compared to a single compartment release of ACh at 14 Hz. Intervention with the phosphodiesterase type-5 inhibitor, sildenafil, attenuated ATP release, equally from both components, but had no effect on ACh release. These data demonstrate that nerve-mediated ACh and ATP release characteristics are distinct and may be separately manipulated. This offers a potential targeted drug model to manage benign lower urinary tract conditions such as OAB. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Basu Chakrabarty
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Katie Aitchison
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Paul White
- Faculty of Engineering, Design & Mathematics, University of the West of England, Bristol, UK
| | - Carly J McCarthy
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomédicas, Austral University, Buenos Aires, Argentina
| | - Anthony J Kanai
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher H Fry
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Abstract
The gastrointestinal tract is the second largest organ system in the body and is often affected by connective tissue disorders. Scleroderma is the classic rheumatologic disease affecting the esophagus; more than 90% of patients with scleroderma have esophageal involvement. This article highlights esophageal manifestations of scleroderma, focusing on pathogenesis, clinical presentation, diagnostic considerations, and treatment options. In addition, this article briefly reviews the esophageal manifestations of other key connective tissue disorders, including mixed connective tissue disease, myositis, Sjogren syndrome, systemic lupus erythematosus, fibromyalgia, and Ehlers-Danlos syndrome.
Collapse
Affiliation(s)
- Nitin K Ahuja
- Division of Gastroenterology and Hepatology, University of Pennsylvania, 3400 Civic Center Boulevard 7 South Pavilion, Philadelphia, PA 19104, USA
| | - John O Clarke
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 430 Broadway Street, Pavilion C, 3rd Floor, C-343, Redwood City, CA 94063-6341, USA.
| |
Collapse
|
4
|
Kennedy C. ATP as a cotransmitter in sympathetic and parasympathetic nerves - another Burnstock legacy. Auton Neurosci 2021; 235:102860. [PMID: 34340045 DOI: 10.1016/j.autneu.2021.102860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022]
Abstract
Geoff Burnstock created an outstanding scientific legacy that includes identification of adenosine 5'-triphosphate (ATP) as an inhibitory neurotransmitter in the gut, the discovery and characterisation of a large family of purine and uridine nucleotide-sensitive ionotropic P2X and metabotropic P2Y receptors and the demonstration that ATP is as an excitatory cotransmitter in autonomic nerves. The evidence for cotransmission includes that: 1) ATP is costored with noradrenaline in synaptic vesicles in postganglionic sympathetic nerves innervating smooth muscle tissues, including the vas deferens and most arteries. 2) When coreleased with noradrenaline, ATP acts at postjunctional P2X1 receptors to elicit depolarisation, Ca2+ influx, Ca2+ sensitisation and contraction. 3) ATP is also coreleased with acetylcholine from postganglionic parasympathetic nerves innervating the urinary bladder, where it stimulates postjunctional P2X1 receptors, and a second, as yet unidentified site to evoke contraction of detrusor smooth muscle. In both systems membrane-bound ecto-enzymes and soluble nucleotidases released from postganglionic nerves dephosphorylate ATP and so terminate its neurotransmitter actions. Currently, the most promising potential area of therapeutic application relating to cotransmission is treatment of dysfunctional urinary bladder. This family of disorders is associated with the appearance of a purinergic component of neurogenic contractions. This component is an attractive target for drug development and targeting it may be a rewarding area of research.
Collapse
Affiliation(s)
- Charles Kennedy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
5
|
Popov Y, Salomon-Escoto K. Gastrointestinal and Hepatic Disease in Sjogren Syndrome. Rheum Dis Clin North Am 2018; 44:143-151. [DOI: 10.1016/j.rdc.2017.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Kanda H, Clodfelder-Miller BJ, Gu JG, Ness TJ, DeBerry JJ. Electrophysiological properties of lumbosacral primary afferent neurons innervating urothelial and non-urothelial layers of mouse urinary bladder. Brain Res 2016; 1648:81-89. [PMID: 27372884 DOI: 10.1016/j.brainres.2016.06.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/23/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
Abstract
Pelvic nerve (PN) bladder primary afferent neurons were retrogradely labeled by intraparenchymal (IPar) microinjection of fluorescent tracer or intravesical (IVes) infusion of tracer into the bladder lumen. IPar and IVes techniques labeled two distinct populations of PN bladder neurons differentiated on the basis of dorsal root ganglion (DRG) soma labeling, dye distribution within the bladder, and intrinsic electrophysiological properties. IPar (Fast blue)- and IVes (DiI)-labeled neurons accounted for 91.5% (378.3±32.3) and 8% (33.0±26.0) of all labeled neurons, respectively (p<0.01), with only 2.0±1.2 neurons labeled by both techniques. When dyes were switched, IPar (DiI)- and IVes (Fast blue) labeled neurons accounted for 77.6% (103.0±25.8) and 22.4% (29.8±10.5), respectively (P<0.05), with 6.0±1.5 double-labeled neurons. Following IPar labeling, DiI was distributed throughout non-urothelial layers of the bladder. In contrast, dye was contained within the urothelium and occasionally the submucosa after IVes labeling. Electrophysiological properties of DiI-labeled IPar and IVes DRG neurons were characterized by whole-mount, in situ patch-clamp recordings. IPar- and IVes-labeled neurons differed significantly with respect to rheobase, input resistance, membrane capacitance, amplitude of inactivating and sustained K(+) currents, and rebound action potential firing, suggesting that the IVes population is more excitable. This study is the first to demonstrate that IVes labeling is a minimally invasive approach for retrograde labeling of PN bladder afferent neurons, to selectively identify urothelial versus non-urothelial bladder DRG neurons, and to elucidate electrophysiological properties of urothelial and non-urothelial afferents in an intact DRG soma preparation.
Collapse
Affiliation(s)
- Hirosato Kanda
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Buffie J Clodfelder-Miller
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianguo G Gu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Timothy J Ness
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jennifer J DeBerry
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
7
|
Jarius S, Wildemann B. 'Medusa head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 2: Anti-PKC-gamma, anti-GluR-delta2, anti-Ca/ARHGAP26 and anti-VGCC. J Neuroinflammation 2015; 12:167. [PMID: 26377184 PMCID: PMC4574118 DOI: 10.1186/s12974-015-0357-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/02/2015] [Indexed: 01/18/2023] Open
Abstract
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as 'Medusa head antibodies' due their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects, and provides a summary and outlook.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Abstract
The role of adenosine 5'-triphosphate (ATP) as a major intracellular energy source is well-established. In addition, ATP and related nucleotides have widespread extracellular actions via the ionotropic P2X (ligand-gated cation channels) and metabotropic P2Y (G protein-coupled) receptors. Numerous experimental techniques, including myography, electrophysiology and biochemical measurement of neurotransmitter release, have been used to show that ATP has several major roles as a neurotransmitter in peripheral nerves. When released from enteric nerves of the gastrointestinal tract it acts as an inhibitory neurotransmitter, mediating descending muscle relaxation during peristalsis. ATP is also an excitatory cotransmitter in autonomic nerves; 1) It is costored with noradrenaline in synaptic vesicles in postganglionic sympathetic nerves innervating smooth muscle preparations, such as the vas deferens and most arteries. When coreleased with noradrenaline, ATP acts at postjunctional P2X1 receptors to evoke depolarisation, Ca(2+) influx, Ca(2+) sensitisation and contraction. 2) ATP is also coreleased with acetylcholine from postganglionic parasympathetic nerves innervating the urinary bladder and again acts at postjunctional P2X1 receptors, and possibly also a P2X1+4 heteromer, to elicit smooth muscle contraction. In both cases the neurotransmitter actions of ATP are terminated by dephosphorylation by extracellular, membrane-bound enzymes and soluble nucleotidases released from postganglionic nerves. There are indications of an increased contribution of ATP to control of blood pressure in hypertension, but further research is needed to clarify this possibility. More promising is the upregulation of P2X receptors in dysfunctional bladder, including interstitial cystitis, idiopathic detrusor instability and overactive bladder syndrome. Consequently, these roles of ATP are of great therapeutic interest and are increasingly being targeted by pharmaceutical companies.
