1
|
Walia V, Wal P, Mishra S, Agrawal A, Kosey S, Dilipkumar Patil A. Potential role of oxytocin in the regulation of memories and treatment of memory disorders. Peptides 2024; 177:171222. [PMID: 38649032 DOI: 10.1016/j.peptides.2024.171222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Oxytocin (OXT) is an "affiliative" hormone or neurohormone or neuropeptide consists of nine amino acids, synthesized in magnocellular neurons of paraventricular (PVN) and supraoptic nuclei (SON) of hypothalamus. OXT receptors are widely distributed in various region of brain and OXT has been shown to regulate various social and nonsocial behavior. Hippocampus is the main region which regulates the learning and memory. Hippocampus particularly regulates the acquisition of new memories and retention of acquired memories. OXT has been shown to regulate the synaptic plasticity, neurogenesis, and consolidation of memories. Further, findings from both preclinical and clinical studies have suggested that the OXT treatment improves performance in memory related task. Various trials have suggested the positive impact of intranasal OXT in the dementia patients. However, these studies are limited in number. In the present study authors have highlighted the role of OXT in the formation and retrieval of memories. Further, the study demonstrated the outcome of OXT treatment in various memory and related disorders.
Collapse
Affiliation(s)
- Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India.
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, UP 209305, India
| | - Shweta Mishra
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Ankur Agrawal
- Jai Institute of Pharmaceutical Sciences and Research, Gwalior, MP, India
| | - Sourabh Kosey
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Aditya Dilipkumar Patil
- Founder, Tech Hom Research Solutions (THRS), Plot no. 38, 1st floor, opposite to biroba mandir, near ST stand, Satara, Maharashtra 415110, India
| |
Collapse
|
2
|
Liu Y, Li A, Bair-Marshall C, Xu H, Jee HJ, Zhu E, Sun M, Zhang Q, Lefevre A, Chen ZS, Grinevich V, Froemke RC, Wang J. Oxytocin promotes prefrontal population activity via the PVN-PFC pathway to regulate pain. Neuron 2023; 111:1795-1811.e7. [PMID: 37023755 PMCID: PMC10272109 DOI: 10.1016/j.neuron.2023.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/02/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
Neurons in the prefrontal cortex (PFC) can provide top-down regulation of sensory-affective experiences such as pain. Bottom-up modulation of sensory coding in the PFC, however, remains poorly understood. Here, we examined how oxytocin (OT) signaling from the hypothalamus regulates nociceptive coding in the PFC. In vivo time-lapse endoscopic calcium imaging in freely behaving rats showed that OT selectively enhanced population activity in the prelimbic PFC in response to nociceptive inputs. This population response resulted from the reduction of evoked GABAergic inhibition and manifested as elevated functional connectivity involving pain-responsive neurons. Direct inputs from OT-releasing neurons in the paraventricular nucleus (PVN) of the hypothalamus are crucial to maintaining this prefrontal nociceptive response. Activation of the prelimbic PFC by OT or direct optogenetic stimulation of oxytocinergic PVN projections reduced acute and chronic pain. These results suggest that oxytocinergic signaling in the PVN-PFC circuit constitutes a key mechanism to regulate cortical sensory processing.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Chloe Bair-Marshall
- Skirball Institute for Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Helen Xu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Hyun Jung Jee
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Elaine Zhu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Mengqi Sun
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Arthur Lefevre
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Zhe Sage Chen
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Mekhael AA, Bent JE, Fawcett JM, Campbell TS, Aguirre-Camacho A, Farrell A, Rash JA. Evaluating the efficacy of oxytocin for pain management: An updated systematic review and meta-analysis of randomized clinical trials and observational studies. Can J Pain 2023; 7:2191114. [PMID: 37205278 PMCID: PMC10187080 DOI: 10.1080/24740527.2023.2191114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/14/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Background There is a need for novel analgesics with favorable risk to benefit profiles. Oxytocin has recently gained attention for its potential analgesic properties. Aim The aim of this study was to perform an updated systematic review and meta-analysis evaluating the effect of oxytocin for pain management. Method Ovid MEDLINE, Embase, PsycINFO, CINAHL, and Clinicaltrials.gov were searched for articles reporting on associations between oxytocin and chronic pain management from January 2012 to February 2022. Studies published before 2012 that were identified in our previous systematic review were also eligible. Risk of bias of included studies was assessed. Synthesis of results was performed using meta-analysis and narrative synthesis. Results Searches returned 2087 unique citations. In total, 14 articles were included that reported on 1504 people living with pain. Results from meta-analysis and narrative review were mixed. Meta-analysis of three studies indicated that exogenous oxytocin administration did not result in a significant reduction in pain intensity relative to placebo (N = 3; n = 95; g = 0.31; 95% confidence interval [CI] -0.10, 0.73). Narrative review provided encouraging evidence that exogenous oxytocin administration reduced pain sensitivity among individuals with back pain, abdominal pain, and migraines. Results suggested that individual difference factors (e.g., sex and chronic pain condition) may influence oxytocin-induced nociception, but the heterogeneity and limited number of studies identified precluded further investigation. Discussion There is equipoise for the benefit of oxytocin for pain management. Future studies are imperative and should undertake more precise exploration of potential confounds and mechanisms of analgesic action to clarify inconsistency in the literature.
Collapse
Affiliation(s)
- Anastasia A. Mekhael
- Department of Psychology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Jennifer E. Bent
- Division of Community Health and Humanities, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Jonathan M. Fawcett
- Department of Psychology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Tavis S. Campbell
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Aldo Aguirre-Camacho
- School of Biomedical Sciences, European University of Madrid, Villaviciosa de Odón Madrid, Madrid, Spain
- Department of Psychology, Cardenal Cisneros University College, Madrid, Spain
| | - Alison Farrell
- Memorial University Libraries, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Joshua A. Rash
- Department of Psychology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
4
|
Baričević Z, Ayar Z, Leitao SM, Mladinic M, Fantner GE, Ban J. Label-Free Long-Term Methods for Live Cell Imaging of Neurons: New Opportunities. BIOSENSORS 2023; 13:404. [PMID: 36979616 PMCID: PMC10046152 DOI: 10.3390/bios13030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Time-lapse light microscopy combined with in vitro neuronal cultures has provided a significant contribution to the field of Developmental Neuroscience. The establishment of the neuronal polarity, i.e., formation of axons and dendrites, key structures responsible for inter-neuronal signaling, was described in 1988 by Dotti, Sullivan and Banker in a milestone paper that continues to be cited 30 years later. In the following decades, numerous fluorescently labeled tags and dyes were developed for live cell imaging, providing tremendous advancements in terms of resolution, acquisition speed and the ability to track specific cell structures. However, long-term recordings with fluorescence-based approaches remain challenging because of light-induced phototoxicity and/or interference of tags with cell physiology (e.g., perturbed cytoskeletal dynamics) resulting in compromised cell viability leading to cell death. Therefore, a label-free approach remains the most desirable method in long-term imaging of living neurons. In this paper we will focus on label-free high-resolution methods that can be successfully used over a prolonged period. We propose novel tools such as scanning ion conductance microscopy (SICM) or digital holography microscopy (DHM) that could provide new insights into live cell dynamics during neuronal development and regeneration after injury.
Collapse
Affiliation(s)
- Zrinko Baričević
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.M.)
| | - Zahra Ayar
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland; (Z.A.); (S.M.L.)
| | - Samuel M. Leitao
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland; (Z.A.); (S.M.L.)
| | - Miranda Mladinic
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.M.)
| | - Georg E. Fantner
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland; (Z.A.); (S.M.L.)
| | - Jelena Ban
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.M.)
| |
Collapse
|
5
|
Triana-Del Rio R, Ranade S, Guardado J, LeDoux J, Klann E, Shrestha P. The modulation of emotional and social behaviors by oxytocin signaling in limbic network. Front Mol Neurosci 2022; 15:1002846. [PMID: 36466805 PMCID: PMC9714608 DOI: 10.3389/fnmol.2022.1002846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2024] Open
Abstract
Neuropeptides can exert volume modulation in neuronal networks, which account for a well-calibrated and fine-tuned regulation that depends on the sensory and behavioral contexts. For example, oxytocin (OT) and oxytocin receptor (OTR) trigger a signaling pattern encompassing intracellular cascades, synaptic plasticity, gene expression, and network regulation, that together function to increase the signal-to-noise ratio for sensory-dependent stress/threat and social responses. Activation of OTRs in emotional circuits within the limbic forebrain is necessary to acquire stress/threat responses. When emotional memories are retrieved, OTR-expressing cells act as gatekeepers of the threat response choice/discrimination. OT signaling has also been implicated in modulating social-exposure elicited responses in the neural circuits within the limbic forebrain. In this review, we describe the cellular and molecular mechanisms that underlie the neuromodulation by OT, and how OT signaling in specific neural circuits and cell populations mediate stress/threat and social behaviors. OT and downstream signaling cascades are heavily implicated in neuropsychiatric disorders characterized by emotional and social dysregulation. Thus, a mechanistic understanding of downstream cellular effects of OT in relevant cell types and neural circuits can help design effective intervention techniques for a variety of neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Sayali Ranade
- Department of Neurobiology and Behavior, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Jahel Guardado
- Center for Neural Science, New York University, New York, NY, United States
| | - Joseph LeDoux
- Center for Neural Science, New York University, New York, NY, United States
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, United States
| | - Prerana Shrestha
- Department of Neurobiology and Behavior, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
6
|
Rash JA, Campbell TS, Cooper L, Flusk D, MacInnes A, Nasr-Esfahani M, Mekhael AA, Poulin PA, Robert M, Yi Y. Evaluating the efficacy of intranasal oxytocin on pain and function among individuals who experience chronic pain: a protocol for a multisite, placebo-controlled, blinded, sequential, within-subjects crossover trial. BMJ Open 2021; 11:e055039. [PMID: 34556520 PMCID: PMC8461687 DOI: 10.1136/bmjopen-2021-055039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Current treatments for chronic pain (eg, opioids) can have adverse side effects and rarely result in resolution of pain. As such, there is a need for adjuvant analgesics that are non-addictive, have few adverse side effects and are effective for pain management across several chronic pain conditions. Oxytocin is a naturally occurring hormone that has gained attention for its potential analgesic properties. The objective of this trial is to evaluate the efficacy of intranasal oxytocin on pain and function among adults with chronic pain. METHODS AND ANALYSIS This is a placebo-controlled, triple-blind, sequential, within-subject crossover trial. Adults with chronic neuropathic, pelvic and musculoskeletal pain will be recruited from three Canadian provinces (British Columbia, Alberta and Newfoundland and Labrador, respectively). Enrolled patients will provide one saliva sample pretreatment to evaluate basal oxytocin levels and polymorphisms of the oxytocin receptor gene before being randomised to one of two trial arms. Patients will self-administer three different oxytocin nasal sprays twice daily for a period of 2 weeks (ie, 24 IU, 48 IU and placebo). Patients will complete daily diaries, including standardised measures on day 1, day 7 and day 14. Primary outcomes include pain and pain-related interference. Secondary outcomes include emotional function, sleep disturbance and global impression of change. Intention-to-treat analyses will be performed to evaluate whether improvement in pain and physical function will be observed posttreatment. ETHICS AND DISSEMINATION Trial protocols were approved by the Newfoundland and Labrador Health Research Ethics Board (HREB #20227), University of British Columbia Clinical Research Ethics Board (CREB #H20-00729), University of Calgary Conjoint Health Research Ethics Board (REB20 #0359) and Health Canada (Control # 252780). Results will be disseminated through publication in peer-reviewed journals and presentations at scientific conferences. TRIAL REGISTRATION NUMBER NCT04903002; Pre-results.
