1
|
Roychaudhury A, Lee YR, Choi TI, Thomas MG, Khan TN, Yousaf H, Skinner C, Maconachie G, Crosier M, Horak H, Constantinescu CS, Kim TY, Lee KH, Kyung JJ, Wang T, Ku B, Chodirker BN, Hammer MF, Gottlob I, Norton WHJ, Gerlai R, Kim HG, Graziano C, Pippucci T, Iovino E, Montanari F, Severi G, Toro C, Boerkoel CF, Cha HS, Choi CY, Kim S, Yoon JH, Gilmore K, Vora NL, Davis EE, Chudley AE, Schwartz CE, Kim CH. SRPK3 Is Essential for Cognitive and Ocular Development in Humans and Zebrafish, Explaining X-Linked Intellectual Disability. Ann Neurol 2024; 96:914-931. [PMID: 39073169 PMCID: PMC11496011 DOI: 10.1002/ana.27037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Intellectual disability is often the outcome of neurodevelopmental disorders and is characterized by significant impairments in intellectual and adaptive functioning. X-linked intellectual disability (XLID) is a subset of these disorders caused by genetic defects on the X chromosome, affecting about 2 out of 1,000 males. In syndromic form, it leads to a broad range of cognitive, behavioral, ocular, and physical disabilities. METHODS Employing exome or genome sequencing, here we identified 4 missense variants (c.475C > G; p.H159D, c.1373C > A; p.T458N, and c.1585G > A; p.E529K, c.953C > T; p.S318L) and a putative truncating variant (c.1413_1414del; p.Y471*) in the SRPK3 gene in 9 XLID patients from 5 unrelated families. To validate SRPK3 as a novel XLID gene, we established a knockout (KO) model of the SRPK3 orthologue in zebrafish. RESULTS The 8 patients ascertained postnatally shared common clinical features including intellectual disability, agenesis of the corpus callosum, abnormal eye movement, and ataxia. A ninth case, ascertained prenatally, had a complex structural brain phenotype. Together, these data indicate a pathological role of SRPK3 in neurodevelopmental disorders. In post-fertilization day 5 larvae (free swimming stage), KO zebrafish exhibited severe deficits in eye movement and swim bladder inflation, mimicking uncontrolled ocular movement and physical clumsiness observed in human patients. In adult KO zebrafish, cerebellar agenesis and behavioral abnormalities were observed, recapitulating human phenotypes of cerebellar atrophy and intellectual disability. INTERPRETATION Overall, these results suggest a crucial role of SRPK3 in the pathogenesis of syndromic X-linked intellectual disability and provide new insights into brain development, cognitive and ocular dysfunction in both humans and zebrafish. ANN NEUROL 2024;96:914-931.
Collapse
Affiliation(s)
- Arkaprava Roychaudhury
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
- These authors contributed equally: Arkaprava Roychaudhury, Yu-Ri Lee, Tae-Ik Choi, Mervyn G. Thomas
| | - Yu-Ri Lee
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
- These authors contributed equally: Arkaprava Roychaudhury, Yu-Ri Lee, Tae-Ik Choi, Mervyn G. Thomas
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
- These authors contributed equally: Arkaprava Roychaudhury, Yu-Ri Lee, Tae-Ik Choi, Mervyn G. Thomas
| | - Mervyn G. Thomas
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, UK
- These authors contributed equally: Arkaprava Roychaudhury, Yu-Ri Lee, Tae-Ik Choi, Mervyn G. Thomas
| | - Tahir N. Khan
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Hammad Yousaf
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | | | - Gail Maconachie
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, UK
- Division of Ophthalmology and Orthoptics, Health Science School, University of Sheffield, UK
| | - Moira Crosier
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 4EP, UK
| | - Holli Horak
- Department of Neurology, University of Arizona, Tucson, AZ 85724, USA
| | - Cris S. Constantinescu
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, NG7 2UH, UK
- Cooper Neurological Institute and Cooper Medical School of Rowan University, Camden, NJ 08013, USA
| | - Tae-Yoon Kim
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Kang-Han Lee
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Jae-Jun Kyung
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Tao Wang
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Bernard N. Chodirker
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada
| | | | - Irene Gottlob
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, UK
- Cooper Neurological Institute and Cooper Medical School of Rowan University, Camden, NJ 08013, USA
| | - William H. J. Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Emanuela Iovino
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | - Giulia Severi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, Maryland, USA
| | - Cornelius F. Boerkoel