Collapse
Affiliation(s)
- Charles Kennedy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
9
|
Silva RBM, Sperotto NDM, Andrade EL, Pereira TCB, Leite CE, de Souza AH, Bogo MR, Morrone FB, Gomez MV, Campos MM. Spinal blockage of P/Q- or N-type voltage-gated calcium channels modulates functional and symptomatic changes related to haemorrhagic cystitis in mice. Br J Pharmacol 2014; 172:924-39. [PMID: 25298144 DOI: 10.1111/bph.12966] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/14/2014] [Accepted: 09/23/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Spinal voltage-gated calcium channels (VGCCs) are pivotal regulators of painful and inflammatory alterations, representing attractive therapeutic targets. We examined the effects of epidural administration of the P/Q- and N-type VGCC blockers Tx3-3 and Phα1β, respectively, isolated from the spider Phoneutria nigriventer, on symptomatic, inflammatory and functional changes allied to mouse cyclophosphamide (CPA)-induced haemorrhagic cystitis (HC). The effects of P. nigriventer-derived toxins were compared with those displayed by MVIIC and MVIIA, extracted from the cone snail Conus magus. EXPERIMENTAL APPROACH HC was induced by a single i.p. injection of CPA (300 mg·kg(-1) ). Dose- and time-related effects of spinally administered P/Q and N-type VGCC blockers were assessed on nociceptive behaviour and macroscopic inflammation elicited by CPA. The effects of toxins were also evaluated on cell migration, cytokine production, oxidative stress, functional cystometry alterations and TRPV1, TRPA1 and NK1 receptor mRNA expression. KEY RESULTS The spinal blockage of P/Q-type VGCC by Tx3-3 and MVIIC or N-type VGCC by Phα1β attenuated nociceptive and inflammatory events associated with HC, including bladder oxidative stress and cytokine production. CPA produced a slight increase in bladder TRPV1 and TRPA1 mRNA expression, which was reversed by all the toxins tested. Noteworthy, Phα1β strongly prevented bladder neutrophil migration, besides HC-related functional alterations, and its effects were potentiated by co-injecting the selective NK1 receptor antagonist CP-96345. CONCLUSIONS AND IMPLICATIONS Our results shed new light on the role of spinal P/Q and N-type VGCC in bladder dysfunctions, pointing out Phα1β as a promising alternative for treating complications associated with CPA-induced HC.
Collapse
Affiliation(s)
- R B M Silva
- Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Institute of Toxicology and Pharmacology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Burnstock G. Purinergic signalling in the urinary tract in health and disease. Purinergic Signal 2014; 10:103-55. [PMID: 24265069 PMCID: PMC3944045 DOI: 10.1007/s11302-013-9395-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/25/2022] Open
Abstract
Purinergic signalling is involved in a number of physiological and pathophysiological activities in the lower urinary tract. In the bladder of laboratory animals there is parasympathetic excitatory cotransmission with the purinergic and cholinergic components being approximately equal, acting via P2X1 and muscarinic receptors, respectively. Purinergic mechanosensory transduction occurs where ATP, released from urothelial cells during distension of bladder and ureter, acts on P2X3 and P2X2/3 receptors on suburothelial sensory nerves to initiate the voiding reflex, via low threshold fibres, and nociception, via high threshold fibres. In human bladder the purinergic component of parasympathetic cotransmission is less than 3 %, but in pathological conditions, such as interstitial cystitis, obstructed and neuropathic bladder, the purinergic component is increased to 40 %. Other pathological conditions of the bladder have been shown to involve purinoceptor-mediated activities, including multiple sclerosis, ischaemia, diabetes, cancer and bacterial infections. In the ureter, P2X7 receptors have been implicated in inflammation and fibrosis. Purinergic therapeutic strategies are being explored that hopefully will be developed and bring benefit and relief to many patients with urinary tract disorders.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
11
|
Angsanakul J, Sitprija V. Scorpion venoms, kidney and potassium. Toxicon 2013; 73:81-7. [DOI: 10.1016/j.toxicon.2013.06.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/23/2013] [Accepted: 06/27/2013] [Indexed: 01/28/2023]
|
12
|
Searl TJ, Silinsky EM. Modulation of purinergic neuromuscular transmission by phorbol dibutyrate is independent of protein kinase C in murine urinary bladder. J Pharmacol Exp Ther 2012; 342:312-7. [PMID: 22547572 DOI: 10.1124/jpet.112.194704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Parasympathetic control of murine urinary bladder consists of contractile components mediated by both muscarinic and purinergic receptors. Using intracellular recording techniques, the purinergic component of transmission was measured as both evoked excitatory junctional potentials (EJPs) in response to electrical field stimulation and spontaneous events [spontaneous EJPs (sEJPs)]. EJPs, but not sEJPs, were abolished by the application of the Na(+) channel blocker tetrodotoxin and the Ca(2+) channel blocker Cd(2+). Both EJPs and sEJPs were abolished by the application of the P2X(1) antagonist 8,8'-[carbonylbis(imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)]bis-1,3,5-naphthalenetrisulfonic acid hexasodium salt (NF279). Application of phorbol dibutyrate (PDBu) increased electrically evoked EJP amplitudes with no effect on mean sEJP amplitudes. Similar increases in EJP amplitudes were produced by PDBu in the presence of either the nonselective protein kinase inhibitor staurosporine or the specific protein kinase C (PKC) inhibitor 2-[1-(3-dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl) maleimide (GF109203X). These results suggest that PDBu increases the purinergic component of detrusor transmission through increasing neurogenic ATP release via a PKC-independent mechanism.
Collapse
Affiliation(s)
- T J Searl
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | | |
Collapse
|
13
|
Kobayter S, Young JS, Brain KL. Prostaglandin E2 induces spontaneous rhythmic activity in mouse urinary bladder independently of efferent nerves. Br J Pharmacol 2012; 165:401-13. [PMID: 21671904 DOI: 10.1111/j.1476-5381.2011.01543.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The acute effects of PGE(2) on bladder smooth muscle and nerves were examined to determine the origin of PGE(2)-induced spontaneous rhythmic contractions. EXPERIMENTAL APPROACH Contraction studies, confocal Ca(2+) imaging and electrophysiological recordings in strips of mouse urinary bladder were used to differentiate the effects of PGE(2) on bladder smooth muscle and efferent nerves. KEY RESULTS PGE(2) (50 µM) increased the tone and caused phasic contractions of detrusor smooth muscle strips. Confocal Ca(2+) imaging showed that PGE(2) increased the frequency of whole-cell Ca(2+) transients (WCTs) (72 ± 5%) and intracellular recordings showed it increased the frequency of spontaneous depolarizations, from 0.31·s(-1) to 0.90·s(-1). Non-selective inhibition of EP receptors using SC-51322 and AH-6809 (10 µM), or the L-type Ca(2+) channel blocker nifedipine (1 µM), prevented these phasic contractions and WCTs, and reduced the tone (by 45 ± 7% and 59 ± 6%, respectively). Blocking P2X1 receptors with NF449 (10 µM) caused a small but significant reduction in the frequency of PGE(2)-induced phasic contractions (24 ± 9%) and WCTs (28 ± 17%) but had no significant effect on spontaneous depolarizations or tone. Inhibiting muscarinic receptors with cyclopentolate (1 µM) had no significant effect on these measures. Spontaneous WCTs became synchronous in PGE(2), implying enhanced functional coupling between neighbouring cells. However, the electrical input resistance was unchanged. CONCLUSIONS AND IMPLICATIONS It was concluded that depolarization alone is sufficient to explain a functional increase in intercellular coupling and the ability of PGE(2) to increase detrusor spontaneous rhythmic activity does not require parasympathetic nerves.
Collapse
Affiliation(s)
- S Kobayter
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
14
|
Vincent A. John Newsom-Davis: clinician-scientist and so much more. Brain 2011; 134:3755-74. [PMID: 22171357 PMCID: PMC3235562 DOI: 10.1093/brain/awr284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 01/17/2023] Open
Abstract
John Newsom-Davis was born in 1932 and died, aged 74, in 2007. After national service in the Royal Air Force, he read Natural Sciences at Cambridge. Following clinical studies at the Middlesex Hospital, he began research into respiratory neurophysiology with Tom Sears at the National Hospital, Queen Square, in London, and spent 1 year with Fred Plum at Cornell University in New York. After neurology specialist training at Queen Square, he became the director of the Batten Unit, continuing his interest in respiratory physiology. There he began to work on myasthenia gravis in collaboration with Ricardo Miledi at University College London and in 1978, after performing the first studies on plasma exchange in that disease, he established a myasthenia gravis research group at the Royal Free Hospital. There he investigated the role of the thymus in this disease and demonstrated an autoimmune basis for the Lambert Eaton myasthenic syndrome and 'seronegative' myasthenia. He was awarded the first Medical Research Council Clinical Research Professorship in 1979 but moved to Oxford in 1987 when he was elected Action Research Professor of Neurology. While at Oxford, he continued to run a very successful multidisciplinary group, researched further into the thymic abnormalities and cellular immunology of myasthenia, identified antibody-mediated mechanisms in acquired neuromyotonia, and began the molecular work that identified the genetic basis for many forms of congenital myasthenic syndrome. Meanwhile, he was also involved in university and college governance and contributed widely to the Medical Research Council, government committees, research charities and the Association of British Neurologists. Among many honours, he was elected Fellow of the Royal Society in 1991, appointed Commander of the British Empire in 1996 and made a Foreign Associate Member of the Institute of Medicine of the United States in 2001. Nearing and following retirement from Oxford, where he continued to see patients with myasthenia, he was the President of the Association of British Neurologists and Editor of Brain, and led a National Institutes of Health-funded international trial of thymectomy.