Collapse
Affiliation(s)
- Joshua A Rash
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Tavis S Campbell
- Department of Psychology, Faculty of Arts, University of Calgary, Calgary, Alberta, Canada
| | - Lynn Cooper
- Canadian Injured Workers Alliance, Thunder Bay, Ontario, Canada
| | - David Flusk
- Anesthesia and Pain Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Aaron MacInnes
- Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maryam Nasr-Esfahani
- Department of Anesthesiology, Perioperative and Pain Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Obstetrics and Gynecology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anastasia A Mekhael
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Patricia A Poulin
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Ottawa, Ottawa, Ontario, Canada
- The Ottawa Hospital Pain Clinic, Ottawa, Ontario, Canada
| | - Magali Robert
- Department of Anesthesiology, Perioperative and Pain Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Obstetrics and Gynecology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yanqing Yi
- Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
7
|
Yang LN, Chen K, Yin XP, Liu D, Zhu LQ. The Comprehensive Neural Mechanism of Oxytocin in Analgesia. Curr Neuropharmacol 2021; 20:147-157. [PMID: 34525934 PMCID: PMC9199553 DOI: 10.2174/1570159x19666210826142107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/19/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022] Open
Abstract
Oxytocin (OXT) is a nine amino acid neuropeptide hormone that has become one of the most intensively studied molecules in the past few decades. The vast majority of OXT is synthesized in the periventricular nucleus and supraoptic nucleus of the hypothalamus, and a few are synthesized in some peripheral organs (such as the uterus, ovaries, adrenal glands, thymus, pancreas, etc.) OXT modulates a series of physiological processes, including lactation, parturition, as well as some social behaviors. In addition, more and more attention has recently been focused on the analgesic effects of oxytocin. It has been reported that OXT can relieve tension and pain without other adverse effects. However, the critical role and detailed mechanism of OXT in analgesia remain unclear. This review aims to summarize the mechanism of OXT in analgesia and some ideas about the mechanism.
Collapse
Affiliation(s)
- Liu-Nan Yang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030. China
| | - Kai Chen
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030. China
| | - Xiao-Ping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang. China
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030. China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030. China
| |
Collapse
|
8
|
Madrigal MP, Jurado S. Specification of oxytocinergic and vasopressinergic circuits in the developing mouse brain. Commun Biol 2021; 4:586. [PMID: 33990685 PMCID: PMC8121848 DOI: 10.1038/s42003-021-02110-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Oxytocin (OXT) and arginine vasopressin (AVP) support a broad range of behaviors and homeostatic functions including sex-specific and context-appropriate social behaviors. Although the alterations of these systems have been linked with social-related disorders such as autism spectrum disorder, their formation and developmental dynamics remain largely unknown. Using novel brain clearing techniques and 3D imaging, we have reconstructed the specification of oxytocinergic and vasopressinergic circuits in the developing mouse brain with unprecedented cellular resolution. A systematic quantification indicates that OXT and AVP neurons in the hypothalamus display distinctive developmental dynamics and high cellular plasticity from embryonic to early postnatal stages. Our findings reveal new insights into the specification and consolidation of neuropeptidergic systems in the developing CNS.
Collapse
Affiliation(s)
- María Pilar Madrigal
- grid.466805.90000 0004 1759 6875Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Alicante, Spain
| | - Sandra Jurado
- grid.466805.90000 0004 1759 6875Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
9
|
Biurrun Manresa JA, Schliessbach J, Vuilleumier PH, Müller M, Musshoff F, Stamer U, Stüber F, Arendt-Nielsen L, Curatolo M. Anti-nociceptive effects of oxytocin receptor modulation in healthy volunteers-A randomized, double-blinded, placebo-controlled study. Eur J Pain 2021; 25:1723-1738. [PMID: 33884702 DOI: 10.1002/ejp.1781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/09/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND There is increasing evidence for oxytocin as a neurotransmitter in spinal nociceptive processes. Hypothalamic oxytocinergic neurons project to the spinal dorsal horn, where they activate GABA-ergic inhibitory interneurons. The present study tested whether the long-acting oxytocin-analogue carbetocin has anti-nociceptive effects in multi-modal experimental pain in humans. METHODS Twenty-five male volunteers received carbetocin 100 mcg and placebo (0.9% NaCl) on two different sessions in a randomized, double-blinded, cross-over design. Multi-modal quantitative sensory testing (QST) including a model of capsaicin-induced hyperalgesia and allodynia were performed at baseline and at 10, 60 and 120 min after drug administration. QST data were analysed using mixed linear and logistic regression models. Carbetocin plasma concentrations and oxytocin receptor genotypes were quantified and assessed in an exploratory fashion. RESULTS An anti-nociceptive effect of carbetocin was observed on intramuscular electrical temporal summation (estimated difference: 1.26 mA, 95% CI 1.01 to 1.56 mA, p = .04) and single-stimulus electrical pain thresholds (estimated difference: 1.21 mA, 95% CI 1.0 to 1.47 mA, p = .05). Furthermore, the area of capsaicin-induced allodynia was reduced after carbetocin compared to placebo (estimated difference: -6.5 cm2 , 95% CI -9.8 to -3.2 cm2 , p < .001). CONCLUSIONS This study provides evidence of an anti-nociceptive effect of carbetocin on experimental pain in humans. SIGNIFICANCE This study provides evidence of the anti-nociceptive effect of intravenous administration of the oxytocin agonist carbetocin in healthy male volunteers.
Collapse
Affiliation(s)
- José A Biurrun Manresa
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB), CONICET-UNER, Oro Verde, Argentina
| | - Jürg Schliessbach
- Department of Anesthesiology and Pain Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Anesthesiology, University Hospital of Zurich, Zurich, Switzerland
| | - Pascal H Vuilleumier
- Department of Anesthesiology and Pain Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.,Clinic of Anesthesiology, Intensive Care and Pain Medicine, Hirslandenklinik St. Anna, Lucerne, Switzerland
| | - Monika Müller
- Department of Anesthesiology and Pain Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.,Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | | | - Ulrike Stamer
- Department of Anesthesiology and Pain Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Frank Stüber
- Department of Anesthesiology and Pain Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lars Arendt-Nielsen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Michele Curatolo
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Department of Anesthesiology and Pain Therapy, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Barahimi P, Karimian M, Nejati M, Azami Tameh A, Atlasi MA. Oxytocin improves ischemic stroke by reducing expression of excitatory amino acid transporter 3 in rat MCAO model. J Immunoassay Immunochem 2021; 42:513-524. [PMID: 33788672 DOI: 10.1080/15321819.2021.1906270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Various molecular mechanisms are activated in neurons during ischemic stroke. Extracellular glutamate secretion into brain tissue causes neurotoxicity and brain damage. Excitatory amino acid transporter 3 (EAAT3) could remove the extracellular glutamate. Neuroprotective activity of oxytocin (OT) in ischemia of various tissues has been reported. This study investigates the neuroprotective effect of OT in an animal model of middle cerebral artery occlusion (MCAO) and the possible role of EAAT3. Transient MCAO was performed as a model of ischemic stroke in male rats and then OT was administrated intra-nasally. Infarct volume was measured by 2, 3, 5-triphenyl tetrazolium chloride staining. Nissl staining method was performed for the evaluation of neuronal cell morphology. Immunohistochemistry assay was performed to analyze the EAAT3 expression in the ischemic region. OT significantly reduced the infarct volume in the cerebral cortex and striatum after ischemia (P< .05). In addition, OT reduces the number of neurons with pyknotic nuclei that are significantly increased in the ischemic region (P< .01) Immunohistochemistry results showed that although EAAT3 expression increased after ischemia, OT therapy increased EAAT3 expression further (P< .05). Therefore, increased EAAT3 expression could be one of the neuroprotective mechanisms of OT after MCAO.
Collapse
Affiliation(s)
- Parinaz Barahimi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Core Research Laboratory, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
11
|
Baumgart SBE, Baumbach-Kraft A, Lorenz J. Effect of Psycho-Regulatory Massage Therapy on Pain and Depression in Women with Chronic and/or Somatoform Back Pain: A Randomized Controlled Trial. Brain Sci 2020; 10:E721. [PMID: 33053728 PMCID: PMC7601155 DOI: 10.3390/brainsci10100721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 02/03/2023] Open
Abstract
Chronic unspecific back pain (cBP) is often associated with depressive symptoms, negative body perception, and abnormal interoception. Given the general failure of surgery in cBP, treatment guidelines focus on conservative therapies. Neurophysiological evidence indicates that C-tactile fibers associated with the oxytonergic system can be activated by slow superficial stroking of the skin in the back, shoulder, neck, and dorsal limb areas. We hypothesize that, through recruitment of C-tactile fibers, psycho-regulatory massage therapy (PRMT) can reduce pain in patients with cBP. In our study, 66 patients were randomized to PRMT or CMT (classical massage therapy) over a 12-week period and tested by questionnaires regarding pain (HSAL= Hamburger Schmerz Adjektiv Liste; Hamburg Pain adjective list), depression (BDI-II = Beck depression inventory), and disability (ODI = Oswestry Disability Index). In all outcome measures, patients receiving PRMT improved significantly more than did those receiving CMT. The mean values of the HSAL sensory subscale decreased by -51.5% in the PRMT group compared to -6.7% in the CMT group. Depressive symptoms were reduced by -55.69% (PRMT) and -3.1% (CMT), respectively. The results suggest that the superiority of PRMT over CMT may rely on its ability to activate the C-tactile fibers of superficial skin layers, recruiting the oxytonergic system.