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, Maryland, USA
| | - Hyo Sun Cha
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sungjin Kim
- Department of Microbiology & Molecular Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Je-Hyun Yoon
- Department of Oncology Science, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Kelly Gilmore
- Department of Ob/Gyn, Division of Maternal Fetal Medicine, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Neeta L. Vora
- Department of Ob/Gyn, Division of Maternal Fetal Medicine, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erica E. Davis
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Albert E. Chudley
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada
| | - Charles E. Schwartz
- Greenwood Genetic Center, Greenwood, SC 29646, USA
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
2
|
Odierna GL, Kerwin SK, Shin GJE, Millard SS. Drosophila larval motor patterning relies on regulated alternative splicing of Dscam2. Front Mol Neurosci 2024; 17:1415207. [PMID: 39092203 PMCID: PMC11292952 DOI: 10.3389/fnmol.2024.1415207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/31/2024] [Indexed: 08/04/2024] Open
Abstract
Recent studies capitalizing on the newly complete nanometer-resolution Drosophila larval connectome have made significant advances in identifying the structural basis of motor patterning. However, the molecular mechanisms utilized by neurons to wire these circuits remain poorly understood. In this study we explore how cell-specific expression of two Dscam2 isoforms, which mediate isoform-specific homophilic binding, contributes to motor patterning and output of Drosophila larvae. Ablating Dscam2 isoform diversity resulted in impaired locomotion. Electrophysiological assessment at the neuromuscular junction during fictive locomotion indicated that this behavioral defect was largely caused by weaker bouts of motor neuron activity. Morphological analyses of single motor neurons using MultiColour FlpOut revealed severe errors in dendrite arborization and assessment of cholinergic and GABAergic projections to the motor domain revealed altered morphology of interneuron processes. Loss of Dscam2 did not affect locomotor output, motor neuron activation or dendrite targeting. Our findings thus suggest that locomotor circuit phenotypes arise specifically from inappropriate Dscam2 interactions between premotor interneurons and motor neurons when they express the same isoform. Indeed, we report here that first-order premotor interneurons express Dscam2A. Since motor neurons express Dscam2B, our results provide evidence that Dscam2 isoform expression alternates between synaptic partners in the nerve cord. Our study demonstrates the importance of cell-specific alternative splicing in establishing the circuitry that underlies neuromotor patterning without inducing unwanted intercellular interactions.
Collapse
Affiliation(s)
- G. Lorenzo Odierna
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Sarah K. Kerwin
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Grace Ji-eun Shin
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Neuroscience Research Institute, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - S. Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Abu Nahia K, Sulej A, Migdał M, Ochocka N, Ho R, Kamińska B, Zagorski M, Winata CL. scRNA-seq reveals the diversity of the developing cardiac cell lineage and molecular players in heart rhythm regulation. iScience 2024; 27:110083. [PMID: 38872974 PMCID: PMC11170199 DOI: 10.1016/j.isci.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/26/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
We utilized scRNA-seq to delineate the diversity of cell types in the zebrafish heart. Transcriptome profiling of over 50,000 cells at 48 and 72 hpf defined at least 18 discrete cell lineages of the developing heart. Utilizing well-established gene signatures, we identified a population of cells likely to be the primary pacemaker and characterized the transcriptome profile defining this critical cell type. Two previously uncharacterized genes, atp1b3b and colec10, were found to be enriched in the sinoatrial cardiomyocytes. CRISPR/Cas9-mediated knockout of these two genes significantly reduced heart rate, implicating their role in cardiac development and conduction. Additionally, we describe other cardiac cell lineages, including the endothelial and neural cells, providing their expression profiles as a resource. Our results established a detailed atlas of the developing heart, providing valuable insights into cellular and molecular mechanisms, and pinpointed potential new players in heart rhythm regulation.