Collapse
Affiliation(s)
- Angela Vincent
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
15
|
Nishimune H. Transsynaptic channelosomes: non-conducting roles of ion channels in synapse formation. Channels (Austin) 2011; 5:432-9. [PMID: 21654201 PMCID: PMC3265764 DOI: 10.4161/chan.5.5.16472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/14/2011] [Accepted: 04/14/2011] [Indexed: 11/19/2022] Open
Abstract
Recent findings demonstrate that synaptic channels are directly involved in the formation and maintenance of synapses by interacting with synapse organizers. The synaptic channels on the pre- and postsynaptic membranes possess non-conducting roles in addition to their functional roles as ion-conducting channels required for synaptic transmission. For example, presynaptic voltage-dependent calcium channels link the target-derived synapse organizer laminin β2 to cytomatrix of the active zone and function as scaffolding proteins to organize the presynaptic active zones. Furthermore, postsynaptic δ2-type glutamate receptors organize the synapses by forming transsynaptic protein complexes with presynaptic neurexins through synapse organizer cerebellin 1 precursor proteins. Interestingly, the synaptic clustering of AMPA receptors is regulated by neuronal activity-regulated pentraxins, while postsynaptic differentiation is induced by the interaction of postsynaptic calcium channels and thrombospondins. This review will focus on the non-conducting functions of ion-channels that contribute to the synapse formation in concert with synapse organizers and active-zone-specific proteins.
Collapse
Affiliation(s)
- Hiroshi Nishimune
- Department of Anatomy and Cell Biology, Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical School, Kansas City, KS, USA.
| |
Collapse
|
16
|
Calcium channel subtypes for cholinergic and nonadrenergic noncholinergic neurotransmission in isolated guinea pig trachea. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2010; 382:419-32. [PMID: 20820758 DOI: 10.1007/s00210-010-0556-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
Abstract
The Ca(2+) channel subtypes in the neurotransmission of isolated guinea pig trachea were elucidated by monitoring the effects of specific Ca(2+) channel blockers on cholinergic contractions and nonadrenergic noncholinergic (NANC) relaxation elicited by electrical field stimulation (EFS). In isolated guinea pig trachea, cholinergic contractile responses to low- and high-frequency EFS were inhibited by the selective N-type calcium channel blocker, ω-conotoxin MVIIA. ω-Agatoxin IVA (a selective P-type blocker), ω-conotoxin MVIIC (a nonselective N-, Q-, and P-type blocker), and nifedipine (a selective L-type blocker) were ineffective, whereas Ni(2+) (a T- and R-type blocker) facilitated cholinergic contractions and produced a late contracture when its concentration exceeded 30 μM. The more the concentration of Ni(2+) increased, the greater the number of incidences and the late contracture areas which occurred. Late contracture did not seem to be due to the effects of acetylcholine, tachykinins, or other polypeptides, but disappeared in the absence of indomethacin. The NANC relaxant responses elicited by the low- and high-frequency EFS were inhibited by ω-conotoxin MVIIA or Ni(2+), but unaffected by ω-Agatoxin IVA, ω-conotoxin MVIIC, and nifedipine. In the absence of indomethacin, Ni(2+) did not alter the ω-conotoxin MVIIA (100 nM)-resistant component of cholinergic contraction, but significantly further inhibited that of NANC relaxation. These results suggest that in isolated guinea pig trachea, cholinergic contraction is regulated by N-type calcium channels which may mask T- and R-type calcium channels and may be co-modulated by both, while NANC relaxation is mainly and independently controlled by N-, T-, and R-type calcium channels.
Collapse
|
17
|
Demel SL, Dong H, Swain GM, Wang X, Kreulen DL, Galligan JJ. Antioxidant treatment restores prejunctional regulation of purinergic transmission in mesenteric arteries of deoxycorticosterone acetate-salt hypertensive rats. Neuroscience 2010; 168:335-45. [PMID: 20398741 DOI: 10.1016/j.neuroscience.2010.03.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 03/27/2010] [Accepted: 03/30/2010] [Indexed: 11/30/2022]
Abstract
Norepinephrine (NE) and ATP are co-released by periarterial sympathetic nerves. In mesenteric arteries (MA) from deoxycorticosterone-acetate (DOCA)-salt hypertensive rats, ATP, but not norepinephrine, release is impaired suggesting that their release may be regulated differently. We tested the hypothesis that different calcium channels contribute to ATP and norepinephrine release from sympathetic nerves in vitro in MA from normotensive and DOCA-salt hypertensive rats and that oxidative stress disrupts prejunctional regulation of co-transmission. Excitatory junction potentials (EJPs) were used to measure ATP release. Norepinephrine release was measured amperometrically with carbon-fiber microelectrodes. CdCl2 (30 microM) inhibited norepinephrine release in sham and DOCA-salt arteries by 78% and 85%, respectively. The N-type calcium channel antagonist, omega-conotoxin GVIA (CTX, 0.1 microM) inhibited norepinephrine release by 50% and 67% in normotensive and DOCA-salt arteries, respectively while CTX blocked EJPs. The P/Q-type calcium channel antagonist omega-agatoxin IVA (ATX; 0.03 microM) reduced norepinephrine release in sham but not DOCA-salt arteries and increased EJPs in sham but not DOCA-salt arteries. ATX did not increase EJPs in sham arteries in the presence of the alpha(2)-adrenergic receptor antagonist, yohimbine (1 microM). alpha(2)-Autoreceptor-sensitive EJP facilitation is impaired in DOCA-salt hypertension but this response is restored in DOCA-salt rats treated chronically with the antioxidant, apocynin. Apocynin restored alpha(2)-autoreceptor regulation of norepinephrine release. We conclude that ATP released from periarterial sympathetic nerves is controlled directly by N-type calcium channels. Norepinephrine release is controlled by N and P/Q type calcium channels. Norepinephrine release controlled by P/Q channels acts at alpha(2)-adrenergic receptors to inhibit norepinephrine release suggesting that there may be multiple pools of norepinephrine in periarterial sympathetic nerves. Regulation of norepinephrine release by alpha(2)-autoreceptors and P/Q-type channels is impaired in DOCA-salt hypertension and alpha(2)-autoreceptor function is disrupted by oxidative stress.
Collapse
Affiliation(s)
- S L Demel
- The Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
18
|
Uchida Y, Endoh T, Shibukawa Y, Tazaki M, Sueishi K. 1α,25-dihydroxyvitamin D3 Rapidly Modulates Ca2+ Influx in Osteoblasts Mediated by Ca2+ Channels. THE BULLETIN OF TOKYO DENTAL COLLEGE 2010; 51:221-6. [DOI: 10.2209/tdcpublication.51.221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Miyano K, Tang HB, Nakamura Y, Morioka N, Inoue A, Nakata Y. Paclitaxel and vinorelbine, evoked the release of substance P from cultured rat dorsal root ganglion cells through different PKC isoform-sensitive ion channels. Neuropharmacology 2009; 57:25-32. [DOI: 10.1016/j.neuropharm.2009.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 03/09/2009] [Accepted: 04/02/2009] [Indexed: 11/28/2022]
|
20
|
Zagorodnyuk VP, Gregory S, Costa M, Brookes SJH, Tramontana M, Giuliani S, Maggi CA. Spontaneous release of acetylcholine from autonomic nerves in the bladder. Br J Pharmacol 2009; 157:607-19. [PMID: 19371347 DOI: 10.1111/j.1476-5381.2009.00166.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Bladder contractility is regulated by intrinsic myogenic mechanisms interacting with autonomic nerves. In this study, we have investigated the physiological role of spontaneous release of acetylcholine in guinea pig and rat bladders. EXPERIMENTAL APPROACH Conventional isotonic or pressure transducers were used to record contractile activity of guinea pig and rat bladders. KEY RESULTS Hyoscine (3 micromol x L(-1)), but not tetrodotoxin (TTX, 1 micromol x L(-1)), reduced basal tension, distension-evoked contractile activity and physostigmine (1 micromol x L(-1))-evoked contractions of the whole guinea pig bladder and muscle strips in vitro. omega-Conotoxin GVIA (0.3 micromol x L(-1)) did not affect physostigmine-induced contractions when given either alone or in combination with omega-agatoxin IVA (0.1 micromol x L(-1)) and SNX 482 (0.3 micromol x L(-1)). After 5 days in organotypic culture, when extrinsic nerves had significantly degenerated, the ability of physostigmine to induce contractions was reduced in the dorso-medial strips, but not in lateral strips (which have around 15 times more intramural neurones). Most muscle strips from adult rats lacked intramural neurones. After 5 days in culture, physostigmine-induced or electrical field stimulation-induced contractions of the rat bladder strips were greatly reduced. In anaesthetized rats, topical application of physostigmine (5-500 nmol) on the bladder produced a TTX-resistant tonic contraction that was abolished by atropine (4.4 micromol x kg(-1) i.v.). CONCLUSIONS AND IMPLICATIONS The data indicate that there is spontaneous TTX-resistant release of acetylcholine from autonomic cholinergic extrinsic and intrinsic nerves, which significantly affects bladder contractility. This release is resistant to blockade of N, P/Q and R type Ca(2+) channels.