Collapse
Affiliation(s)
- Sabine B.-E. Baumgart
- Faculty of Medicine, Institute for Health and Nursing Sciences, Martin Luther University Halle-Wittenberg, 06108 Halle, Germany
| | | | - Juergen Lorenz
- Department of Biomedical Engineering, Faculty of Life Science, University of Applied Sciences, 21033-Hamburg, Germany;
| |
Collapse
|
12
|
Oxytocin prevents neuronal network pain-related changes on spinal cord dorsal horn in vitro. Cell Calcium 2020; 90:102246. [PMID: 32590238 DOI: 10.1016/j.ceca.2020.102246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022]
Abstract
Recently, oxytocin (OT) has been studied as a potential modulator of endogenous analgesia by acting upon pain circuits at the spinal cord and supraspinal levels. Yet the detailed action mechanisms of OT are still undetermined. The present study aimed to evaluate the action of OT in the spinal cord dorsal horn network under nociceptive-like conditions induced by the activation of the N-methyl-d-aspartate (NMDA) receptor and formalin injection, using calcium imaging techniques. Results demonstrate that the spontaneous Ca2+-dependent activity of the dorsal horn cells was scarce, and the coactivity of cells was mainly absent. When NMDA was applied, high rates of activity and coactivity occurred in the dorsal horn cells; these rates of high activity mimicked the activity dynamics evoked by a neuropathic pain condition. In addition, although OT treatment increased activity rates, it was also capable of disrupting the conformation of coordinated activity previously consolidated by NMDA treatment, without showing any effect by itself. Altogether, our results suggest that OT globally prevents the formation of coordinated patterns previously generated by nociceptive-like conditions on dorsal horn cells by NMDA application, which supports previous evidence showing that OT represents a potential therapeutic alternative for the treatment of chronic neuropathic pain.
Collapse
|
13
|
Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II-Comparison with Those of Other Endogenous Pain Modulators. Pharmaceuticals (Basel) 2019; 12:ph12030136. [PMID: 31527474 PMCID: PMC6789548 DOI: 10.3390/ph12030136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/31/2019] [Accepted: 09/12/2019] [Indexed: 01/23/2023] Open
Abstract
Much evidence indicates that hypothalamus-derived neuropeptides, oxytocin, orexins A and B, inhibit nociceptive transmission in the rat spinal dorsal horn. In order to unveil cellular mechanisms for this antinociception, the effects of the neuropeptides on synaptic transmission were examined in spinal lamina II neurons that play a crucial role in antinociception produced by various analgesics by using the whole-cell patch-clamp technique and adult rat spinal cord slices. Oxytocin had no effect on glutamatergic excitatory transmission while producing a membrane depolarization, γ-aminobutyric acid (GABA)-ergic and glycinergic spontaneous inhibitory transmission enhancement. On the other hand, orexins A and B produced a membrane depolarization and/or a presynaptic spontaneous excitatory transmission enhancement. Like oxytocin, orexin A enhanced both GABAergic and glycinergic transmission, whereas orexin B facilitated glycinergic but not GABAergic transmission. These inhibitory transmission enhancements were due to action potential production. Oxytocin, orexins A and B activities were mediated by oxytocin, orexin-1 and orexin-2 receptors, respectively. This review article will mention cellular mechanisms for antinociception produced by oxytocin, orexins A and B, and discuss similarity and difference in antinociceptive mechanisms among the hypothalamic neuropeptides and other endogenous pain modulators (opioids, nociceptin, adenosine, adenosine 5’-triphosphate (ATP), noradrenaline, serotonin, dopamine, somatostatin, cannabinoids, galanin, substance P, bradykinin, neuropeptide Y and acetylcholine) exhibiting a change in membrane potential, excitatory or inhibitory transmission in the spinal lamina II neurons.
Collapse
|
14
|
Saito N, Shima R, Yen CT, Yang RC, Ito E, Yoshioka T. Adhesive pyramidal thorn patches provide pain relief to athletes. Kaohsiung J Med Sci 2019; 35:230-237. [PMID: 30887714 DOI: 10.1002/kjm2.12044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
Pain in athletes is ideally treated without systemic medicine. Therefore, complementary and alternative medicine, including patch treatments, is often used. The physiologic mechanisms of pain relief produced by patch treatment, however, are not well elucidated. In the present study, we introduce a pyramidal thorn (PT) patch that we developed, demonstrate the effects of this PT patch for the treatment of various types of pain in 300 subjects, and suggest a physiologic mechanism for the pain relief effects. One treatment with the PT patch effectively relieved pain in almost half the subjects evaluated. Except for pain generated deeply under the skin, such as low-back pain, pain was eliminated within four treatments with the PT patch in almost all of the subjects. Interestingly, the pain-sensing region moved along the nerve fibers after each trial. Further, patches without PT also provided some pain relief. We considered that this effect was due to hair deflection on the skin; that is, adhesion of the PT patch activates Merkel cells directly as well as Merkel cell-neurite complexes around the hair follicles by deflecting the hair follicles, whereas adhesion of a patch without PT only activates the Merkel cell-neurite complexes. In any case, patch adhesion stimulates Aβ fibers to alleviate pain. Finally, we found that the pain threshold is increased by electric stimulation, suggesting that the gentle adhesion of a PT patch would be more effective. To our knowledge, this is the first study to demonstrate physiologically the validity of an adherent patch for pain relief.
Collapse
Affiliation(s)
- Norio Saito
- Research Institute for Elderly Health, Waseda University, Tokorozawa, Saitama, Japan.,Tokai Acupuncture Moxibustion Traditional Medicine Clinic, Numazu, Shizuoka, Japan
| | - Rei Shima
- Department of Biology, Waseda University, Tokyo, Japan
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Rei-Cheng Yang
- Department of Pediatrics, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan.,Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Tohru Yoshioka
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| |
Collapse
|
15
|
Ates T, Oncul M, Dilsiz P, Topcu IC, Civas CC, Alp MI, Aklan I, Ates Oz E, Yavuz Y, Yilmaz B, Sayar Atasoy N, Atasoy D. Inactivation of Magel2 suppresses oxytocin neurons through synaptic excitation-inhibition imbalance. Neurobiol Dis 2018; 121:58-64. [PMID: 30240706 DOI: 10.1016/j.nbd.2018.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 12/28/2022] Open
Abstract
Prader-Willi and the related Schaaf-Yang Syndromes (PWS/SYS) are rare neurodevelopmental disorders characterized by overlapping phenotypes of high incidence of autism spectrum disorders (ASD) and neonatal feeding difficulties. Based on clinical and basic studies, oxytocin pathway defects are suggested to contribute disease pathogenesis but the mechanism has been poorly understood. Specifically, whether the impairment in oxytocin system is limited to neuropeptide levels and how the functional properties of broader oxytocin neuron circuits affected in PWS/SYS have not been addressed. Using cell type specific electrophysiology, we investigated basic synaptic and cell autonomous properties of oxytocin neurons in the absence of MAGEL2; a hypothalamus enriched ubiquitin ligase regulator that is inactivated in both syndromes. We observed significant suppression of overall ex vivo oxytocin neuron activity, which was largely contributed by altered synaptic input profile; with reduced excitatory and increased inhibitory currents. Our results suggest that dysregulation of oxytocin system goes beyond altered neuropeptide expression and synaptic excitation inhibition imbalance impairs overall oxytocin pathway function.
Collapse
Affiliation(s)
- Tayfun Ates
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Merve Oncul
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Pelin Dilsiz
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Iskalen Cansu Topcu
- Department of Physiology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Cihan Civan Civas
- Department of Physiology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Muhammed Ikbal Alp
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Iltan Aklan
- Department of Physiology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Edanur Ates Oz
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Yavuz Yavuz
- Department of Physiology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Bayram Yilmaz
- Department of Physiology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Nilufer Sayar Atasoy
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Deniz Atasoy
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
16
|
Shaib AH, Staudt A, Harb A, Klose M, Shaaban A, Schirra C, Mohrmann R, Rettig J, Becherer U. Paralogs of the Calcium-Dependent Activator Protein for Secretion Differentially Regulate Synaptic Transmission and Peptide Secretion in Sensory Neurons. Front Cell Neurosci 2018; 12:304. [PMID: 30254567 PMCID: PMC6141663 DOI: 10.3389/fncel.2018.00304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022] Open
Abstract
The two paralogs of the calcium-dependent activator protein for secretion (CAPS) are priming factors for synaptic vesicles (SVs) and neuropeptide containing large dense-core vesicles (LDCVs). Yet, it is unclear whether CAPS1 and CAPS2 regulate exocytosis of these two vesicle types differentially in dorsal root ganglion (DRG) neurons, wherein synaptic transmission and neuropeptide release are of equal importance. These sensory neurons transfer information from the periphery to the spinal cord (SC), releasing glutamate as the primary neurotransmitter, with co-transmission via neuropeptides in a subset of so called peptidergic neurons. Neuropeptides are key components of the information-processing machinery of pain perception and neuropathic pain generation. Here, we compared the ability of CAPS1 and CAPS2 to support priming of both vesicle types in single and double knock-out mouse (DRG) neurons using a variety of high-resolution live cell imaging methods. While CAPS1 was localized to synapses of all DRG neurons and promoted synaptic transmission, CAPS2 was found exclusively in peptidergic neurons and mediated LDCV exocytosis. Intriguingly, ectopic expression of CAPS2 empowered non-peptidergic neurons to drive LDCV fusion, thereby identifying CAPS2 as an essential molecular determinant for peptidergic signaling. Our results reveal that these distinct functions of both CAPS paralogs are based on their differential subcellular localization in DRG neurons. Our data suggest a major role for CAPS2 in neuropathic pain via control of neuropeptide release.
Collapse
Affiliation(s)
- Ali H. Shaib
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Angelina Staudt
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Ali Harb
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
- ZHMB Junior Group, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Margarete Klose
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Ahmed Shaaban
- ZHMB Junior Group, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Claudia Schirra
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Ralf Mohrmann
- ZHMB Junior Group, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Jens Rettig
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Ute Becherer
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| |
Collapse
|
17
|
Boll S, Almeida de Minas A, Raftogianni A, Herpertz S, Grinevich V. Oxytocin and Pain Perception: From Animal Models to Human Research. Neuroscience 2018; 387:149-161. [DOI: 10.1016/j.neuroscience.2017.09.041] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/14/2017] [Accepted: 09/24/2017] [Indexed: 11/24/2022]
|
18
|
Molecular Mechanisms of Oxytocin Signaling at the Synaptic Connection. Neural Plast 2018; 2018:4864107. [PMID: 30057594 PMCID: PMC6051047 DOI: 10.1155/2018/4864107] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/27/2018] [Indexed: 12/12/2022] Open
Abstract
Aberrant regulation of oxytocin signaling is associated with the etiology of neurodevelopmental disorders. Synaptic dysfunctions in neurodevelopmental disorders are becoming increasingly known, and their pathogenic mechanisms could be a target of potential therapeutic intervention. Therefore, it is important to pay attention to the role of oxytocin and its receptor in synapse structure, function, and neuron connectivity. An early alteration in oxytocin signaling may disturb neuronal maturation and may have short-term and long-term pathological consequences. At the molecular level, neurodevelopmental disorders include alterations in cytoskeletal rearrangement and neuritogenesis resulting in a diversity of synaptopathies. The presence of oxytocin receptors in the presynaptic and postsynaptic membranes and the direct effects of oxytocin on neuronal excitability by regulating the activity of ion channels in the cell membrane implicate that alterations in oxytocin signaling could be involved in synaptopathies. The ability of oxytocin to modulate neurogenesis, synaptic plasticity, and certain parameters of cytoskeletal arrangement is discussed in the present review.
