1
|
Neuroanatomical localization of nitric oxide synthase (nNOS) in the central nervous system of carp,
Labeo rohita
during post‐embryonic development. Int J Dev Neurosci 2015; 46:14-26. [DOI: 10.1016/j.ijdevneu.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 02/05/2023] Open
|
2
|
Ieki T, Okada S, Aihara Y, Ohmoto M, Abe K, Yasuoka A, Misaka T. Transgenic labeling of higher order neuronal circuits linked to phospholipase C-β2-expressing taste bud cells in medaka fish. J Comp Neurol 2013; 521:1781-802. [DOI: 10.1002/cne.23256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/22/2012] [Accepted: 10/25/2012] [Indexed: 11/12/2022]
|
3
|
Abstract
The great number of species of teleosts permits highly specialized forms to evolve to occupy particular niches. This diversity allows for extreme variations in brain structure according to particular sensory or motor adaptations. In the case of the taste system, goldfish (Carassius auratus L., 1758) and some carps have evolved a specialized intraoral food-sorting apparatus along with corresponding specializations of gustatory centers in the brainstem. A comparison of circuitry within the complex vagal lobe of goldfish, and of the simpler gustatory lobes in catfish (Ictalurus punctatus Rafinesque, 1818) shows numerous similarities in organization and neurotransmitters. Double labeling studies using horseradish peroxidase and biotinylated dextran amine in catfish shows a direct projection from the vagal lobe to the motoneurons of nucleus ambiguous which innervate oropharyngeal musculature. Therefore, a three neuron reflex arc connects gustatory input to motor output. In the vagal lobe of goldfish, a similar three neuron arc can be identified: from primary gustatory afferent, to vagal lobe interneuron, thence to dendrites of the vagal motoneurons that innervate the pharyngeal muscles. Therefore, despite large differences in the gross appearance of the vagal gustatory systems in the brains of catfish and goldfish, the essential connectivity and circuitry is similar. This suggests that evolutionary change in the central nervous system largely proceeds by rearrangement and elaboration of existing systems, rather than by addition of new structures or circuits.
Collapse
Affiliation(s)
- Thomas E Finger
- Department of Cell and Developmental Biology, University of Colorado Denver, Aurora, CO, USA.
| |
Collapse
|
4
|
Ogawa K, Caprio J. Major Differences in the Proportion of Amino Acid Fiber Types Transmitting Taste Information From Oral and Extraoral Regions in the Channel Catfish. J Neurophysiol 2010; 103:2062-73. [DOI: 10.1152/jn.00894.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study investigates for the first time in any teleost the amino acid specificity and sensitivity of single glossopharyngeal (cranial nerve IX) fibers that innervate taste buds within the oropharyngeal cavity. These results are contrasted with similar data obtained from facial (cranial nerve VII) fibers that innervate extraoral taste buds. The major finding is that functional differences are clearly evident between taste fibers of these two cranial nerves. Catfishes possess the most extensive distribution of taste buds found in vertebrates. Taste buds on the external body surface are exclusively innervated by VII, whereas IX, along with the vagus (X), innervate the vast majority of taste buds within the oropharyngeal cavity. Responses to the l-isomers of alanine (Ala), arginine (Arg), and proline (Pro), the three most stimulatory amino acids that bind to independent taste receptors, were obtained from 90 single VII and 64 single IX taste fibers. This study confirmed a previous investigation that the amino acid responsive VII fibers consist of two major groups, the Ala and Arg clusters containing taste fibers having thresholds in the ηM range. In contrast, the present study indicates the amino acid responsive IX taste system is dominated by taste fibers responsive to Pro and to Pro and Arg, respectively, has a reduced percentage of Ala fibers, and is less sensitive than VII. The present electrophysiological results are consistent with previous experiments, indicating that the extraoral taste system is essential for appetitive behavior, whereas oropharyngeal taste buds are critical for consummatory behavior.