Collapse
Affiliation(s)
- V P Zagorodnyuk
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|
21
|
Smyth LM, Yamboliev IA, Mutafova-Yambolieva VN. N-type and P/Q-type calcium channels regulate differentially the release of noradrenaline, ATP and beta-NAD in blood vessels. Neuropharmacology 2008; 56:368-78. [PMID: 18824011 DOI: 10.1016/j.neuropharm.2008.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 08/08/2008] [Accepted: 09/09/2008] [Indexed: 01/08/2023]
Abstract
Using HPLC techniques we evaluated the electrical field stimulation-evoked overflow of noradrenaline (NA), adenosine 5'-triphosphate (ATP), and beta-nicotinamide adenine dinucleotide (beta-NAD) in the presence of low nanomolar concentrations of omega-conotoxin GVIA or omega-agatoxin IVA in the canine mesenteric arteries and veins. omega-conotoxin GVIA abolished the evoked overflow of NA and beta-NAD in artery and vein, whereas the evoked overflow of ATP remained unchanged in the presence of omega-conotoxin GVIA. omega-agatoxin IVA significantly reduced the evoked overflow of ATP and beta-NAD. The overflow of NA remained largely unaffected by omega-agatoxin IVA, except at 16Hz in the vein where the overflow of NA was reduced by about 50%. Artery and vein exhibited similar expression levels of the alpha(1B) (CaV2.2, N-type) subunit, whereas the vein showed greater levels of the alpha(1A) (CaV2.1, P/Q-type) subunit than artery. Therefore, there are at least two release sites for NA, beta-NAD and ATP in the canine mesenteric artery and vein: an N-type-associated site releasing primarily NA, beta-NAD and some ATP, and a P/Q-type-associated site releasing ATP, beta-NAD and some NA. The N-type-mediated mechanisms are equally expressed in artery and vein, whereas the P/Q-type-mediated mechanisms are more pronounced in the vein and may ensure additional neurotransmitter release at higher levels of neural activity. In artery, beta-NAD caused a dual effect consisting of vasodilatation or vasoconstriction depending on concentrations, whereas vein responded with vasodilatation only. In contrast, ATP caused vasoconstriction in both vessels. beta-NAD and ATP may mediate disparate functions in the canine mesenteric resistive and capacitative circulations.
Collapse
Affiliation(s)
- Lisa M Smyth
- Department of Physiology and Cell Biology, Anderson Medical Sciences Building, MS 352, University of Nevada School of Medicine, 1664 N. Virginia Street, Reno, NV 89557-0352, USA
| | | | | |
Collapse
|
22
|
Fox AP, Cahill AL, Currie KPM, Grabner C, Harkins AB, Herring B, Hurley JH, Xie Z. N- and P/Q-type Ca2+ channels in adrenal chromaffin cells. Acta Physiol (Oxf) 2008; 192:247-61. [PMID: 18021320 DOI: 10.1111/j.1748-1716.2007.01817.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ca2+ is the most ubiquitous second messenger found in all cells. Alterations in [Ca2+]i contribute to a wide variety of cellular responses including neurotransmitter release, muscle contraction, synaptogenesis and gene expression. Voltage-dependent Ca2+ channels, found in all excitable cells (Hille 1992), mediate the entry of Ca2+ into cells following depolarization. Ca2+ channels are composed of a large pore-forming subunit, called the alpha1 subunit, and several accessory subunits. Ten different alpha1 subunit genes have been identified and classified into three families, Ca(v1-3) (Dunlap et al. 1995, Catterall 2000). Each alpha1 gene produces a unique Ca2+ channel. Although chromaffin cells express several different types of Ca2+ channels, this review will focus on the Cav(2.1) and Cav(2.2) channels, also known as P/Q- and N-type respectively (Nowycky et al. 1985, Llinas et al. 1989b, Wheeler et al. 1994). These channels exhibit physiological and pharmacological properties similar to their neuronal counterparts. N-, P/Q and to a lesser extent R-type Ca2+ channels are known to regulate neurotransmitter release (Hirning et al. 1988, Horne & Kemp 1991, Uchitel et al. 1992, Luebke et al. 1993, Takahashi & Momiyama 1993, Turner et al. 1993, Regehr & Mintz 1994, Wheeler et al. 1994, Wu & Saggau 1994, Waterman 1996, Wright & Angus 1996, Reid et al. 1997). N- and P/Q-type Ca2+ channels are abundant in nerve terminals where they colocalize with synaptic vesicles. Similarly, these channels play a role in neurotransmitter release in chromaffin cells (Garcia et al. 2006). N- and P/Q-type channels are subject to many forms of regulation (Ikeda & Dunlap 1999). This review pays particular attention to the regulation of N- and P/Q-type channels by heterotrimeric G-proteins, interaction with SNARE proteins, and channel inactivation in the context of stimulus-secretion coupling in adrenal chromaffin cells.
Collapse
Affiliation(s)
- A P Fox
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kawada T, Yamazaki T, Akiyama T, Uemura K, Kamiya A, Shishido T, Mori H, Sugimachi M. Effects of Ca2+ channel antagonists on nerve stimulation-induced and ischemia-induced myocardial interstitial acetylcholine release in cats. Am J Physiol Heart Circ Physiol 2006; 291:H2187-91. [PMID: 16766645 DOI: 10.1152/ajpheart.00175.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although an axoplasmic Ca2+ increase is associated with an exocytotic acetylcholine (ACh) release from the parasympathetic postganglionic nerve endings, the role of voltage-dependent Ca2+ channels in ACh release in the mammalian cardiac parasympathetic nerve is not clearly understood. Using a cardiac microdialysis technique, we examined the effects of Ca2+ channel antagonists on vagal nerve stimulation- and ischemia-induced myocardial interstitial ACh releases in anesthetized cats. The vagal stimulation-induced ACh release [22.4 nM (SD 10.6), n = 7] was significantly attenuated by local administration of an N-type Ca2+ channel antagonist ω-conotoxin GVIA [11.7 nM (SD 5.8), n = 7, P = 0.0054], or a P/Q-type Ca2+ channel antagonist ω-conotoxin MVIIC [3.8 nM (SD 2.3), n = 6, P = 0.0002] but not by local administration of an L-type Ca2+ channel antagonist verapamil [23.5 nM (SD 6.0), n = 5, P = 0.758]. The ischemia-induced myocardial interstitial ACh release [15.0 nM (SD 8.3), n = 8] was not attenuated by local administration of the L-, N-, or P/Q-type Ca2+ channel antagonists, by inhibition of Na+/Ca2+ exchange, or by blockade of inositol 1,4,5-trisphosphate [Ins( 1 , 4 , 5 )P3] receptor but was significantly suppressed by local administration of gadolinium [2.8 nM (SD 2.6), n = 6, P = 0.0283]. In conclusion, stimulation-induced ACh release from the cardiac postganglionic nerves depends on the N- and P/Q-type Ca2+ channels (with a dominance of P/Q-type) but probably not on the L-type Ca2+ channels in cats. In contrast, ischemia-induced ACh release depends on nonselective cation channels or cation-selective stretch activated channels but not on L-, N-, or P/Q type Ca2+ channels, Na+/Ca2+ exchange, or Ins( 1 , 4 , 5 )P3 receptor-mediated pathway.
Collapse
Affiliation(s)
- Toru Kawada
- Dept. of Cardiovascular Dynamics, Advanced Medical Engineering Center, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
García AG, García-De-Diego AM, Gandía L, Borges R, García-Sancho J. Calcium Signaling and Exocytosis in Adrenal Chromaffin Cells. Physiol Rev 2006; 86:1093-131. [PMID: 17015485 DOI: 10.1152/physrev.00039.2005] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+concentration ([Ca2+]c) depends on at least four efficient regulatory systems: 1) plasmalemmal calcium channels, 2) endoplasmic reticulum, 3) mitochondria, and 4) chromaffin vesicles. Different mammalian species express different levels of the L, N, P/Q, and R subtypes of high-voltage-activated calcium channels; in bovine and humans, P/Q channels predominate, whereas in felines and murine species, L-type channels predominate. The calcium channels in chromaffin cells are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca2+]c. Chromaffin cells have been particularly useful in studying calcium channel current autoregulation by materials coreleased with catecholamines, such as ATP and opiates. Depending on the preparation (cultured cells, adrenal slices) and the stimulation pattern (action potentials, depolarizing pulses, high K+, acetylcholine), the role of each calcium channel in controlling catecholamine release can change drastically. Targeted aequorin and confocal microscopy shows that Ca2+entry through calcium channels can refill the endoplasmic reticulum (ER) to nearly millimolar concentrations, and causes the release of Ca2+(CICR). Depending on its degree of filling, the ER may act as a sink or source of Ca2+that modulates catecholamine release. Targeted aequorins with different Ca2+affinities show that mitochondria undergo surprisingly rapid millimolar Ca2+transients, upon stimulation of chromaffin cells with ACh, high K+, or caffeine. Physiological stimuli generate [Ca2+]cmicrodomains in which the local subplasmalemmal [Ca2+]crises abruptly from 0.1 to ∼50 μM, triggering CICR, mitochondrial Ca2+uptake, and exocytosis at nearby secretory active sites. The fact that protonophores abolish mitochondrial Ca2+uptake, and increase catecholamine release three- to fivefold, support the earlier observation. This increase is probably due to acceleration of vesicle transport from a reserve pool to a ready-release vesicle pool; this transport might be controlled by Ca2+redistribution to the cytoskeleton, through CICR, and/or mitochondrial Ca2+release. We propose that chromaffin cells have developed functional triads that are formed by calcium channels, the ER, and the mitochondria and locally control the [Ca2+]cthat regulate the early and late steps of exocytosis.