Collapse
|
19
|
Jalali M, Zendehdel M, Babapour V, Gilanpour H. Interaction Between Central Oxytocinergic and Glutamatergic Systems on Food Intake in Neonatal Chicks: Role of NMDA and AMPA Receptors. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9664-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
CB 1 Receptors Mediated Inhibition of ATP-Induced [Ca 2+]i Increase in Cultured Rat Spinal Dorsal Horn Neurons. Neurochem Res 2017; 43:267-275. [PMID: 29127599 DOI: 10.1007/s11064-017-2414-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/25/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Spinal cannabinoid receptor 1 (CB1R) and purinergic P2X receptors (P2XR) play a critical role in the process of pathological pain. Both CB1R and P2XR are expressed in spinal dorsal horn (DH) neurons. It is not clear whether CB1 receptor activation modulates the function of P2X receptor channels within dorsal horn. For this reason, we observed the effect of CP55940 (cannabinoid receptor agonist) on ATP-induced Ca2+ mobilization in cultured rat DH neurons. The changes of intracellular calcium concentration ([Ca2+]i) were detected with confocal laser scanning microscopy using fluo-4/AM as a calcium fluorescent indicator. 100 μM ATP caused [Ca2+]i increase in cultured DH neurons. ATP-evoked [Ca2+]i increase in DH neurons was blocked by chelating extracellular Ca2+ and P2 purinoceptor antagonist PPADS. At the same time, ATP-γ-S (a non-hydrolyzable ATP analogue) mimicked the ATP action, while P2Y receptor agonist ADP failed to evoke [Ca2+]i increase in cultured DH neurons. These data suggest that ATP-induced [Ca2+]i elevation in cultured DH neurons is mediated by P2X receptor. Subsequently, we noticed that, in cultured rat DH neurons, ATP-induced Ca2+ mobilization was inhibited after pretreated with CP55940 with a concentration-dependent manner, which implies that the opening of P2X receptor channels are down-regulated by activation of cannabinoid receptor. The inhibitory effect of CP55940 on ATP-induced Ca2+ response was mimicked by ACEA (CB1R agonist), but was not influenced by AM1241 (CB2R agonist). Moreover, the inhibitory effect of CP55940 on ATP-induced Ca2+ mobilization was blocked by AM251 (CB1 receptor antagonist), but was not influenced by AM630 (CB2 receptor antagonist). In addition, we also observed that forskolin (an activator of adenylate cyclase) and 8-Br-cAMP (a cell-permeable cAMP analog) reversed the inhibitory effect of CP55940, respectively. In a summary, our observations raise a possibility that CB1R rather than CB2R can downregulate the opening of P2X receptor channels in DH neurons. The reduction of cAMP/PKA signaling is a key element in the inhibitory effect of CB1R on P2X-channel-induced Ca2+ mobilization.
Collapse
|
21
|
Jamieson BB, Nair BB, Iremonger KJ. Regulation of hypothalamic corticotropin-releasing hormone neurone excitability by oxytocin. J Neuroendocrinol 2017; 29. [PMID: 28872712 DOI: 10.1111/jne.12532] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 02/01/2023]
Abstract
Oxytocin (OT) is a neuropeptide that exerts multiple actions throughout the brain and periphery. Within the brain, OT regulates diverse neural populations, including neural networks controlling responses to stress. Local release of OT within the paraventricular nucleus (PVN) of the hypothalamus has been suggested to regulate stress responses by modulating the excitability of neighbouring corticotropin-releasing hormone (CRH) neurones. However, the mechanisms by which OT regulates CRH neurone excitability are unclear. In the present study, we investigated the morphological relationship between OT and CRH neurones and determined the effects of OT on CRH neurone excitability. Morphological analysis revealed that the processes of OT and CRH neurones were highly intermingled within the PVN, possibly allowing for local cell-to-cell cross-talk. Whole-cell patch-clamp recordings from CRH neurones were used to study the impact of OT on postsynaptic excitability and synaptic innervation. Bath-applied OT did not alter CRH neurone holding current, spiking output or any action potential parameters. Recordings of evoked excitatory and inhibitory postsynaptic currents (EPSCs/IPSCs) revealed no net effect of OT on current amplitude; however, subgroups of CRH neurones appeared to respond differentially to OT. Analysis of spontaneous EPSC events uncovered a significant reduction in spontaneous EPSC frequency but no change in spontaneous EPSC amplitude in response to OT. Together, these data demonstrate that OT exerts a subtle modulation of synaptic transmission onto CRH neurones providing one potential mechanism by which OT could suppress CRH neurone excitability and stress axis activity.
Collapse
Affiliation(s)
- B B Jamieson
- Department of Physiology, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - B B Nair
- Department of Physiology, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - K J Iremonger
- Department of Physiology, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Walker SC, Trotter PD, Swaney WT, Marshall A, Mcglone FP. C-tactile afferents: Cutaneous mediators of oxytocin release during affiliative tactile interactions? Neuropeptides 2017; 64:27-38. [PMID: 28162847 DOI: 10.1016/j.npep.2017.01.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 11/24/2022]
Abstract
Low intensity, non-noxious, stimulation of cutaneous somatosensory nerves has been shown to trigger oxytocin release and is associated with increased social motivation, plus reduced physiological and behavioural reactivity to stressors. However, to date, little attention has been paid to the specific nature of the mechanosensory nerves which mediate these effects. In recent years, the neuroscientific study of human skin nerves (microneurography studies on single peripheral nerve fibres) has led to the identification and characterisation of a class of touch sensitive nerve fibres named C-tactile afferents. Neither itch nor pain receptive, these unmyelinated, low threshold mechanoreceptors, found only in hairy skin, respond optimally to low force/velocity stroking touch. Notably, the speed of stroking which C-tactile afferents fire most strongly to is also that which people perceive to be most pleasant. The social touch hypothesis posits that this system of nerves has evolved in mammals to signal the rewarding value of physical contact in nurturing and social interactions. In support of this hypothesis, we review the evidence that cutaneous stimulation directly targeted to optimally activate C-tactile afferents reduces physiological arousal, carries a positive affective value and, under healthy conditions, inhibits responses to painful stimuli. These effects mirror those, we also review, which have been reported following endogenous release and exogenous administration of oxytocin. Taken together this suggests C-tactile afferent stimulation may mediate oxytocin release during affiliative tactile interactions.
Collapse
Affiliation(s)
- Susannah C Walker
- Research Centre for Brain & Behaviour, School of Natural Sciences & Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK..
| | - Paula D Trotter
- Research Centre for Brain & Behaviour, School of Natural Sciences & Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - William T Swaney
- Research Centre for Brain & Behaviour, School of Natural Sciences & Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Andrew Marshall
- Research Centre for Brain & Behaviour, School of Natural Sciences & Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK.; Department of Clinical Neurophysiology, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Francis P Mcglone
- Research Centre for Brain & Behaviour, School of Natural Sciences & Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK.; Institute of Psychology, Health and Society, University of Liverpool, UK
| |
Collapse
|
23
|
Rash JA, Toivonen K, Robert M, Nasr-Esfahani M, Jarrell JF, Campbell TS. Protocol for a placebo-controlled, within-participants crossover trial evaluating the efficacy of intranasal oxytocin to improve pain and function among women with chronic pelvic musculoskeletal pain. BMJ Open 2017; 7:e014909. [PMID: 28416501 PMCID: PMC5775465 DOI: 10.1136/bmjopen-2016-014909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION This protocol presents the rationale and design for a trial evaluating the efficacy of intranasal oxytocin in improving pain and function among women with chronic pelvic musculoskeletal pain. Oxytocin is a neuropeptide traditionally recognised for involvement in labour, delivery and lactation. Novel evidence suggests that oxytocin decreases pain sensitivity in humans. While oxytocin administration has been reported to lower pain sensitivity among patients experiencing chronic back pain, headache, constipation and colon pain, no research has evaluated the association between intranasal oxytocin and chronic pelvic musculoskeletal pain. The association between oxytocin and pain may differ in women with chronic pelvic musculoskeletal pain relative to other chronic pain conditions because of the abundance of oxytocin receptors in the uterus. METHODS AND ANALYSIS This is a prospective, randomised, placebo-controlled, double-blind, within-participants crossover trial. 50 women with chronic pelvic musculoskeletal pain will be recruited through a local chronic pain centre and gynaecology clinics. Women will complete baseline measures and be randomised to an experimental or control condition that involve 2 weeks of self-administering twice-daily doses of 24 IU intranasal oxytocin or placebo, respectively. Women will then undergo a 2-week washout period before crossing over to receive the condition that they had not yet received. The primary outcome will be pain and function measured using the Brief Pain Inventory-Short Form. Secondary outcomes include emotional function, sleep disturbance and global impression of change. This trial will provide data on the 14-day safety and side-effect profile of intranasal oxytocin self-administered as an adjuvant treatment for chronic pelvic musculoskeletal pain. ETHICS AND DISSEMINATION This trial was granted approval from Health Canada and the University of Calgary Conjoint Health Research Ethics Board, and is registered online at ClinicalTrials.gov (#NCT02888574). Results will be disseminated to healthcare professionals through peer-reviewed publications and to the general public through press releases. TRIAL REGISTRATION NUMBER NCT02888574; Pre-results.
Collapse
Affiliation(s)
- Joshua A Rash
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Kirsti Toivonen
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Magali Robert
- Department of Obstetrics and Gynecology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maryam Nasr-Esfahani
- Department of Obstetrics and Gynecology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - John F Jarrell
- Department of Obstetrics and Gynecology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tavis S Campbell
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
24
|
The analgesic effects of oxytocin in the peripheral and central nervous system. Neurochem Int 2017; 103:57-64. [DOI: 10.1016/j.neuint.2016.12.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/01/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023]
|
25
|
Poisbeau P, Grinevich V, Charlet A. Oxytocin Signaling in Pain: Cellular, Circuit, System, and Behavioral Levels. Curr Top Behav Neurosci 2017; 35:193-211. [PMID: 28942595 DOI: 10.1007/7854_2017_14] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Originally confined to the initiation of parturition and milk ejection after birth, the hypothalamic nonapeptide oxytocin (OT) is now recognized as a critical determinant of social behavior and emotional processing. It accounts for the modulation of sensory processing and pain perception as OT displays a potent analgesic effect mediated by OT receptors (OTRs) expressed in the peripheral and central nervous systems. In our chapter, we will first systemically analyze known efferent and afferent OT neuron projections, which form the anatomical basis for OT modulation of somatosensory and pain processing. Next, we will focus on the synergy of distinct types of OT neurons (e.g., magno- and parvocellular OT neurons) which efficiently control acute inflammatory pain perception. Finally, we will describe how OT signaling mechanisms in the spinal cord control nociception, as well as how OT is able to modulate emotional pain processing within the central amygdala. In the conclusions at the end of the chapter, we will formulate perspectives in the study of OT effects on pain anticipation and pain memory, as well as propose some reasons for the application of exogenous OT for the treatment of certain types of pain in human patients.