Collapse
Affiliation(s)
- Karim Abu Nahia
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Migdał
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Natalia Ochocka
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Richard Ho
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Cracow, Poland
- The Njord Centre, Department of Physics, University of Oslo, Oslo, Norway
| | - Bożena Kamińska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marcin Zagorski
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Cracow, Poland
| | | |
Collapse
|
4
|
Ma M, Brunal AA, Clark KC, Studtmann C, Stebbins K, Higashijima SI, Pan YA. Deficiency in the cell-adhesion molecule dscaml1 impairs hypothalamic CRH neuron development and perturbs normal neuroendocrine stress axis function. Front Cell Dev Biol 2023; 11:1113675. [PMID: 36875755 PMCID: PMC9978177 DOI: 10.3389/fcell.2023.1113675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
The corticotropin-releasing hormone (CRH)-expressing neurons in the hypothalamus are critical regulators of the neuroendocrine stress response pathway, known as the hypothalamic-pituitary-adrenal (HPA) axis. As developmental vulnerabilities of CRH neurons contribute to stress-associated neurological and behavioral dysfunctions, it is critical to identify the mechanisms underlying normal and abnormal CRH neuron development. Using zebrafish, we identified Down syndrome cell adhesion molecule like-1 (dscaml1) as an integral mediator of CRH neuron development and necessary for establishing normal stress axis function. In dscaml1 mutant animals, hypothalamic CRH neurons had higher crhb (the CRH homolog in zebrafish) expression, increased cell number, and reduced cell death compared to wild-type controls. Physiologically, dscaml1 mutant animals had higher baseline stress hormone (cortisol) levels and attenuated responses to acute stressors. Together, these findings identify dscaml1 as an essential factor for stress axis development and suggest that HPA axis dysregulation may contribute to the etiology of human DSCAML1-linked neuropsychiatric disorders.
Collapse
Affiliation(s)
- Manxiu Ma
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States
| | - Alyssa A Brunal
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States.,Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Kareem C Clark
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States
| | - Carleigh Studtmann
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States.,Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Katelyn Stebbins
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States.,Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Shin-Ichi Higashijima
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Y Albert Pan
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
5
|
Carrington B, Ramanagoudr-Bhojappa R, Bresciani E, Han TU, Sood R. A robust pipeline for efficient knock-in of point mutations and epitope tags in zebrafish using fluorescent PCR based screening. BMC Genomics 2022; 23:810. [PMID: 36476416 PMCID: PMC9730659 DOI: 10.1186/s12864-022-08971-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Genome editing using CRISPR/Cas9 has become a powerful tool in zebrafish to generate targeted gene knockouts models. However, its use for targeted knock-in remains challenging due to inefficient homology directed repair (HDR) pathway in zebrafish, highlighting the need for efficient and cost-effective screening methods. RESULTS: Here, we present our fluorescent PCR and capillary electrophoresis based screening approach for knock-in using a single-stranded oligodeoxynucleotide donor (ssODN) as a repair template for the targeted insertion of epitope tags, or single nucleotide changes to recapitulate pathogenic human alleles. For the insertion of epitope tags, we took advantage of the expected change in size of the PCR product. For point mutations, we combined fluorescent PCR with restriction fragment length polymorphism (RFLP) analysis to distinguish the fish with the knock-in allele. As a proof-of-principle, we present our data on the generation of fish lines with insertion of a FLAG tag at the tcnba locus, an HA tag at the gata2b locus, and a point mutation observed in Gaucher disease patients in the gba gene. Despite the low number of germline transmitting founders (1-5%), combining our screening methods with prioritization of founder fish by fin biopsies allowed us to establish stable knock-in lines by screening 12 or less fish per gene. CONCLUSIONS We have established a robust pipeline for the generation of zebrafish models with precise integration of small DNA sequences and point mutations at the desired sites in the genome. Our screening method is very efficient and easy to implement as it is PCR-based and only requires access to a capillary sequencer.