Collapse
Affiliation(s)
- Kazuaki Ogawa
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - John Caprio
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
5
|
Yasuoka A, Abe K. Gustation in fish: search for prototype of taste perception. Results Probl Cell Differ 2009; 47:239-55. [PMID: 19145412 DOI: 10.1007/400_2008_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Fish perceive water-soluble chemicals at the taste buds that are distributed on oropharyngeal and trunk epithelia. Recent progress in molecular analyses has revealed that teleosts and mammals share pivotal signaling components to transduce taste stimuli. The fish orthologs of taste receptors, fT1R and fT2R, show mutually exclusive expression in taste buds, and both are coexpressed with phospholipase C-beta2 and the transient receptor potential M5 channel as common downstream components of taste receptor signals. Interestingly, fT1R heteromers are activated by various L-amino acids but not by sugars. This may reflects that in fish the energy metabolism depends primarily on gluconeogenesis from amino acids. fT2Rs are activated by denatonium benzoate, which is a bitter substance for mammals. It is thus likely that the preferable and aversive tastes for vertebrates, though their taste modalities somewhat vary, are transduced by the sensory conserved pathways. The comparative molecular biology of the fish taste system would lead to understanding a general logic of encoding taste modalities in vertebrates.
Collapse
Affiliation(s)
- A Yasuoka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
6
|
McElligott MB, O'malley DM. Prey tracking by larval zebrafish: axial kinematics and visual control. BRAIN, BEHAVIOR AND EVOLUTION 2005; 66:177-96. [PMID: 16088102 DOI: 10.1159/000087158] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 12/13/2004] [Indexed: 11/19/2022]
Abstract
High-speed imaging was used to record the prey-tracking behavior of larval zebrafish as they fed upon paramecium. Prey tracking is comprised of a variable set of discrete locomotor movements that together align the larva with the paramecium and bring it into close proximity, usually within one body length. These tracking behaviors are followed by a brief capture swim bout that was previously described [Borla et al., 2002]. Tracking movements were classified as either swimming or turning bouts. The swimming bouts were similar to a previously characterized larval slow swim [Budick and O'Malley, 2000], but the turning movements consisted of unique J-shaped bends which appear to minimize forward hydrodynamic disturbance when approaching the paramecium. Such J-turn tracking bouts consisted of multiple unilateral contractions to one side of the body. J-turns slowly and moderately alter the orientation of the larva - this is in contrast to previously described escape and routine turns. Tracking behaviors appear to be entirely visually guided. Infra-red (IR) imaging of locomotor behaviors in a dark environment revealed a complete absence of tracking behaviors, even though the normal repertoire of other locomotive behaviors was recorded. Concomitantly, such larvae were greatly impaired in consuming paramecia. The tracking behavior is of interest because it indicates the presence of sophisticated locomotor control circuitry in this relatively simple model organism. Such locomotor strategies may be conserved and elaborated upon by other larval and adult fishes.
Collapse
|
7
|
Gahtan E, O'Malley DM. Visually guided injection of identified reticulospinal neurons in zebrafish: a survey of spinal arborization patterns. J Comp Neurol 2003; 459:186-200. [PMID: 12640669 DOI: 10.1002/cne.10621] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report here the pattern of axonal branching for 11 descending cell types in the larval brainstem; eight of these cell types are individually identified neurons. Large numbers of brainstem neurons were retrogradely labeled in living larvae by injecting Texas-red dextran into caudal spinal cord. Subsequently, in each larva a single identified cell was injected in vivo with Alexa 488 dextran, using fluorescence microscopy to guide the injection pipette to the targeted cell. The filling of cells via pressure pulses revealed distinct and often extensive spinal axon collaterals for the different cell types. Previous fills of the Mauthner cell had revealed short, knob-like collaterals. In contrast, the two segmental homologs of the Mauthner cell, cells MiD2cm and MiD3cm, showed axon collaterals with extensive arbors recurring at regular intervals along nearly the full extent of spinal cord. Furthermore, the collaterals of MiD2cm crossed the midline at frequent intervals, yielding bilateral arbors that ran in the rostral-caudal direction. Other medullary reticulospinal cells, as well as cells of the nucleus of the medial longitudinal fasciculus (nMLF), also exhibited extensive spinal collaterals, although the patterns differed for each cell type. For example, nMLF cells had extensive collaterals in caudal medulla and far-rostral spinal cord, but these collaterals became sparse more caudally. Two cell types (CaD and RoL1) showed arbors projecting ventrally from a dorsally situated stem axon. Additional cell-specific features that seemed likely to be of physiological significance were observed. The rostral-caudal distribution of axon collaterals was of particular interest because of its implications for the descending control of the larva's locomotive repertoire. Because the same individual cell types can be identified from fish to fish, these anatomical observations can be directly linked to data obtained in other kinds of experiments. For example, 9 of the 11 cell types examined here have been shown to be active during escape behaviors.