Collapse
Affiliation(s)
- Pierrick Poisbeau
- Centre National de la Recherche Scientifique, University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides, German Cancer Research Center, University of Heidelberg, Heidelberg, BW, Germany.,Central Institute of Mental Health, University of Heidelberg, Mannheim, BW, Germany
| | - Alexandre Charlet
- Centre National de la Recherche Scientifique, University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France. .,University of Strasbourg Institute for Advanced Study, USIAS, Strasbourg, France.
| |
Collapse
|
26
|
Tzabazis A, Mechanic J, Miller J, Klukinov M, Pascual C, Manering N, Carson DS, Jacobs A, Qiao Y, Cuellar J, Frey WH, Jacobs D, Angst M, Yeomans DC. Oxytocin receptor: Expression in the trigeminal nociceptive system and potential role in the treatment of headache disorders. Cephalalgia 2016; 36:943-50. [DOI: 10.1177/0333102415618615] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/25/2015] [Indexed: 11/17/2022]
Abstract
Aims Our studies investigated the location of oxytocin receptors in the peripheral trigeminal sensory system and determined their role in trigeminal pain. Methods Oxytocin receptor expression and co-localization with calcitonin gene-related peptide was investigated in rat trigeminal ganglion using immunohistochemistry. Enzyme-linked immunosorbent assay was used to determine the effects of facial electrocutaneous stimulation and adjuvant-induced inflammation of the temporomandibular joint on oxytocin receptor expression in the trigeminal ganglion. Finally, the effects of oxytocin on capsaicin-induced calcitonin gene-related peptide release from dural nociceptors were investigated using isolated rat dura mater. Results Oxytocin receptor immunoreactivity was present in rat trigeminal neurons. The vast majority of oxytocin receptor immunoreactive neurons co-expressed calcitonin gene-related peptide. Both electrocutaneous stimulation and adjuvant-induced inflammation led to a rapid upregulation of oxytocin receptor protein expression in trigeminal ganglion neurons. Oxytocin significantly and dose-dependently decreased capsaicin-induced calcitonin gene-related peptide release from dural nociceptors. Conclusion Oxytocin receptor expression in calcitonin gene-related peptide containing trigeminal ganglion neurons, and the blockade of calcitonin gene-related peptide release from trigeminal dural afferents suggests that activation of these receptors may provide therapeutic benefit in patients with migraine and other primary headache disorders.
Collapse
Affiliation(s)
- Alexander Tzabazis
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Michael Klukinov
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Neil Manering
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dean S Carson
- Trigemina, Inc., Moraga, CA, USA
- Department of Psychiatry, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Yanli Qiao
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jason Cuellar
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - William H Frey
- HealthPartners Center for Memory and Aging, Regions Hospital, St. Paul, MN, USA
| | - Daniel Jacobs
- Trigemina, Inc., Moraga, CA, USA
- Department of Plastic Surgery, Kaiser Permanente Medical Center, San Jose, CA, USA
| | - Martin Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Trigemina, Inc., Moraga, CA, USA
| | - David C Yeomans
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Trigemina, Inc., Moraga, CA, USA
| |
Collapse
|
27
|
Paloyelis Y, Krahé C, Maltezos S, Williams SC, Howard MA, Fotopoulou A. The Analgesic Effect of Oxytocin in Humans: A Double-Blind, Placebo-Controlled Cross-Over Study Using Laser-Evoked Potentials. J Neuroendocrinol 2016; 28:10.1111/jne.12347. [PMID: 26660859 PMCID: PMC5103211 DOI: 10.1111/jne.12347] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 12/04/2015] [Accepted: 12/05/2015] [Indexed: 12/29/2022]
Abstract
Oxytocin is a neuropeptide regulating social-affiliative and reproductive behaviour in mammals. Despite robust preclinical evidence for the antinociceptive effects and mechanisms of action of exogenous oxytocin, human studies have produced mixed results regarding the analgesic role of oxytocin and are yet to show a specific modulation of neural processes involved in pain perception. In the present study, we investigated the analgesic effects of 40 IU of intranasal oxytocin in 13 healthy male volunteers using a double-blind, placebo-controlled, cross-over design and brief radiant heat pulses generated by an infrared laser that selectively activate Aδ- and C-fibre nerve endings in the epidermis, at the same time as recording the ensuing laser-evoked potentials (LEPs). We predicted that oxytocin would reduce subjective pain ratings and attenuate the amplitude of the N1, N2 and P2 components. We observed that oxytocin attenuated perceived pain intensity and the local peak amplitude of the N1 and N2 (but not of P2) LEPs, and increased the latency of the N2 component. Importantly, for the first time, the present study reports an association between the analgesic effect of oxytocin (reduction in subjective pain ratings) and the oxytocin-induced modulation of cortical activity after noxious stimulation (attenuation of the N2 LEP). These effects indicate that oxytocin modulates neural processes contributing to pain perception. The present study reports preliminary evidence that is consistent with electrophysiological studies in rodents showing that oxytocin specifically modulates Aδ/C-fibre nociceptive afferent signalling at the spinal level and provides further specificity to evidence obtained in humans indicating that oxytocin may be modulating pain experience by modulating activity in the cortical areas involved in pain processing.
Collapse
Affiliation(s)
- Y Paloyelis
- Department of Neuroimaging, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - C Krahé
- Department of Neuroimaging, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - S Maltezos
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, King's College London, London, UK
| | - S C Williams
- Department of Neuroimaging, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - M A Howard
- Department of Neuroimaging, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - A Fotopoulou
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| |
Collapse
|
28
|
Forger NG, Strahan JA, Castillo-Ruiz A. Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system. Front Neuroendocrinol 2016; 40:67-86. [PMID: 26790970 PMCID: PMC4897775 DOI: 10.1016/j.yfrne.2016.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/31/2015] [Accepted: 01/09/2016] [Indexed: 01/16/2023]
Abstract
Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to re-think often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain.
Collapse
Affiliation(s)
- Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | - J Alex Strahan
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | | |
Collapse
|
29
|
The Effect of Oxytocin on Social and Non-Social Behaviour and Striatal Protein Expression in C57BL/6N Mice. PLoS One 2015; 10:e0145638. [PMID: 26716999 PMCID: PMC4696826 DOI: 10.1371/journal.pone.0145638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022] Open
Abstract
Oxytocin has been suggested as a promising new treatment for neurodevelopmental disorders. However, important gaps remain in our understanding of its mode of action, in particular, to what extent oxytocin modulates social and non-social behaviours and whether its effects are generalizable across both sexes. Here we investigated the effects of a range of oxytocin doses on social and non-social behaviours in C57BL/6N mice of both sexes. As the striatum modulates social and non-social behaviours, and is implicated in neurodevelopmental disorders, we also conducted a pilot exploration of changes in striatal protein expression elicited by oxytocin. Oxytocin increased prepulse inhibition of startle but attenuated the recognition memory in male C57BL/6N mice. It increased social interaction time and suppressed the amphetamine locomotor response in both sexes. The striatum proteome following oxytocin exposure could be clearly discriminated from saline controls. With the caveat that these results are preliminary, oxytocin appeared to alter individual protein expression in directions similar to conventional anti-psychotics. The proteins affected by oxytocin could be broadly categorized as those that modulate glutamatergic, GABAergic or dopaminergic signalling and those that mediate cytoskeleton dynamics. Our results here encourage further research into the clinical application of this peptide hormone, which may potentially extend treatment options across a spectrum of neurodevelopmental conditions.
Collapse
|
30
|
Goodin BR, Anderson AJB, Freeman EL, Bulls HW, Robbins MT, Ness TJ. Intranasal Oxytocin Administration is Associated With Enhanced Endogenous Pain Inhibition and Reduced Negative Mood States. Clin J Pain 2015; 31:757-767. [PMID: 25370147 DOI: 10.1097/ajp.0000000000000166] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This study examined whether the administration of intranasal oxytocin was associated with pain sensitivity, endogenous pain inhibitory capacity, and negative mood states. MATERIALS AND METHODS A total of 30 pain-free, young adults each completed 3 laboratory sessions on consecutive days. The first session (baseline) assessed ischemic pain sensitivity, endogenous pain inhibition via conditioned pain modulation (CPM), and negative mood using the Profile of Mood States. CPM was tested on the dominant forearm and ipsilateral masseter muscle using algometry (test stimulus) and the cold pressor task (conditioning stimulus; nondominant hand). For the second and third sessions, participants initially completed the State-Trait Anxiety Inventory and then self-administered a single (40 IU/1 mL) dose of intranasal oxytocin or placebo in a randomized counterbalanced order. Thirty minutes postadministration, participants again completed the State-Trait Anxiety Inventory and repeated assessments of ischemic pain sensitivity and CPM followed by the Profile of Mood States. RESULTS Findings demonstrated that ischemic pain sensitivity did not significantly differ across the 3 study sessions. CPM at the masseter, but not the forearm, was significantly greater following administration of oxytocin compared to placebo. Negative mood was also significantly lower following administration of oxytocin compared to placebo. Similarly, anxiety significantly decreased following administration of oxytocin but not placebo. DISCUSSION This study incorporated a placebo-controlled, double-blind, within-subjects crossover design with randomized administration of intranasal oxytocin and placebo. The data suggest that the administration of intranasal oxytocin may augment endogenous pain inhibitory capacity and reduce negative mood states including anxiety.
Collapse
Affiliation(s)
- Burel R Goodin
- Departments of Psychology.,Anesthesiology, University of Alabama at Birmingham
| | | | | | | | | | | |
Collapse
|
31
|
Connecting prosocial behavior to improved physical health: Contributions from the neurobiology of parenting. Neurosci Biobehav Rev 2015; 55:1-17. [DOI: 10.1016/j.neubiorev.2015.04.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 03/19/2015] [Accepted: 04/10/2015] [Indexed: 12/13/2022]
|
32
|
Goodin BR, Ness TJ, Robbins MT. Oxytocin - a multifunctional analgesic for chronic deep tissue pain. Curr Pharm Des 2015; 21:906-13. [PMID: 25345612 PMCID: PMC4276444 DOI: 10.2174/1381612820666141027111843] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/21/2014] [Indexed: 11/22/2022]
Abstract
The treatment of chronic pain arising from deep tissues is currently inadequate and there is need for new pharmacological agents to provide analgesia. The endogenous paracrine hormone/neurotransmitter oxytocin is intimately involved in the modulation of multiple physiological and psychological functions. Recent experiments have given clear evidence for a role of oxytocin in the modulation of nociception. The present article reviews the existent human and basic science data related to the direct and indirect effects of oxytocin on pain. Due to its analgesic, anxiolytic, antidepressant and other central nervous system effects, there is strong evidence that oxytocin and other drugs acting through the oxytocin receptor could act as multifunctional analgesics with unique therapeutic value.
