1
|
Chiantia G, Comai D, Hidisoglu E, Gurgone A, Franchino C, Carabelli V, Marcantoni A, Giustetto M. Glyphosate impairs both structure and function of GABAergic synapses in hippocampal neurons. Neuropharmacology 2025; 262:110183. [PMID: 39401670 DOI: 10.1016/j.neuropharm.2024.110183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Glyphosate (Gly) is a broad-spectrum herbicide responsible for the inhibition of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase known to be expressed exclusively in plants and not in animals. For decades Gly has been thought to be ineffective in mammals, including humans, until it was demonstrated that rodents treated with the Gly-based herbicide Roundup showed reduced content of neurotransmitters (e.g., serotonin, dopamine, norepinephrine, and acetylcholine), increased oxidative stress in the brain associated with anxiety and depression-like behaviors and learning and memory deficits. Despite compelling evidence pointing to a neurotoxic effect of Gly, an in-depth functional description of its effects on synaptic transmission is still lacking. To investigate the synaptic alterations dependent on Gly administration we performed whole-cell patch-clamp recordings and immunocytochemistry on mouse primary cultured hippocampal neurons. Our findings reveal that 30 min incubation of Gly at the acceptable daily intake dose severely impaired inhibitory GABAergic synapses. Further analysis pointed out that Gly decreased the number of postsynaptic GABAA receptors and reduced the amplitude of evoked inhibitory postsynaptic currents, the readily releasable pool size available for synchronous release and the quantal size. Finally, a decreased number of release sites has been observed. Consistently, morphological analyses showed that the density of both pre- and post-synaptic inhibitory compartments decorating pyramidal cell dendrites was reduced by Gly. In conclusion, our experiments define for the first time the effects induced by Gly on GABAergic synapses, and reveal that Gly significantly impairs both pre- and postsynaptic mechanisms.
Collapse
Affiliation(s)
- Giuseppe Chiantia
- (")Rita Levi-Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Debora Comai
- (")Rita Levi-Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Enis Hidisoglu
- Department of Drug Science, University of Turin, Turin, Italy; Department of Biophysics, Faculty of Medicine, Izmir Bakircay University, Izmir, Turkey
| | - Antonia Gurgone
- (")Rita Levi-Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | | | | | | | - Maurizio Giustetto
- (")Rita Levi-Montalcini" Department of Neuroscience, University of Turin, Turin, Italy.
| |
Collapse
|
2
|
Centonze G, Natalini D, Grasso S, Morellato A, Salemme V, Piccolantonio A, D'Attanasio G, Savino A, Bianciotto OT, Fragomeni M, Scavuzzo A, Poncina M, Nigrelli F, De Gregorio M, Poli V, Arina P, Taverna D, Kopecka J, Dupont S, Turco E, Riganti C, Defilippi P. p140Cap modulates the mevalonate pathway decreasing cell migration and enhancing drug sensitivity in breast cancer cells. Cell Death Dis 2023; 14:849. [PMID: 38123597 PMCID: PMC10733353 DOI: 10.1038/s41419-023-06357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/09/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
p140Cap is an adaptor protein involved in assembling multi-protein complexes regulating several cellular processes. p140Cap acts as a tumor suppressor in breast cancer (BC) and neuroblastoma patients, where its expression correlates with a better prognosis. The role of p140Cap in tumor metabolism remains largely unknown. Here we study the role of p140Cap in the modulation of the mevalonate (MVA) pathway in BC cells. The MVA pathway is responsible for the biosynthesis of cholesterol and non-sterol isoprenoids and is often deregulated in cancer. We found that both in vitro and in vivo, p140Cap cells and tumors show an increased flux through the MVA pathway by positively regulating the pace-maker enzyme of the MVA pathway, the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), via transcriptional and post-translational mechanisms. The higher cholesterol synthesis is paralleled with enhanced cholesterol efflux. Moreover, p140Cap promotes increased cholesterol localization in the plasma membrane and reduces lipid rafts-associated Rac1 signalling, impairing cell membrane fluidity and cell migration in a cholesterol-dependent manner. Finally, p140Cap BC cells exhibit decreased cell viability upon treatments with statins, alone or in combination with chemotherapeutic at low concentrations in a synergistic manner. Overall, our data highlight a new perspective point on tumor suppression in BC by establishing a previously uncharacterized role of the MVA pathway in p140Cap expressing tumors, thus paving the way to the use of p140Cap as a potent biomarker to stratify patients for better tuning therapeutic options.
Collapse
Affiliation(s)
- Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Silvia Grasso
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessio Piccolantonio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giacomo D'Attanasio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Aurora Savino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Olga Teresa Bianciotto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Matteo Fragomeni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Andrea Scavuzzo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Matteo Poncina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Francesca Nigrelli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Mario De Gregorio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Pietro Arina
- UCL, Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, WC1E 6BT, London, UK
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Italy; Molecular Biotechnology Center, Piazza Nizza 44, 10126, Torino, Italy
| | - Sirio Dupont
- Department of Molecular Medicine (DMM), University of Padova, Padua, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Italy; Molecular Biotechnology Center, Piazza Nizza 44, 10126, Torino, Italy.
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|