Collapse
Affiliation(s)
- Ethan Gahtan
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
8
|
Anadón R, Molist P, Rodríguez-Moldes I, López JM, Quintela I, Cerviño MC, Barja P, González A. Distribution of choline acetyltransferase immunoreactivity in the brain of an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula). J Comp Neurol 2000; 420:139-70. [PMID: 10753304 DOI: 10.1002/(sici)1096-9861(20000501)420:2<139::aid-cne1>3.0.co;2-t] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although the distribution of cholinergic cells is remarkably similar across the vertebrate species, no data are available on more primitive species, such as cartilaginous fishes. To extend the evolutionary analysis of the cholinergic systems, we studied the distribution of cholinergic neurons in the brain and rostral spinal cord of Scyliorhinus canicula by immunocytochemistry using an antibody against the enzyme choline acetyltransferase (ChAT). Western blot analysis of brain extracts of dogfish, sturgeon, trout, and rat showed that this antibody recognized similar bands in the four species. Putative cholinergic neurons were observed in most brain regions, including the telencephalon, diencephalon, cerebellum, and brainstem. In the retrobulbar region and superficial dorsal pallium of the telencephalon, numerous small pallial cells were ChAT-like immunoreactive. In addition, tufted cells of the olfactory bulb and some cells in the lateral pallium showed faint immunoreactivity. In the preoptic-hypothalamic region, ChAT-immunoreactive (ChAT-ir) cells were found in the preoptic nucleus, the vascular organ of the terminal lamina, and a small population in the caudal tuber. In the epithalamus, the pineal photoreceptors were intensely positive. Many cells of the habenula were faintly ChAT-ir, but the neuropil of the interpeduncular nucleus showed intense ChAT immunoreactivity. In the pretectal region, ChAT-ir cells were observed only in the superficial pretectal nucleus. In the brainstem, the somatomotor and branchiomotor nuclei, the octavolateral efferent nucleus, and a cell group just rostral to the Edinger-Westphal (EW) nucleus contained ChAT-ir neurons. In addition, the trigeminal mesencephalic nucleus, the nucleus G of the isthmus, some locus coeruleus cells, and some cell populations of the vestibular nuclei and of the electroreceptive nucleus of the octavolateral region exhibited ChAT immunoreactivity. In the reticular areas of the brainstem, the nucleus of the medial longitudinal fascicle, many reticular neurons of the rhombencephalon, and cells of the nucleus of the lateral funiculus were immunoreactive to this antibody. In the cerebellum, Golgi cells of the granule cell layer and some cells of the cerebellar nucleus were also ChAT-ir. In the rostral spinal cord, ChAT immunoreactivity was observed in cells of the motor column, the dorsal horn, the marginal nucleus (a putative stretch-receptor organ), and in interstitial cells of the ventral funiculus. These results demonstrate for the first time that cholinergic neurons are distributed widely in the central nervous system of elasmobranchs and that their cholinergic systems have evolved several characteristics that are unique to this group.