Collapse
Affiliation(s)
- Antonio G García
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, and Servicio de Farmacología Clínica e Instituto Universitario de Investigación Gerontológica y Metabólica, Hospital Universitario de la Princesa, Madrid, Spain.
| | | | | | | | | |
Collapse
|
25
|
Bachar O, Adner M, Uddman R, Cardell LO. Nerve growth factor enhances cholinergic innervation and contractile response to electric field stimulation in a murine in vitro model of chronic asthma. Clin Exp Allergy 2004; 34:1137-45. [PMID: 15248863 DOI: 10.1111/j.1365-2222.2004.1868.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Asthma is a chronic inflammatory disease characterized by airway hyper-responsiveness. Alterations in the neurogenic control are believed to contribute to the pathogenesis. Yet, the long-term interaction between nerves and inflammatory mediators, such as the neurotrophin nerve growth factor (NGF), are not fully understood much due to the absence of appropriate experimental assays. OBJECTIVE To develop an ex vivo mouse organ culture assay and to investigate the effects of NGF on nerve-mediated airway contractions. METHOD Mouse tracheal segments were cultured in periods of up to 16 days. Their contractile responses to electric field stimulation (EFS) were investigated. In addition, the effect of 4 days of NGF treatment was analysed using EFS and immunohistochemistry. RESULTS EFS (0.2-25.6 Hz) induced reproducible and frequency-dependent cholinergic contractions of both fresh and cultured tracheal segments. The main part of the EFS response was blocked by tetrodotoxin or atropine. After 4 days in culture, regional differences appeared, with stronger EFS responses in distal than in proximal segments. More nerve fibres were seen in distal segments than in proximal segments. Treatment with NGF during 4 days of culture increased the innervation of the proximal segments, at the same time as the cholinergic contractile responses to EFS were enhanced dose-dependently. CONCLUSION Culture of tracheal segments appears to be a suitable assay for the examination of long-term effects induced by inflammatory mediators on neurally mediated airway contractions. NGF treatment enhanced the cholinergic, nerve-dependent contractions and increased the amount of nerve fibres seen in the murine tracheal segments, suggesting a role for NGF in the development of airway hyper-responsiveness.
Collapse
Affiliation(s)
- O Bachar
- Department of Otorhinolaryngology, Laboratory of Clinical Experimental Allergy Research, Malmö University Hospital, SE-20502, Malmö, Sweden.
| | | | | | | |
Collapse
|
26
|
Morris JL, Ozols DI, Lewis RJ, Gibbins IL, Jobling P. Differential involvement of N-type calcium channels in transmitter release from vasoconstrictor and vasodilator neurons. Br J Pharmacol 2004; 141:961-70. [PMID: 14993106 PMCID: PMC1574280 DOI: 10.1038/sj.bjp.0705712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The effects of calcium channel blockers on co-transmission from different populations of autonomic vasomotor neurons were studied on isolated segments of uterine artery and vena cava from guinea-pigs. 2. Sympathetic, noradrenergic contractions of the uterine artery (produced by 200 pulses at 1 or 10 Hz; 600 pulses at 20 Hz) were abolished by the N-type calcium channel blocker omega-conotoxin (CTX) GVIA at 1-10 nm. 3. Biphasic sympathetic contractions of the vena cava (600 pulses at 20 Hz) mediated by noradrenaline and neuropeptide Y were abolished by 10 nm CTX GVIA. 4. Neurogenic relaxations of the uterine artery (200 pulses at 10 Hz) mediated by neuronal nitric oxide and neuropeptides were reduced <50% by CTX GVIA 10-100 nm. 5. Capsaicin (3 microm) did not affect the CTX GVIA-sensitive or CTX GVIA-resistant neurogenic relaxations of the uterine artery. 6. The novel N-type blocker CTX CVID (100-300 nm), P/Q-type blockers agatoxin IVA (10-100 nm) or CTX CVIB (100 nm), the L-type blocker nifedipine (10 microm) or the 'R-type' blocker SNX-482 (100 nm), all failed to reduce CTX GVIA-resistant relaxations. The T-type channel blocker NiCl(2) (100-300 microm) reduced but did not abolish the remaining neurogenic dilations. 7. Release of different neurotransmitters from the same autonomic vasomotor axon depends on similar subtypes of calcium channels. N-type channels are responsible for transmitter release from vasoconstrictor neurons innervating a muscular artery and capacitance vein, but only partly mediate release of nitric oxide and neuropeptides from pelvic vasodilator neurons.
Collapse
Affiliation(s)
- Judy L Morris
- Department of Anatomy & Histology, Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
| | | | | | | | | |
Collapse
|
27
|
Vincent A. Antibody-mediated disorders of neuromuscular transmission. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2004; 57:147-58. [PMID: 16106615 DOI: 10.1016/s1567-424x(09)70352-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Angela Vincent
- Neurosciences Group, Department of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
28
|
Currie KPM, Fox AP. Differential facilitation of N- and P/Q-type calcium channels during trains of action potential-like waveforms. J Physiol 2002; 539:419-31. [PMID: 11882675 PMCID: PMC2290166 DOI: 10.1113/jphysiol.2001.013206] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inhibition of presynaptic voltage-gated calcium channels by direct G-protein betagamma subunit binding is a widespread mechanism that regulates neurotransmitter release. Voltage-dependent relief of this inhibition (facilitation), most likely to be due to dissociation of the G-protein from the channel, may occur during bursts of action potentials. In this paper we compare the facilitation of N- and P/Q-type Ca(2+) channels during short trains of action potential-like waveforms (APWs) using both native channels in adrenal chromaffin cells and heterologously expressed channels in tsA201 cells. While both N- and P/Q-type Ca(2+) channels exhibit facilitation that is dependent on the frequency of the APW train, there are important quantitative differences. Approximately 20 % of the voltage-dependent inhibition of N-type I(Ca) was reversed during a train while greater than 40 % of the inhibition of P/Q-type I(Ca) was relieved. Changing the duration or amplitude of the APW dramatically affected the facilitation of N-type channels but had little effect on the facilitation of P/Q-type channels. Since the ratio of N-type to P/Q-type Ca(2+) channels varies widely between synapses, differential facilitation may contribute to the fine tuning of synaptic transmission, thereby increasing the computational repertoire of neurons.
Collapse
Affiliation(s)
- Kevin P M Currie
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, 947 E. 58th Street, MC 0926, Chicago, IL 60637, USA.
| | | |
Collapse
|
29
|
López E, Oset-Gasque MJ, Figueroa S, Albarrán JJ, González MP. Calcium channel types involved in intrinsic amino acid neurotransmitters release evoked by depolarizing agents in cortical neurons. Neurochem Int 2001; 39:283-90. [PMID: 11551668 DOI: 10.1016/s0197-0186(01)00035-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although numerous biochemical and electrophysiological studies have already established many of the properties of the putative Ca2+ receptor for exocytosis at the synapse, the molecular mechanism that involves the influx of Ca2+ and the release of neurotransmitters has remained elusive. Several relationships have been established between neurotransmitter release and Ca2+ channel involved, but no work attempting to connect a particular neurotransmitter release, the effector which produces the release and the opening of a Ca2+ channel type has been performed. This work shows, data dealing with this subject. Based on our results, we have reached the following conclusions: (1) Ca2+ channel types P/Q, N and L mediate Ca2+ entry evoked by high KCl and veratridine, and P/Q and N but not L-type Ca2+ channels are involved when the effector is 4-aminopyridine (4-AP); (2) When we compare the relationship between the amino acid release and the Ca2+ channels which are opened by different depolarizing agents, we find that the release of a particular amino acid neurotransmitter not only depends on the opening of the voltage-dependent Ca2+ channel but also on the effector which produces the opening; and (3) the amount of amino acid release evoked by the different depolarizing agents is not correlated with the elevation of intracellular Ca2+ produced by them. From all of these results, we may conclude that calcium concentration in the active zone is not the only important factor in mediating amino acid release.