Collapse
Affiliation(s)
- Blake Carrington
- Translational and Functional Genomics Branch, Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ramanagouda Ramanagoudr-Bhojappa
- Cancer Genetics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Erica Bresciani
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tae-Un Han
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Raman Sood
- Translational and Functional Genomics Branch, Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Isa T, Marquez-Legorreta E, Grillner S, Scott EK. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr Biol 2021; 31:R741-R762. [PMID: 34102128 DOI: 10.1016/j.cub.2021.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The superior colliculus, or tectum in the case of non-mammalian vertebrates, is a part of the brain that registers events in the surrounding space, often through vision and hearing, but also through electrosensation, infrared detection, and other sensory modalities in diverse vertebrate lineages. This information is used to form maps of the surrounding space and the positions of different salient stimuli in relation to the individual. The sensory maps are arranged in layers with visual input in the uppermost layer, other senses in deeper positions, and a spatially aligned motor map in the deepest layer. Here, we will review the organization and intrinsic function of the tectum/superior colliculus and the information that is processed within tectal circuits. We will also discuss tectal/superior colliculus outputs that are conveyed directly to downstream motor circuits or via the thalamus to cortical areas to control various aspects of behavior. The tectum/superior colliculus is evolutionarily conserved among all vertebrates, but tailored to the sensory specialties of each lineage, and its roles have shifted with the emergence of the cerebral cortex in mammals. We will illustrate both the conserved and divergent properties of the tectum/superior colliculus through vertebrate evolution by comparing tectal processing in lampreys belonging to the oldest group of extant vertebrates, larval zebrafish, rodents, and other vertebrates including primates.
Collapse
Affiliation(s)
- Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, 606-8501, Japan
| | | | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Ethan K Scott
- The Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
7
|
Hildebrandt C, Fulton A, Rodan LH. Homozygous deletion of 21q22.2 in a patient with hypotonia, developmental delay, cortical visual impairment, and retinopathy. Am J Med Genet A 2020; 185:555-560. [PMID: 33170561 DOI: 10.1002/ajmg.a.61969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/09/2022]
Abstract
21q22 contains several dosage sensitive genes that are important in neurocognitive development. Determining impacts of gene dosage alterations in this region can be useful in establishing contributions of these genes to human development and disease. We describe a 15-month-old girl with a 1,140 kb homozygous deletion in the Down Syndrome Critical Region at 21q22.2 including 4 genes; B3GALT5, IGSF5, PCP4, DSCAM, and a microRNA (MIR4760). Clinical singleton genome sequencing did not report any candidate gene variants for the patient's phenotype. She presented with hypotonia, global developmental delay, cortical visual impairment, and mild facial dysmorphism. Ophthalmological exam was suggestive of retinopathy. We propose that the absence of DSCAM and PCP4 may contribute to the patient's neurological and retinal phenotype, while the role of absent B3GALT5 and IGSF5 in her presentation remain unclear at this time.
Collapse
Affiliation(s)
- Clara Hildebrandt
- Medical Biochemical Fellowship at Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anne Fulton
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lance H Rodan
- Department of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Ma M, Kler S, Pan YA. Structural Neural Connectivity Analysis in Zebrafish With Restricted Anterograde Transneuronal Viral Labeling and Quantitative Brain Mapping. Front Neural Circuits 2020; 13:85. [PMID: 32038180 PMCID: PMC6989443 DOI: 10.3389/fncir.2019.00085] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
The unique combination of small size, translucency, and powerful genetic tools makes larval zebrafish a uniquely useful vertebrate system to investigate normal and pathological brain structure and function. While functional connectivity can now be assessed by optical imaging (via fluorescent calcium or voltage reporters) at the whole-brain scale, it remains challenging to systematically determine structural connections and identify connectivity changes during development or disease. To address this, we developed Tracer with Restricted Anterograde Spread (TRAS), a novel vesicular stomatitis virus (VSV)-based neural circuit labeling approach. TRAS makes use of replication-incompetent VSV (VSVΔG) and a helper virus (lentivirus) to enable anterograde transneuronal spread between efferent axons and their direct postsynaptic targets but restricts further spread to downstream areas. We integrated TRAS with the Z-Brain zebrafish 3D atlas for quantitative connectivity analysis and identified targets of the retinal and habenular efferent projections, in patterns consistent with previous reports. We compared retinofugal connectivity patterns between wild-type and down syndrome cell adhesion molecule-like 1 (dscaml1) mutant zebrafish and revealed differences in topographical distribution. These results demonstrate the utility of TRAS for quantitative structural connectivity analysis that would be valuable for detecting novel efferent targets and mapping connectivity changes underlying neurological or behavioral deficits.
Collapse
Affiliation(s)
- Manxiu Ma
- Center for Neurobiology Research, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Stanislav Kler
- Center for Neurobiology Research, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Y Albert Pan
- Center for Neurobiology Research, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|