Collapse
Affiliation(s)
| | | | - Meredith T Robbins
- Departments of Psychology and Anesthesiology, University of Alabama at Birmingham (UAB), 1300 University Blvd., Campbell Hall, Room 328, Birmingham, AL 35294.
| |
Collapse
|
33
|
Petitjean H, Hugel S, Barthas F, Bohren Y, Barrot M, Yalcin I, Schlichter R. Activation of transient receptor potential vanilloid 2-expressing primary afferents stimulates synaptic transmission in the deep dorsal horn of the rat spinal cord and elicits mechanical hyperalgesia. Eur J Neurosci 2014; 40:3189-201. [PMID: 25104469 DOI: 10.1111/ejn.12688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/30/2014] [Accepted: 07/10/2014] [Indexed: 11/29/2022]
Abstract
Probenecid, an agonist of transient receptor vanilloid (TRPV) type 2, was used to evaluate the effects of TRPV2 activation on excitatory and inhibitory synaptic transmission in the dorsal horn (DH) of the rat spinal cord and on nociceptive reflexes induced by thermal heat and mechanical stimuli. The effects of probenecid were compared with those of capsaicin, a TRPV1 agonist. Calcium imaging experiments on rat dorsal root ganglion (DRG) and DH cultures indicated that functional TRPV2 and TRPV1 were expressed by essentially non-overlapping subpopulations of DRG neurons, but were absent from DH neurons and DH and DRG glial cells. Pretreatment of DRG cultures with small interfering RNAs against TRPV2 suppressed the responses to probenecid. Patch-clamp recordings from spinal cord slices showed that probenecid and capsaicin increased the frequencies of spontaneous excitatory postsynaptic currents (sEPSCs) and spontaneous inhibitory postsynaptic currents in a subset of laminae III-V neurons. In contrast to capsaicin, probenecid failed to stimulate synaptic transmission in lamina II. Intrathecal or intraplantar injections of probenecid induced mechanical hyperalgesia/allodynia without affecting nociceptive heat responses. Capsaicin induced both mechanical hyperalgesia/allodynia and heat hyperalgesia. Activation of TRPV1 or TRPV2 in distinct sets of primary afferents increased the sEPSC frequencies in a largely common population of DH neurons in laminae III-V, and might underlie the development of mechanical hypersensitivity following probenecid or capsaicin treatment. However, only TRPV1-expressing afferents facilitated excitatory and/or inhibitory transmission in a subpopulation of lamina II neurons, and this phenomenon might be correlated with the induction of thermal heat hyperalgesia.
Collapse
Affiliation(s)
- Hugues Petitjean
- Institut des Neurosciences Cellulaires et Integratives, UPR 3212 Centre National de la Recherche Scientifique, Strasbourg, France; Universite de Strasbourg, 5 rue Blaise Pascal, F-67084, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
34
|
The effect of intranasal oxytocin administration on acute cold pressor pain: a placebo-controlled, double-blind, within-participants crossover investigation. Psychosom Med 2014; 76:422-9. [PMID: 24979580 DOI: 10.1097/psy.0000000000000068] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND This study examined the effect of synthetic oxytocin delivered intranasally on acute pain sensitivity using a placebo-controlled, double-blind, within-participant crossover design. METHODS Thirty-seven (18 were male) pain-free young adults underwent two laboratory sessions separated by 1 week. Each session consisted of baseline, administration, second baseline, pain, and recovery phases, completed in a fixed order. Participants were given an intransal administration of 40 IU oxytocin or placebo. Blood pressure and heart rate (HR) were measured at 1-minute intervals throughout each phase. Pain was induced by submersing the nondominant hand in cold (2°C) water. Pain threshold, intensity, unpleasantness, and Short-Form McGill Pain Questionnaire-2 pain descriptors were rated immediately after pain testing. Mood was assessed using visual analog scales after baseline, second baseline, and pain phases. The second laboratory session was identical to the first, with the exception that a different nasal spray was administered. RESULTS Participants reported lower pain intensity (50.57 [20.94] versus 56.73 [20.12], p = .047), pain unpleasantness (47.00 [27.24] versus 55.78 [22.46], p = .033), and Short-Form McGill Pain Questionnaire-2 pain descriptors (53.38 [31.18] versus 60.92 [31.17], p = .031) and higher pain threshold (45.70 [59.55] versus 38.35 [59.12], p = .040) after oxytocin administration relative to placebo. There was a nasal spray by phase interaction on HR (p = .006). Pain-related increase in HR was attenuated by oxytocin nasal spray. Systolic and diastolic blood pressure increased during pain testing but were unaffected by nasal spray. CONCLUSIONS These results suggest that oxytocin can lead to decreased acute pain sensitivity.
Collapse
|
35
|
Dose F, Zanon P, Coslovich T, Taccola G. Nanomolar oxytocin synergizes with weak electrical afferent stimulation to activate the locomotor CpG of the rat spinal cord in vitro. PLoS One 2014; 9:e92967. [PMID: 24658101 PMCID: PMC3962494 DOI: 10.1371/journal.pone.0092967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/27/2014] [Indexed: 01/08/2023] Open
Abstract
Synergizing the effect of afferent fibre stimulation with pharmacological interventions is a desirable goal to trigger spinal locomotor activity, especially after injury. Thus, to better understand the mechanisms to optimize this process, we studied the role of the neuropeptide oxytocin (previously shown to stimulate locomotor networks) on network and motoneuron properties using the isolated neonatal rat spinal cord. On motoneurons oxytocin (1 nM–1 μM) generated sporadic bursts with superimposed firing and dose-dependent depolarization. No desensitization was observed despite repeated applications. Tetrodotoxin completely blocked the effects of oxytocin, demonstrating the network origin of the responses. Recording motoneuron pool activity from lumbar ventral roots showed oxytocin mediated depolarization with synchronous bursts, and depression of reflex responses in a stimulus and peptide-concentration dependent fashion. Disinhibited bursting caused by strychnine and bicuculline was accelerated by oxytocin whose action was blocked by the oxytocin antagonist atosiban. Fictive locomotion appeared when subthreshold concentrations of NMDA plus 5HT were coapplied with oxytocin, an effect prevented after 24 h incubation with the inhibitor of 5HT synthesis, PCPA. When fictive locomotion was fully manifested, oxytocin did not change periodicity, although cycle amplitude became smaller. A novel protocol of electrical stimulation based on noisy waveforms and applied to one dorsal root evoked stereotypic fictive locomotion. Whenever the stimulus intensity was subthreshold, low doses of oxytocin triggered fictive locomotion although oxytocin per se did not affect primary afferent depolarization evoked by dorsal root pulses. Among the several functional targets for the action of oxytocin at lumbar spinal cord level, the present results highlight how small concentrations of this peptide could bring spinal networks to threshold for fictive locomotion in combination with other protocols, and delineate the use of oxytocin to strengthen the efficiency of electrical stimulation to activate locomotor circuits.
Collapse
Affiliation(s)
- Francesco Dose
- Neuroscience Department, International School for Advanced Studies (S.I.S.S.A.), Trieste, Italy
- Spinal Person Injury Neurorehabilitation Applied Laboratory (S.P.I.N.A.L.), Istituto di Medicina Fisica e Riabilitazione (IMFR), Udine, Italy
| | - Patrizia Zanon
- Neuroscience Department, International School for Advanced Studies (S.I.S.S.A.), Trieste, Italy
- Spinal Person Injury Neurorehabilitation Applied Laboratory (S.P.I.N.A.L.), Istituto di Medicina Fisica e Riabilitazione (IMFR), Udine, Italy
| | - Tamara Coslovich
- Neuroscience Department, International School for Advanced Studies (S.I.S.S.A.), Trieste, Italy
- Spinal Person Injury Neurorehabilitation Applied Laboratory (S.P.I.N.A.L.), Istituto di Medicina Fisica e Riabilitazione (IMFR), Udine, Italy
| | - Giuliano Taccola
- Neuroscience Department, International School for Advanced Studies (S.I.S.S.A.), Trieste, Italy
- Spinal Person Injury Neurorehabilitation Applied Laboratory (S.P.I.N.A.L.), Istituto di Medicina Fisica e Riabilitazione (IMFR), Udine, Italy
- * E-mail:
| |
Collapse
|
36
|
Jiang CY, Fujita T, Kumamoto E. Synaptic modulation and inward current produced by oxytocin in substantia gelatinosa neurons of adult rat spinal cord slices. J Neurophysiol 2014; 111:991-1007. [DOI: 10.1152/jn.00609.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cellular mechanisms for antinociception produced by oxytocin in the spinal dorsal horn have not yet been investigated thoroughly. We examined how oxytocin affects synaptic transmission in substantia gelatinosa neurons, which play a pivotal role in regulating nociceptive transmission, by applying the whole-cell patch-clamp technique to the substantia gelatinosa neurons of adult rat spinal cord slices. Bath-applied oxytocin did not affect glutamatergic spontaneous, monosynaptically-evoked primary-afferent Aδ-fiber and C-fiber excitatory transmissions. On the other hand, oxytocin produced an inward current at −70 mV and enhanced GABAergic and glycinergic spontaneous inhibitory transmissions. These activities were repeated with a slow recovery from desensitization, concentration-dependent and mimicked by oxytocin-receptor agonist. The oxytocin current was inhibited by oxytocin-receptor antagonist, intracellular GDPβS, U-73122, 2-aminoethoxydiphenyl borate, but not dantrolene, chelerythrine, dibutyryl cyclic-AMP, CNQX, Ca2+-free and tetrodotoxin, while the spontaneous inhibitory transmission enhancements were depressed by tetrodotoxin. Current-voltage relation for the oxytocin current reversed at negative potentials more than the equilibrium potential for K+, or around 0 mV. The oxytocin current was depressed in high-K+, low-Na+ or Ba2+-containing solution. Vasopressin V1A-receptor antagonist inhibited the oxytocin current, but there was no correlation in amplitude between a vasopressin-receptor agonist [Arg8]vasopressin and oxytocin responses. It is concluded that oxytocin produces a membrane depolarization mediated by oxytocin but not vasopressin-V1A receptors, which increases neuronal activity, resulting in the enhancement of inhibitory transmission, a possible mechanism for antinociception. This depolarization is due to a change in membrane permeabilities to K+ and/or Na+, which is possibly mediated by phospholipase C and inositol 1,4,5-triphosphate-induced Ca2+-release.
Collapse
Affiliation(s)
- Chang-Yu Jiang
- Department of Physiology, Saga Medical School, Saga, Japan
| | - Tsugumi Fujita
- Department of Physiology, Saga Medical School, Saga, Japan
| | | |
Collapse
|
37
|
Moreno-López Y, Martínez-Lorenzana G, Condés-Lara M, Rojas-Piloni G. Identification of oxytocin receptor in the dorsal horn and nociceptive dorsal root ganglion neurons. Neuropeptides 2013; 47:117-23. [PMID: 23102456 DOI: 10.1016/j.npep.2012.09.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 11/28/2022]
Abstract
Oxytocin (OT) secreted by the hypothalamo-spinal projection exerts antinociceptive effects in the dorsal horn. Electrophysiological evidence indicates that OT could exert these effects by activating OT receptors (OTR) directly on dorsal horn neurons and/or primary nociceptive afferents in the dorsal root ganglia (DRG). However, little is known about the identity of the dorsal horn and DRG neurons that express the OTR. In the dorsal horn, we found that the OTR is expressed principally in neurons cell bodies. However, neither spino-thalamic dorsal horn neurons projecting to the contralateral thalamic ventral posterolateral nucleus (VPL) and posterior nuclear group (Po) nor GABaergic dorsal horn neurons express the OTR. The OTR is not expressed in skin nociceptive terminals or in dorsal horn nociceptive fibers. In the DRG, however, the OTR is expressed predominantly in non-peptidergic C-fiber cell bodies, but not in peptidergic or mechanoreceptor afferents or in skin nociceptive terminals. Our results suggest that the antinociceptive effects of OT are mediated by direct activation of dorsal horn neurons and peripheral actions on nociceptive, non-peptidergic C-afferents in the DRG.