Collapse
Affiliation(s)
- E López
- Facultad de Farmacia, Instituto de Bioquímica, Centro mixto CSIC-UCM, 28040, Madrid, Spain
| | | | | | | | | |
Collapse
|
30
|
PROTEIN KINASE C REGULATES PURINERGIC COMPONENT OF NEUROGENIC CONTRACTIONS IN MOUSE BLADDER. J Urol 2000. [DOI: 10.1097/00005392-200011000-00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
LIU SHINGHWA, LIN-SHIAU SHOEIYN. PROTEIN KINASE C REGULATES PURINERGIC COMPONENT OF NEUROGENIC CONTRACTIONS IN MOUSE BLADDER. J Urol 2000. [DOI: 10.1016/s0022-5347(05)67103-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- SHING-HWA LIU
- From the Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - SHOEI-YN LIN-SHIAU
- From the Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
32
|
Waterman SA, Gordon TP, Rischmueller M. Inhibitory effects of muscarinic receptor autoantibodies on parasympathetic neurotransmission in Sjögren's syndrome. ARTHRITIS AND RHEUMATISM 2000; 43:1647-54. [PMID: 10902771 DOI: 10.1002/1529-0131(200007)43:7<1647::aid-anr31>3.0.co;2-p] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Sjögren's syndrome (SS) is an autoimmune disorder characterized by dry eyes and mouth (sicca syndrome) and lymphocytic infiltration of the lacrimal and salivary glands. Abnormalities of parasympathetic neurotransmission may contribute to the glandular dysfunction. In this study, we used a functional assay to investigate autoantibody-mediated effects on parasympathetic neurotransmission and smooth muscle contraction. METHODS Serum and purified IgG were obtained from patients with primary and secondary SS and from control subjects. Contraction of isolated bladder strips in response to stimulation of M3-muscarinic receptors by a muscarinic receptor agonist, carbachol, or by endogenous acetylcholine released from postganglionic parasympathetic nerves was measured before and after the addition of patient serum or IgG. RESULTS Sera from 5 of 9 patients with primary SS and from 6 of 6 patients with secondary SS inhibited carbachol-evoked bladder contraction by approximately 50%. Sera from these patients also inhibited the action of neuronally released acetylcholine at M3-muscarinic receptors. Sera from 7 of 8 healthy individuals, from patients with rheumatoid arthritis without sicca symptoms, and from patients with systemic lupus erythematosus had no effect. The anti-muscarinic receptor activity was localized in the IgG fraction, since purified IgG from patients with SS also inhibited agonist- and nerve-evoked contractions. In this preliminary study, the autoantibodies seemed to be associated with the presence of bladder symptoms and other autonomic features. CONCLUSION Autoantibodies that act as antagonists at M3-muscarinic receptors on smooth muscle occur in a subset of patients with primary and secondary SS. Their presence in secondary SS was unexpected and provides new evidence for a common pathogenetic link between primary and secondary SS. These autoantibodies appear to contribute to sicca symptoms and may explain associated features of autonomic dysfunction in some patients.
Collapse
Affiliation(s)
- S A Waterman
- Department of Physiology, University of Adelaide, South Australia, Australia
| | | | | |
Collapse
|
33
|
Smith AB, Motin L, Lavidis NA, Adams DJ. Calcium channels controlling acetylcholine release from preganglionic nerve terminals in rat autonomic ganglia. Neuroscience 2000; 95:1121-7. [PMID: 10682719 DOI: 10.1016/s0306-4522(99)00505-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Little is known about the nature of the calcium channels controlling neurotransmitter release from preganglionic parasympathetic nerve fibres. In the present study, the effects of selective calcium channel antagonists and amiloride were investigated on ganglionic neurotransmission. Conventional intracellular recording and focal extracellular recording techniques were used in rat submandibular and pelvic ganglia, respectively. Excitatory postsynaptic potentials and excitatory postsynaptic currents preceded by nerve terminal impulses were recorded as a measure of acetylcholine release from parasympathetic and sympathetic preganglionic fibres following nerve stimulation. The calcium channel antagonists omega-conotoxin GVIA (N type), nifedipine and nimodipine (L type), omega-conotoxin MVIIC and omega-agatoxin IVA (P/Q type), and Ni2+ (R type) had no functional inhibitory effects on synaptic transmission in both submandibular and pelvic ganglia. The potassium-sparing diuretic, amiloride, and its analogue, dimethyl amiloride, produced a reversible and concentration-dependent inhibition of excitatory postsynaptic potential amplitude in the rat submandibular ganglion. The amplitude and frequency of spontaneous excitatory postsynaptic potentials and the sensitivity of the postsynaptic membrane to acetylcholine were unaffected by amiloride. In the rat pelvic ganglion, amiloride produced a concentration-dependent inhibition of excitatory postsynaptic currents without causing any detectable effects on the amplitude or configuration of the nerve terminal impulse. These results indicate that neurotransmitter release from preganglionic parasympathetic and sympathetic nerve terminals is resistant to inhibition by specific calcium channel antagonists of N-, L-, P/Q- and R-type calcium channels. Amiloride acts presynaptically to inhibit evoked transmitter release, but does not prevent action potential propagation in the nerve terminals, suggesting that amiloride may block the pharmacologically distinct calcium channel type(s) on rat preganglionic nerve terminals.
Collapse
Affiliation(s)
- A B Smith
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
34
|
Serone AP, Angus JA. Role of N-type calcium channels in autonomic neurotransmission in guinea-pig isolated left atria. Br J Pharmacol 1999; 127:927-34. [PMID: 10433500 PMCID: PMC1566099 DOI: 10.1038/sj.bjp.0702629] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Calcium entry via neuronal calcium channels is essential for the process of neurotransmission. We investigated the calcium channel subtypes involved in the operation of cardiac autonomic neurotransmission by examining the effects of selective calcium channel blockers on the inotropic responses to electrical field stimulation (EFS) of driven (4 Hz) guinea-pig isolated left atria. In this tissue, a previous report (Hong & Chang, 1995) found no evidence for N-type channels involved in the vagal negative inotropic response and only weak involvement in sympathetic responses. 2. The effects of cumulative concentrations of the selective N-type calcium channel blocker, omega-conotoxin GVIA (GVIA; 0.1-10 nM) and the non-selective N-, P/Q-type calcium channel blocker, omega-conotoxin MVIIC (MVIIC; 0.01-10 nM) were examined on the positive (with atropine, 1 microM present) and negative (with propranolol, 1 microM and clonidine, 1 microM present) inotropic responses to EFS (eight trains, each train four pulses per punctate stimulus). 3. GVIA caused complete inhibition of both cardiac vagal and sympathetic inotropic responses to EFS. GVIA was equipotent at inhibiting positive (pIC50 9.29+/-0.08) and negative (pIC50 9.13+/-0.17) inotropic responses. MVIIC also mediated complete inhibition of inotropic responses to EFS and was 160 and 85 fold less potent than GVIA at inhibiting positive (pIC50 7.08+/-0.10) and negative (pIC50 7.20+/-0.14) inotropic responses, respectively. MVIIC was also equipotent at inhibiting both sympathetic and vagal responses. 4. Our data demonstrates that N-type calcium channels account for all the calcium current required for cardiac autonomic neurotransmission in the guinea-pig isolated left atrium.
Collapse
Affiliation(s)
- Adrian P Serone
- Department of Pharmacology, University of Melbourne, Grattan Street, Parkville, Victoria 3052, Australia
| | - James A Angus
- Department of Pharmacology, University of Melbourne, Grattan Street, Parkville, Victoria 3052, Australia
- Author for correspondence:
| |
Collapse
|
35
|
Somogyi GT, de Groat WC. Function, signal transduction mechanisms and plasticity of presynaptic muscarinic receptors in the urinary bladder. Life Sci 1999; 64:411-8. [PMID: 10069504 DOI: 10.1016/s0024-3205(98)00580-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Presynaptic M1 muscarinic receptors on parasympathetic nerve terminals in rat urinary bladder strips are involved in an autofacilitatory mechanism that markedly enhances acetylcholine release during continuous electrical field stimulation. The facilitatory muscarinic mechanism is dependent upon a PKC mediated second messenger pathway and influx of extracellular Ca2+ into the parasympathetic nerve terminals via L and N-type Ca2+ channels. Prejunctional muscarinic facilitation has also been detected in human bladders. The muscarinic facilitatory mechanism is upregulated in hyperactive bladders from chronic spinal cord transected rats; and the facilitation in these preparations is primarily mediated by M3 muscarinic receptors. Presynaptic muscarinic receptors represent a new target for pharmacological treatment of bladder hyperactivity. If presynaptic facilitation is restricted to the bladder and not present in other tissues then drugs acting at this site might be expected to exhibit uroselectivity.
Collapse
Affiliation(s)
- G T Somogyi
- Department of Pharmacology, University of Pittsburgh, PA 15261, USA. somo+@pitt.edu
| | | |
Collapse
|
36
|
Abstract
The electrophysiological properties of detrusor smooth muscle are described, in particular with regard to their influence on the contractile properties of the tissue. The Ca2+ and K+ channel activities are most important in generating action potentials, but the role of several other ionic currents is described, including Cl-, Ca2+-activated, stretch-activated and ligand-gated channels. The variable appearance and functions of different ionic currents in disease states is discussed, as well as the question of whether electrical activity can transmit between adjacent smooth muscle cells. In addition, the precise role that electrophysiological phenomena play in the regulation of the contractile state of the smooth muscle cells, as well as the generation of bladder electromyograms, is discussed.