Collapse
Affiliation(s)
- R Anadón
- Department of Fundamental Biology, University of Santiago de Compostela, 15706-Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kiyohara S, Yamashita S, Lamb CF, Finger TE. Distribution of trigeminal fibers in the primary facial gustatory center of channel catfish, Ictalurus punctatus. Brain Res 1999; 841:93-100. [PMID: 10546992 DOI: 10.1016/s0006-8993(99)01785-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previous studies in several fishes including catfish, have shown that primary trigeminal nerve (NV) axons terminate not only in the principal and spinal trigeminal nuclei, but in the facial (gustatory) lobes. The present study was undertaken to determine the extent and distribution of trigeminal terminations within the facial lobe (FL) and principal trigeminal nucleus (nVpr) in the channel catfish, Ictalurus punctatus. In order to reveal the distribution of trigeminal fibers, the carbocyanine dye, diI, was applied to the central cut stump of the trigeminal root in isolated, paraformaldehyde-fixed brains. After a diffusion period of 10-90 days, the brains were serially sectioned on a vibratome and examined with epifluorescence. The trigeminal motor nucleus (nVm) and principal sensory nucleus lie near the level of entrance of NV. The majority of primary trigeminal fibers, however, sweep caudally after entering into the brain to form the descending root. At the level of the caudal third of the FL, collaterals emitted by the descending root fibers turn medially and dorsally to terminate in the FL. The trigeminal fibers are coarser than the facial nerve (NVII) fibers which terminate within the same structure. The trigeminal fibers terminate throughout the FL except for the lateral-most lobule which contains the representation of taste buds innervated by the recurrent branch of NVII, i.e., those over the trunk and tail of the animal. These results show that in catfish, the trigeminal input to the primary gustatory complex is restricted to those portions of the nucleus receiving chemosensory inputs from the face and barbels, i.e., the trigeminally innervated sensory fields.
Collapse
Affiliation(s)
- S Kiyohara
- Department of Chemistry and BioScience, Faculty of Science, Kagoshima University, Japan.
| | | | | | | |
Collapse
|
10
|
Auclair F, Marchand R, Glover JC. Regional patterning of reticulospinal and vestibulospinal neurons in the hindbrain of mouse and rat embryos. J Comp Neurol 1999; 411:288-300. [PMID: 10404254 DOI: 10.1002/(sici)1096-9861(19990823)411:2<288::aid-cne9>3.0.co;2-u] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The dispositions and axonal trajectories of bulbospinal neurons in the pons and medulla of mouse and rat embryos is described from the earliest times these projections can be labelled retrogradely from the cervical spinal cord. Reticulospinal and vestibulospinal neurons are clustered into identifiable groups, each with a characteristic combination of spatial domain and axon trajectory. The various groups can be labelled retrogradely in a specific developmental sequence. The position of some groups shifts from medial to lateral with development, apparently through cell migration. These observations show that the basic regional organization of the reticulospinal and vestibulospinal projections is similar in mouse and rat and is already established during early stages of axon outgrowth.
Collapse
Affiliation(s)
- F Auclair
- Centre de Recherche en Neurobiologie, Hôpital de l'Enfant-Jésus, Université Laval, Québec City, G1J 1Z4, Canada
| | | | | |
Collapse
|
11
|
Abstract
Retrograde transport of horseradish peroxidase was used to determine the descending projections to the spinal cord in an otophysan fish, the channel catfish, Ictalurus punctatus. The majority of cells projecting to the spinal cord are located in the reticular formation, which is organized into rhombomeric segments. Vestibulospinal neurons are located in the descending, magnocellular, and tangential octaval nuclei, as well as in the medial octavolateralis nucleus of the lateral line system. Cells in the facial lobe project to the spinal cord. Additionally, axons of cells of the trigeminal system and the nucleus of the lateral lemniscus project caudally into the spinal cord. In the midbrain, descending spinal projections arise from cells of the medial longitudinal fasciculus and the red nucleus. More rostrally, cells of the ventrolateral thalamus, dorsal periventricular hypothalamus, central pretectal and magnocellular preoptic nuclei also project to the cord. The results of this study indicate that there are a number of homologies in the descending systems of bony fishes and other vertebrate taxa, including tetrapods. We also provide further evidence that a red nucleus is present in the brains of bony fishes and is therefore a primitive vertebrate character antedating the evolution of tetrapods.
Collapse
Affiliation(s)
- J G New
- Department of Biology and Parmly Hearing Institute, Loyola University Chicago, Illinois 60626, USA.
| | | | | |
Collapse
|