Collapse
Affiliation(s)
- Y Moreno-López
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| | | | | | | |
Collapse
|
38
|
Hugel S, Kadiri N, Rodeau JL, Gaillard S, Schlichter R. pH-dependent inhibition of native GABA(A) receptors by HEPES. Br J Pharmacol 2012; 166:2402-16. [PMID: 22452286 DOI: 10.1111/j.1476-5381.2012.01956.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Artificial buffers such as HEPES are extensively used to control extracellular pH (pH(e) ) to investigate the effect of H(+) ions on GABA(A) receptor function. EXPERIMENTAL APPROACH In neurones cultured from spinal cord dorsal horn (DH), dorsal root ganglia (DRG) and cerebellar granule cells (GC) of neonatal rats, we studied the effect of pH(e) on currents induced by GABA(A) receptor agonists, controlling pH(e) with HCO(3) (-) or different concentrations of HEPES. KEY RESULTS Changing HEPES concentration from 1 to 20 mM at constant pH(e) strongly inhibited the currents induced by submaximal GABA applications, but not those induced by glycine or glutamate, on DH, DRG or GC neurones, increasing twofold the EC(50) for GABA in DH neurones and GC. Submaximal GABA(A) receptor-mediated currents were also inhibited by piperazine-N,N'-bis(2-ethanesulfonic acid) (PIPES), 3-(N-morpholino)propanesulfonic acid, tris(hydroxymethyl)aminomethane or imidazole. PIPES and HEPES, both piperazine derivatives, similarly inhibited GABA(A) receptors, whereas the other buffers had weaker effects and 2-(N-morpholino)ethanesulfonic acid had no effect. HEPES-induced inhibition of submaximal GABA(A) receptor-mediated currents was unaffected by diethylpyrocarbonate, a histidine-modifying reagent. HEPES-induced inhibition of GABA(A) receptors was independent of membrane potential, HCO(3) (-) and intracellular Cl(-) concentration and was not modified by flumazenil, which blocks the benzodiazepine binding site. However, it strongly depended on pH(e) . CONCLUSIONS AND IMPLICATIONS Inhibition of GABA(A) receptors by HEPES depended on pH(e) , leading to an apparent H(+) -induced inhibition of DH GABA(A) receptors, unrelated to the pH sensitivity of these receptors in both low and physiological buffering conditions, suggesting that protonated HEPES caused this inhibition.
Collapse
Affiliation(s)
- S Hugel
- Nociception et Douleur, INCI, UPR3212 CNRS, Université de Strasbourg, Strasbourg, France.
| | | | | | | | | |
Collapse
|
39
|
Qi J, Han WY, Yang JY, Wang LH, Dong YX, Wang F, Song M, Wu CF. Oxytocin regulates changes of extracellular glutamate and GABA levels induced by methamphetamine in the mouse brain. Addict Biol 2012; 17:758-69. [PMID: 22507692 DOI: 10.1111/j.1369-1600.2012.00439.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oxytocin (OT), a neurohypophyseal neuropeptide, affects adaptive processes of the central nervous system. In the present study, we investigated the effects of OT on extracellular levels of glutamate (Glu) and γ-aminobutyric acid (GABA) induced by methamphetamine (MAP) in the medial prefrontal cortex (mPFC) and dorsal hippocampus (DHC) of freely moving mice, using in vivo microdialysis coupled to high-performance liquid chromatography and fluorescence detection. The results showed that OT had no effect on basal Glu levels, but attenuated MAP-induced Glu increase in the mPFC and decrease in the DHC. OT increased the basal levels of extracellular GABA in mPFC and DHC of mice, and inhibited the MAP-induced GABA decrease in DHC. Western blot results indicated that OT significantly inhibited the increased glutamatergic receptor (NR1 subunit) levels in the PFC after acute MAP administration, whereas OT further enhanced the elevated levels of glutamatergic transporter (GLT1) induced by MAP in the hippocampus of mice. Atosiban, a selective inhibitor of OT receptor, antagonized the effects of OT. The results provided the first neurochemical evidence that OT, which exerted its action via its receptor, decreased Glu release induced by MAP, and attenuated the changes in glutamatergic neurotransmission partially via regulation of NR1 and GLT1 expression. OT-induced extracellular GABA increase also suggests that OT acts potentially as an inhibitory neuromodulator in mPFC and DHC of mice.
Collapse
Affiliation(s)
- Jia Qi
- Department of Pharmacology, Shenyang Pharmaceutical University, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hobo S, Hayashida KI, Eisenach JC. Oxytocin inhibits the membrane depolarization-induced increase in intracellular calcium in capsaicin sensitive sensory neurons: a peripheral mechanism of analgesic action. Anesth Analg 2011; 114:442-9. [PMID: 22104073 DOI: 10.1213/ane.0b013e31823b1bc8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Lumbar intrathecal injection of oxytocin produces antinociception in rats and analgesia in humans. Classically, oxytocin receptors couple to stimulatory G proteins, increase inositol-3-phosphate production, and result in neuronal excitation. Most work to date has focused on a spinal site of oxytocin to excite γ-aminobutyric acid interneurons to produce analgesia. Here we ask whether oxytocin might also affect primary sensory afferents by modulating high voltage-gated calcium channels, such as it does in the brain. METHODS Dorsal root ganglion cells from adult rats were acutely dissociated and cultured, and changes in intracellular calcium determined by fluorescent microscopy using an indicator dye. The effects of oxytocin alone and in the presence of transient depolarization from increased extracellular KCl concentration were determined, and the pharmacology of these effects were studied. Cells from injured dorsal root ganglion cells after spinal nerve ligation were also studied. RESULTS Oxytocin produced a concentration-dependent inhibition of the increase in intracellular calcium from membrane depolarization, an effect blocked more efficiently by oxytocin- than vasopressin-receptor selective antagonists. Oxytocin-induced inhibition was present in cells responding to capsaicin, and when internal stores of calcium were depleted with thapsigargin. Oxytocin produced similar inhibition in cells from animals with spinal nerve ligation. CONCLUSIONS These data suggest that oxytocin produces antinociception after intrathecal delivery in part by reducing excitatory neurotransmitter release from the central terminals of nociceptors.
Collapse
Affiliation(s)
- Shotaro Hobo
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
41
|
Kadiri N, Rodeau JL, Schlichter R, Hugel S. Neurotensin inhibits background K+ channels and facilitates glutamatergic transmission in rat spinal cord dorsal horn. Eur J Neurosci 2011; 34:1230-40. [PMID: 21936876 DOI: 10.1111/j.1460-9568.2011.07846.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurotensin (NT) is a neuropeptide involved in the modulation of nociception. We have investigated the actions of NT on cultured postnatal rat spinal cord dorsal horn (DH) neurons. NT induced an inward current associated with a decrease in membrane conductance in 46% of the neurons and increased the frequency of glutamatergic miniature excitatory synaptic currents in 37% of the neurons. Similar effects were observed in acute slices. Both effects of NT were reproduced by the selective NTS1 agonist JMV449 and blocked by the NTS1 antagonist SR48692 and the NTS1/NTS2 antagonist SR142948A. The NTS2 agonist levocabastine had no effect. The actions of NT persisted after inactivation of G(i/o) proteins by pertussis toxin but were absent after inactivation of protein kinase C (PKC) by chelerythrine or inhibition of the MAPK (ERK1/2) pathway by PD98059. Pre- and postsynaptic effects of NT were insensitive to classical voltage- and Ca(2+) -dependent K(+) channel blockers. The K(+) conductance inhibited by NT was blocked by Ba(2+) and displayed no or little inward rectification, despite the presence of strongly rectifying Ba(2+) -sensitive K(+) conductance in these neurons. This suggested that NT blocked two-pore domain (K2P) background K(+) -channels rather than inwardly rectifying K(+) channels. Zn(2+) ions, which inhibit TRESK and TASK-3 K2P channels, decreased NT-induced current. Our results indicate that in DH neurons NT activates NTS1 receptors which, via the PKC-dependent activation of the MAPK (ERK1/2) pathway, depolarize the postsynaptic neuron and increase the synaptic release of glutamate. These actions of NT might modulate the transfer and the integration of somatosensory information in the DH.
Collapse
Affiliation(s)
- Nabila Kadiri
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 21 rue René Descartes, Strasbourg, France
| | | | | | | |
Collapse
|
42
|
Yang JY, Qi J, Han WY, Wang F, Wu CF. Inhibitory role of oxytocin in psychostimulant-induced psychological dependence and its effects on dopaminergic and glutaminergic transmission. Acta Pharmacol Sin 2010; 31:1071-4. [PMID: 20729875 DOI: 10.1038/aps.2010.140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Psychostimulants are frequently abused as a result of their stimulatory effects on several neurotransmitter systems within the central nervous system. Both dopaminergic and glutaminergic neurotransmissions have been closely associated with psychostimulant dependence. In addition to its classical endocrine function in the periphery, oxytocin, an important neurohypophyseal neuropeptide in the central nervous system, has a wide range of behavioral effects, including regulating drug abuse. The present paper reviews the progress of research into the role of oxytocin in reducing psychostimulant-induced psychological dependence and the mechanisms by which oxytocin mediates its effects.