Collapse
Affiliation(s)
- C H Fry
- Institute of Urology and Nephrology, University College, London, UK
| | | | | |
Collapse
|
37
|
Abstract
We used an integral of the current-voltage relation as a new evaluation of Ca2+ current component composition in NG108-15 hybrid cells. We determined significant changes in the values and composition of Ca2+ currents during cell differentiation. Only low-voltage-activated Ca2+ currents could be observed in undifferentiated cells; after cell differentiation, high-voltage-activated currents appeared and the total Ca2+ current was increased about 30-fold. By pharmacological and biophysical separation, we determined four main types of Ca2+ channels in differentiated cells: approximately 50%, 20% and 17% of N, T and L types, respectively, and 12% of residual current, which is insensitive to classical blockers of low- and high-voltage-activated currents, with the exception of (omega-conotoxin GVIA. All current components displayed kinetics and pharmacological properties similar to neuronal ones. We also established a significant Ca2+ dependence of omega-conotoxin GVIA to inhibit N-type Ca2+ channels: 10 mM Ca2+ in bath solution reduced the toxin efficacy to block N channels three-fold. The residual component fitted the properties of Q-type Ca2+ channels: it was sensitive to (omega-conotoxin GVIA and very similar to the T-type channel with respect to its kinetics; however, the threshold of its activation was closer to the high-voltage-activated component (- 40 mV). Our results show the functional diversity of Ca2+ channels and demonstrate, for the first time, that presumably the Q type of an alpha1A family, which has biophysical and pharmacological properties distinct from the previously described T, L and N types in these cells, is co-expressed in NG108-15 cells.
Collapse
|
38
|
Lang B, Waterman S, Pinto A, Jones D, Moss F, Boot J, Brust P, Williams M, Stauderman K, Harpold M, Motomura M, Moll JW, Vincent A, Newsom-Davis J. The role of autoantibodies in Lambert-Eaton myasthenic syndrome. Ann N Y Acad Sci 1998; 841:596-605. [PMID: 9668304 DOI: 10.1111/j.1749-6632.1998.tb10992.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- B Lang
- Institute of Molecular Medicine, University of Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Houzen H, Hattori Y, Kanno M, Kikuchi S, Tashiro K, Motomura M, Nakao Y, Nakamura T. Functional evaluation of inhibition of autonomic transmitter release by autoantibody from Lambert-Eaton myasthenic syndrome. Ann Neurol 1998; 43:677-80. [PMID: 9585366 DOI: 10.1002/ana.410430520] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effects of the anti-voltage-gated Ca2+ channel (VGCC) antibody obtained from patients with Lambert-Eaton myasthenic syndrome (LEMS) on autonomic neurotransmission were studied in in-vitro experiments. The releases of acetylcholine (ACh) and norepinephrine from the autonomic nerves were evaluated by changes in the contractile responses of guinea pig taenia caeci and left atria to electric field stimulation, respectively. Incubations for 6 hours with LEMS serum and IgG, both of which contain anti-VGCC antibody, markedly suppressed the parasympathetic response but did not affect the sympathetic response. Pharmacological experiments with specific blockers to the VGCC subtypes showed that the Q-type VGCC is closely linked to the genesis of the parasympathetic response. We suggest that the anti-VGCC antibody from the LEMS patients specifically reduces the ACh release from the parasympathetic nerve by binding to the Q-type VGCC.
Collapse
Affiliation(s)
- H Houzen
- Department of Pharmacology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Endoh T, Suzuki T. The regulating manner of opioid receptors on distinct types of calcium channels in hamster submandibular ganglion cells. Arch Oral Biol 1998; 43:221-33. [PMID: 9631175 DOI: 10.1016/s0003-9969(98)00002-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is well known that opioids produce inhibitory effects on neuronal activity and on synaptic transmission at most synapses. In this study, we have investigated the effects of opioids on the low voltage- and high voltage-activated calcium channels in acutely dissociated submandibular ganglion (SMG) neurons, using the whole-cell configuration of the patch-clamp technique. The kappa-opioid-receptor agonist U-50488H, the delta-opioid-receptor agonist [D-Pen 2,5]-enkephalin and the mu-opioid-receptor agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin inhibited L-, N- and P/Q-type calcium-current components in a dose-dependent manner at 10 nM-1 microM, respectively, but not the T-type calcium current. These inhibitory effects were antagonized by naloxone (1 microM). The results showed that three types of opioid receptors regulate the L-, N- and P/Q-types of calcium channels, respectively, but not the T-type, in SMG neurones.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Animals
- Calcium Channels/classification
- Calcium Channels/drug effects
- Calcium Channels/physiology
- Cricetinae
- Dose-Response Relationship, Drug
- Enkephalin, D-Penicillamine (2,5)-
- Enkephalins/pharmacology
- Ganglia, Parasympathetic/drug effects
- Ganglia, Parasympathetic/physiology
- Male
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Neurons/physiology
- Patch-Clamp Techniques
- Receptors, Opioid/physiology
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/drug effects
- Submandibular Gland/innervation
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- T Endoh
- Department of Physiology, Tokyo Dental College, Chiba, Japan
| | | |
Collapse
|
41
|
Desmadryl G, Hilaire C, Vigues S, Diochot S, Valmier J. Developmental regulation of T-, N- and L-type calcium currents in mouse embryonic sensory neurones. Eur J Neurosci 1998; 10:545-52. [PMID: 9749717 DOI: 10.1046/j.1460-9568.1998.00055.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the development of a low (T-type) and two high voltage-activated (N- and L-type) calcium channel currents in large diameter dorsal root ganglion neurones acutely isolated from embryonic mice using the whole-cell patch-clamp technique. The low and high voltage-activated barium currents (LVA and HVA) were identified by their distinct threshold of activation and their sensitivity to pharmacological agents, dihydropyridines and omega-conotoxin-GVIA, at embryonic day 13 (E13), E15 and E17-18, respectively, before, during and after synaptogenesis. The amplitude and density of LVA currents, measured during a -40 mV pulse from a holding potential of -100 mV, increased significantly between E13 and E15, and remained constant between E15 and E17-18. The density of global HVA current, elicited by 0 mV pulse, increased between E13 and E15/E17-18. The density of the N-type current studied by the application of omega-conotoxin-GVIA (1 microM) increased significantly between E13 and E15/E17-18. The use of the dihydropyridine nitrendipine (1 microM) revealed that the density of L-type current remained constant at each stage of development. Nevertheless, application of dihydropyridine Bay K 8644 (3 microM) demonstrated a significant slowing of the deactivation tail current between embryonic days 13 and 15, which may reflect a qualitative maturation of this class of calcium channel current. The temporal relationship between the changes in calcium channel pattern and the period of target innervation suggests possible roles of T-, N- and L-type currents during developmental key events such as natural neurone death and onset of synapse formation.
Collapse
Affiliation(s)
- G Desmadryl
- INSERM U432 Neurobiologie et Développement du Système Vestibulaire, Montpellier, France
| | | | | | | | | |
Collapse
|
42
|
Abstract
There are at least two types of cannabinoid receptors, CB1 and CB2, both coupled to G-proteins. CB1 receptors are present in the central nervous system and CB1 and CB2 receptors in certain peripheral tissues. The existence of endogenous cannabinoid receptor agonists has also been demonstrated. These discoveries have led to the development of selective cannabinoid CB1 and CB2 receptor ligands. This review focuses on the classification, binding properties, effector systems and distribution of cannabinoid receptors. It also describes the various cannabinoid receptor agonists and antagonists now available and considers the main in vivo and in vitro bioassay methods that are generally used.
Collapse
Affiliation(s)
- R G Pertwee
- Department of Biomedical Sciences, Institute of Medical Sciences, Foresterhill, UK
| |
Collapse
|
43
|
Waterman SA, Lang B, Newsom-Davis J. Effect of Lambert-Eaton myasthenic syndrome antibodies on autonomic neurons in the mouse. Ann Neurol 1997; 42:147-56. [PMID: 9266723 DOI: 10.1002/ana.410420204] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Somatic muscle weakness and autonomic symptoms characterize the autoimmune Lambert-Eaton myasthenic syndrome (LEMS). The former results from IgG autoantibody-mediated down-regulation of P/Q-type voltage-gated calcium channels at motor nerve terminals and consequent reduction in acetylcholine release; the basis for the autonomic symptoms is unknown. Using omega-conotoxins GVIA and MVIIC and omega-agatoxin IVA that block N-, Q-, and P-type channels, we investigated ex vivo the calcium channels subserving transmitter release from postganglionic parasympathetic neurons in the bladder and from postganglionic sympathetic neurons in the vas deferens of mice injected with IgG from LEMS patients or from controls. Calcium influx through N-, P-, and Q-type channels subserved transmitter release from parasympathetic and sympathetic neurons in control mice. In test mice, the component of transmitter release subserved by P-type channels was abolished by four of four LEMS IgG preparations, that subserved by Q-type channels was significantly reduced by three, and that subserved by N-type channels by one. Thus, LEMS IgG impairs transmitter release from parasympathetic and sympathetic neurons through down-regulation of one or more subtypes of voltage-gated calcium channels. The results suggest that antibody-mediated interference with specific ion channel function may also underlie autonomic dysfunction occurring in other autoimmune diseases.
Collapse
Affiliation(s)
- S A Waterman
- University Department of Pharmacology, Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, UK
| | | | | |
Collapse
|
44
|
Currie KP, Fox AP. Comparison of N- and P/Q-type voltage-gated calcium channel current inhibition. J Neurosci 1997; 17:4570-9. [PMID: 9169518 PMCID: PMC6573354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Activation of N- and P/Q-type voltage-gated calcium channels triggers neurotransmitter release at central and peripheral synapses. These channels are targets for regulatory mechanisms, including inhibition by G-protein-linked receptors. Inhibition of P/Q-type channels has been less well studied than the extensively characterized inhibition of N-type channels, but it is thought that they are inhibited by similar mechanisms although possibly to a lesser extent than N-type channels. The aim of this study was to compare the inhibition of the two channel types. Calcium currents were recorded from adrenal chromaffin cells and isolated by the selective blockers omega-conotoxin GVIA (1 microM) and omega-agatoxin IVA (400 nM). The inhibition was elicited by ATP (100 microM) or intracellular application of GTP-gamma-S. It was classified as voltage-sensitive (relieved by a conditioning prepulse) or voltage-insensitive (present after a conditioning prepulse). The voltage-insensitive inhibition accounted for a 20% reduction of both currents, whereas the voltage-sensitive inhibition reduced the N-type current by 45% but the P/Q-type current by 18%. However, the voltage dependence of the inhibition, the time course of relief from inhibition during a conditioning prepulse, and the time course of reinhibition after such a prepulse showed few differences between the N- and P/Q-type channels. Assuming a simple bimolecular reaction, our data suggest that changes in the kinetics of the G-protein/channel interaction alone cannot explain the differences in the inhibition of the N- and P/Q-type calcium channels. The subtle differences in inhibition may facilitate the selective regulation of neurotransmitter release.
Collapse
Affiliation(s)
- K P Currie
- The Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
45
|
Cardenas CG, Del Mar LP, Scroggs RS. Two parallel signaling pathways couple 5HT1A receptors to N- and L-type calcium channels in C-like rat dorsal root ganglion cells. J Neurophysiol 1997; 77:3284-96. [PMID: 9212275 DOI: 10.1152/jn.1997.77.6.3284] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The coupling of serotonin receptors to Ca2+ channels was studied in a subpopulation of acutely isolated rat dorsal root ganglion (DRG) cell bodies (type 1 DRG cells), which have membrane properties similar to C-type nociceptive sensory neurons. In these cells, serotonin (5HT) inhibited high-threshold Ca2+ channel current and decreased action potential duration. The inhibitory effects of 5HT and the 5HT1A agonist 8-OH-DPAT were shown to be antagonized by the 5HT1A antagonists spiperone and pindolol, respectively, indicating involvement of a 5HT1A receptor. Several observations suggest that 5HT1A receptors couple to N- and L-type Ca2+ channels by two different signaling pathways in type 1 DRG cells. The inhibition of Ca2+ channel currents produced by 10 microM 5HT occurred in two phases, an initial slowing of current activation rate (kinetic slowing), which was complete within 10 s, and a simultaneous reduction in steady state current amplitude (steady state inhibition), which peaked in approximately 1 min. The kinetic slowing, but not steady state inhibition, was reversed by a positive prepulse to +70 mV (prepulse). Blockade of N-type Ca2+ channels selectively reduced the kinetic slowing and its reversal by prepulses. Chelation of intracellular Ca2+ or blockade of L-type Ca2+ channels selectively reduced the steady state inhibition. Recordings using the cell-attached patch configuration suggest that steady state inhibition required a component that was diffusible in the cytosol, while kinetic slowing occurred via a membrane delimited pathway. The application of 5HT to the cell body outside the patch pipette reduced macroscopic Ca2+ channel currents in 33% of small-diameter DRG cells tested, indicating the participation of a cytosolic diffusible component. Application of 5HT (a membrane impermeant compound) outside the patch pipette produced steady state inhibition only, whereas similar application of membrane permeant 5HT1A agonists, 8-OH-DPAT or 5-methoxy-N,N-dimethyl-tryptamine, produced kinetic slowing and steady state inhibition. Together these data suggest that 5HT1A receptors couple negatively to Ca2+ channels via two pathways: a membrane-delimited pathway that couples to N-channels and actuates voltage-sensitive kinetic slowing and a pathway dependent on a cytosolic diffusible component and free intracellular Ca2+, which couples to L channels and actuates steady state inhibition.
Collapse
Affiliation(s)
- C G Cardenas
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis 38163, USA
| | | | | |
Collapse
|
46
|
Desmadryl G, Chambard JM, Valmier J, Sans A. Multiple voltage-dependent calcium currents in acutely isolated mouse vestibular neurons. Neuroscience 1997; 78:511-22. [PMID: 9145806 DOI: 10.1016/s0306-4522(96)00595-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated the presence of voltage-gated calcium currents in vestibular neurons acutely isolated from postnatal mice vestibular ganglions using the whole-cell patch-clamp technique. The neuronal origin of the recorded cells was confirmed by immunohistochemical detection of neurofilaments and calretinin. High and low voltage-activated calcium currents were recorded. High voltage-activated currents were present in all investigated neurons. Low voltage-activated currents were recorded in only a few large vestibular neurons. High and low voltage-activated currents were distinguished by their thresholds of activation and their ability to run-up during early recordings. Among high voltage-activated currents. L-, N- and P-type currents were identified by their sensitivity to, respectively, the dihydropyridines agonist Bay K 8644 (3 microM) and antagonist nitrendipine (3 microM), the co-conotoxin GVIA (3 microM) and the omega-agatoxin IVA at low concentration (50 nM). An inactivating current sensitive to 1 microM omega-agatoxin IVA with characteristics similar to those of the Q-type current was also recorded in vestibular neurons. When L-, N-, P-, Q-type barium currents were blocked, a residual high voltage-activated current defined by its resistance to saturating concentrations of all above blockers was detected. This residual current was completely blocked by 0.5 mM nickel and cadmium. Our results reveal that primary vestibular neurons express a variety of voltage-activated calcium currents with distinct physiological and pharmacological properties. This diversity could be related both with their functional synaptic characteristic, and with the intrinsic physiological properties of each class of vestibular afferents.
Collapse
Affiliation(s)
- G Desmadryl
- INSERM U432, Neurobiologie et Développement du Systeme Vestibulaire, Montpellier, France
| | | | | | | |
Collapse
|
47
|
Waterman SA. Role of N-, P- and Q-type voltage-gated calcium channels in transmitter release from sympathetic neurones in the mouse isolated vas deferens. Br J Pharmacol 1997; 120:393-8. [PMID: 9031741 PMCID: PMC1564492 DOI: 10.1038/sj.bjp.0700948] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. N-type voltage-gated calcium channels are known to play an important role in transmitter release from autonomic neurones, and recent studies have demonstrated that non-N-type calcium channels are also involved. The calcium channels coupled to transmitter release from sympathetic neurones in the mouse isolated vas deferens were investigated in the present study. 2. Contractions of the mouse vas deferens were evoked by electrical stimulation at 1-50 Hz. The contractions were entirely nerve-mediated, since they were abolished by tetrodotoxin, and were used as an indirect measure of transmitter release. 3. The N-type calcium channel blocker, omega-conotoxin GVIA, inhibited contractions in a concentration-dependent manner, with a maximal effect at 30 nM. Contractions evoked by stimulation frequencies less than 10 Hz were abolished, and those evoked by 20 and by 50 Hz stimulation were decreased in amplitude by 51.3 +/- 13.9% and 9.3 +/- 2.6%, respectively. 4. The N-, P- and Q-type channel blocker, omega-conotoxin MVIIC, inhibited contractions in a concentration-dependent manner and caused greater maximum inhibition than omega-conotoxin GVIA, suggesting an action on P- and/or Q-type channels, in addition to N-type. 5. The P-type channel blocker, omega-agatoxin IVA, alone did not have a significant effect at concentrations up to 300 nM, but inhibited contractions in the presence of omega-conotoxin GVIA. Subsequent addition of omega-conotoxin MVIIC abolished the remaining contractions. Identical results were obtained when the three toxins were tested cumulatively on the purinergic and noradrenergic components of the contraction in the presence of (1.3 microM prazosin and following desensitization to 10 microM alpha, beta-methylene adenosine 5'-triphosphate (alpha, beta-NeATP), respectively. 6. The results suggest that N-, P- and Q-type channels are involved in the release of noradrenaline and ATP from sympathetic neurones in the mouse vas deferens.
Collapse
Affiliation(s)
- S A Waterman
- Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford
| |
Collapse
|
48
|
|
49
|
Lundy PM, Frew R. Review: Ca2+ channel sub-types in peripheral efferent autonomic nerves. JOURNAL OF AUTONOMIC PHARMACOLOGY 1996; 16:229-41. [PMID: 9023667 DOI: 10.1111/j.1474-8673.1996.tb00357.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- P M Lundy
- Defence Research Establishment Suffield, Alberta, Canada
| | | |
Collapse
|