Collapse
|
43
|
Lenz KM, Sengelaub DR. Maternal care effects on the development of a sexually dimorphic motor system: the role of spinal oxytocin. Horm Behav 2010; 58:575-81. [PMID: 20688065 PMCID: PMC2934889 DOI: 10.1016/j.yhbeh.2010.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/09/2010] [Accepted: 07/25/2010] [Indexed: 11/28/2022]
Abstract
Maternal licking in rats affects the development of the spinal nucleus of the bulbocavernosus (SNB), a sexually dimorphic motor nucleus that controls penile reflexes involved with copulation. Reduced maternal licking results in decreased motoneuron number, size, and dendritic length in the adult SNB, as well as deficits in adult male copulatory behavior. Our previous findings that licking-like tactile stimulation influences SNB dendritic development and upregulates Fos expression in the lumbosacral spinal cord suggest that afferent signaling is changed by differences in maternal stimulation. Oxytocin afferents from the hypothalamus are a possible candidate, given previous research that has shown oxytocin is released following sensory stimulation, oxytocin modulates excitability in the spinal cord, and is a pro-erectile modulator of male sex behavior. In this experiment, we used immunofluorescence and immediate early gene analysis to assess whether licking-like tactile stimulation of the perineum activated parvocellular oxytocinergic neurons in the hypothalamus in neonates. We also used enzyme immunoassay to determine whether this same stroking stimulation produced an increase in spinal oxytocin levels. We found that stroking increased Fos immunolabeling in small oxytocin-positive cells in the paraventricular nucleus of the hypothalamus, in comparison to unstroked or handled control pups. In addition, 60s of licking-like perineal stimulation produced a transient 89% increase in oxytocin levels in the lumbosacral spinal cord. Together, these results suggest that oxytocin afferent activity may contribute to the effects of early maternal care on the masculinization of the SNB and resultant male copulatory behavior.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Department of Physiology and Program in Neuroscience, University of Maryland-Baltimore, MD 21201, USA.
| | | |
Collapse
|
44
|
Zeng JW, Liu XH, Zhao YD, Xiao Z, He WJ, Hu ZA, Ruan HZ. Role of P2Y1 receptor in astroglia-to-neuron signaling at dorsal spinal cord. J Neurosci Res 2010; 87:2667-76. [PMID: 19396875 DOI: 10.1002/jnr.22108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several studies have shown that astrocytes release neurotransmitters into the extracellular space that may then activate receptors on nearby neurons. In the present study, the actions of adenosine 5'-O-(2-thiodiphosphate) (ADPbetaS)-activated astrocyte conditioned medium (ADPbetaS-ACM) on cultured dorsal spinal cord neurons were evaluated by using confocal laser scanning microscopy and whole-cell patch-clamp recording. ADPbetaS caused astrocytic glutamate efflux (43 microM), which in turn induced inward currents in dorsal horn neurons with short time in culture. The inward currents were abolished by 2-amino-5-phosphonlanoicacid (AP-5; NMDAR antagonist) plus 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; non-NMDAR antagonist) but were unaffected by MRS2179 (selective P2Y(1) receptor antagonist). Furthermore, N6-methyl-2'-deoxyadenosine-3',5'-bisphosphate (MRS2179) was used to block glutamate release from astrocytes. As a result, ADPbetaS-ACM-induced inward currents in neurons were significantly blocked. On the other hand, both NMDAR and non-NMDAR were involved in ADPbetaS-ACM (concentration was diluted to one-tenth)-evoked small [Ca(2+)](i) transients in neurons. Under this condition, the values of glutamate concentrations in the medium are close to values for extracellular glutamate concentrations under physiological conditions. For this reason, it is possible that astrocyte-derived glutamate is important for distant neuron under physiological conditions at dorsal spinal cord. These observations indicate that astrocytic P2Y(1) receptor activation triggered glutamate efflux, which acts on distant neurons to elevate calcium levels or acts on nearby neurons to evoke inward current. Finally, our results support the conclusion that the astrocytic P2Y(1) receptor plays an important role in bidirectional communication between astrocytes and neurons.
Collapse
Affiliation(s)
- Jun-Wei Zeng
- Department of Neurobiology, College of Medicine, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Breton JD, Poisbeau P, Darbon P. Antinociceptive action of oxytocin involves inhibition of potassium channel currents in lamina II neurons of the rat spinal cord. Mol Pain 2009; 5:63. [PMID: 19909537 PMCID: PMC2780383 DOI: 10.1186/1744-8069-5-63] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 11/12/2009] [Indexed: 11/29/2022] Open
Abstract
Background Growing evidence in the literature shows that oxytocin (OT) has a strong spinal anti-nociceptive action. Oxytocinergic axons originating from a subpopulation of paraventricular hypothalamic neurons establish synaptic contacts with lamina II interneurons but little is known about the functional role of OT with respect to neuronal firing and excitability. Results Using the patch-clamp technique, we have recorded lamina II interneurons in acute transverse lumbar spinal cord slices of rats (15 to 30 days old) and analyzed the OT effects on action potential firing ability. In the current clamp mode, we found that bath application of a selective OT-receptor agonist (TGOT) reduced firing in the majority of lamina II interneurons exhibiting a bursting firing profile, but never in those exhibiting a single spike discharge upon depolarization. Interestingly, OT-induced reduction in spike frequency and increase of firing threshold were often observed, leading to a conversion of the firing profile from repetitive and delayed profiles into phasic ones and sometimes further into single spike profile. The observed effects following OT-receptor activation were completely abolished when the OT-receptor agonist was co-applied with a selective OT-receptor antagonist. In current and voltage clamp modes, we show that these changes in firing are strongly controlled by voltage-gated potassium currents. More precisely, transient IA currents and delayed-rectifier currents were reduced in amplitude and transient IA current was predominantly inactivated after OT bath application. Conclusion This effect of OT on the firing profile of lamina II neurons is in good agreement with the antinociceptive and analgesic properties of OT described in vivo.
Collapse
Affiliation(s)
- Jean Didier Breton
- Nociception and Pain Department, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, France.
| | | | | |
Collapse
|
46
|
Lenz KM, Sengelaub DR. Maternal care effects on SNB motoneuron development: the mediating role of sensory afferent distribution and activity. Dev Neurobiol 2009; 69:603-15. [PMID: 19472187 DOI: 10.1002/dneu.20729] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Maternal licking in rats affects the development of the spinal nucleus of the bulbocavernosus (SNB), a sexually dimorphic motor nucleus that controls penile reflexes involved with copulation. Reduced maternal licking produces decreased motoneuron number, size, and dendritic length in the rostral portion of the adult SNB as well as deficits in adult male copulatory behavior. Previous research suggests that decreases in perineal tactile stimulation may be responsible for these effects. To determine whether the regional effects of maternal licking on SNB morphology are driven by sensory afferent innervation of the lumbosacral spinal cord, we used WGA-HRP to reconstruct the location of sensory afferent fibers from the perineal skin. We found that these fibers are caudally concentrated relative to the area of the SNB dendritic field, with the rostral dendritic arbor receiving little perineal afferent innervation. We also assessed Fos expression following perineal tactile stimulation to determine whether it increased local spinal cord activity in the SNB dendritic field. Sixty seconds of licking-like perineal stimulation produced a transient 115% increase in Fos expression in the area of the SNB dendritic field. This effect was driven by a significant increase in Fos in the caudal portion of the SNB dendritic field, matching the pattern of perineal afferent fiber labeling. Perineal tactile stimulation also produced significantly greater Fos expression in male pups than in female pups. Together, these results suggest that perineal sensory afferent activity mediates the effects of early maternal care on the masculinization of the SNB and resultant male copulatory behavior.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
47
|
Qi J, Yang JY, Wang F, Zhao YN, Song M, Wu CF. Effects of oxytocin on methamphetamine-induced conditioned place preference and the possible role of glutamatergic neurotransmission in the medial prefrontal cortex of mice in reinstatement. Neuropharmacology 2009; 56:856-65. [PMID: 19371575 DOI: 10.1016/j.neuropharm.2009.01.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 01/11/2009] [Accepted: 01/12/2009] [Indexed: 11/19/2022]
Abstract
Accumulating evidence has shown the neuroactive properties of oxytocin (OT), a neurohypophyseal neuropeptide, and its ability to reduce the abuse potential of drugs. The present study investigated the effects of OT on the conditioned place preference (CPP) induced by methamphetamine (MAP, 2.0 mg/kg, i.p.) in mice and the possible role of glutamatergic neurotransmission in the reinstatement of CPP. The results showed that OT (0.1, 0.5, 2.5 microg, i.c.v.) significantly inhibited the acquisition and facilitated the extinction of MAP-induced CPP and abolished the reinstatement of CPP induced by restraint stress. This effect of OT could be attenuated by atosiban (Ato, 2.0 microg, i.c.v.), a selective OT-receptor antagonist. OT failed to block the expression and the reinstatement of CPP induced by MAP challenge. Extracellular glutamate (Glu) levels in the medial prefrontal cortex (mPFC) were determined using microdialysis coupled to a high-performance liquid chromatography (HPLC) with a fluorescence detection system. The results indicated that OT markedly inhibited extracellular Glu levels induced by restraint stress in CPP mice, but not those induced by MAP priming. Ato also attenuated the effects of OT on the changes in Glu levels. Therefore, these findings suggest that OT inhibits drug reward-related behaviors induced by MAP via the OT receptor, and OT blocks the reinstatement of CPP, at least partially, by interfering with the glutamatergic system in the mPFC.
Collapse
Affiliation(s)
- Jia Qi
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | | | | | | | | |
Collapse
|
48
|
Ramos E, Castilla A, Navarro N, Monasterio N, Mena F, Morales T. Suckling-induced oxytocin increase in the spinal cord of the rat. Brain Res 2008; 1236:85-92. [DOI: 10.1016/j.brainres.2008.07.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 11/28/2022]
|
49
|
Rojas-Piloni G, Martínez-Lorenzana G, DelaTorre S, Condés-Lara M. Nociceptive spinothalamic tract and postsynaptic dorsal column neurons are modulated by paraventricular hypothalamic activation. Eur J Neurosci 2008; 28:546-58. [DOI: 10.1111/j.1460-9568.2008.06366.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Breton JD, Veinante P, Uhl-Bronner S, Vergnano AM, Freund-Mercier MJ, Schlichter R, Poisbeau P. Oxytocin-induced antinociception in the spinal cord is mediated by a subpopulation of glutamatergic neurons in lamina I-II which amplify GABAergic inhibition. Mol Pain 2008; 4:19. [PMID: 18510735 PMCID: PMC2430948 DOI: 10.1186/1744-8069-4-19] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 05/29/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent evidence suggests that oxytocin (OT), secreted in the superficial spinal cord dorsal horn by descending axons of paraventricular hypothalamic nucleus (PVN) neurons, produces antinociception and analgesia. The spinal mechanism of OT is, however, still unclear and requires further investigation. We have used patch clamp recording of lamina II neurons in spinal cord slices and immunocytochemistry in order to identify PVN-activated neurons in the superficial layers of the spinal cord and attempted to determine how this neuronal population may lead to OT-mediated antinociception. RESULTS We show that OT released during PVN stimulation specifically activates a subpopulation of lamina II glutamatergic interneurons which are localized in the most superficial layers of the dorsal horn of the spinal cord (lamina I-II). This OT-specific stimulation of glutamatergic neurons allows the recruitment of all GABAergic interneurons in lamina II which produces a generalized elevation of local inhibition, a phenomenon which might explain the reduction of incoming Adelta and C primary afferent-mediated sensory messages. CONCLUSION Our results obtained in lamina II of the spinal cord provide the first clear evidence of a specific local neuronal network that is activated by OT release to induce antinociception. This OT-specific pathway might represent a novel and interesting therapeutic target for the management of neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Jean-Didier Breton
- Department Nociception and Pain, Institut des Neurosciences Cellulaires et Intégratives, Unité Mixte de Recherche 7168, Centre National de la Recherche Scientifique/Université Louis Pasteur, Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|