1
|
Affiliation(s)
- Wilfrid Jänig
- Department of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
2
|
Zaitouna M, Alsaid B, Diallo D, Benoit G, Bessede T. Identification of the origin of adrenergic and cholinergic nerve fibers within the superior hypogastric plexus of the human fetus. J Anat 2013; 223:14-21. [PMID: 23668336 DOI: 10.1111/joa.12061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2013] [Indexed: 01/08/2023] Open
Abstract
Nerve fibers contributing to the superior hypogastric plexus (SHP) and the hypogastric nerves (HN) are currently considered to comprise an adrenergic part of the autonomic nervous system located between vertebrae (T1 and L2), with cholinergic aspects originating from the second to fourth sacral spinal segments (S2, S3 and S4). The aim of this study was to identify the origin and the nature of the nerve fibers within the SHP and the HN, especially the cholinergic fibers, using computer-assisted anatomic dissection (CAAD). Serial histological sections were performed at the level of the lumbar spine and pelvis in five human fetuses between 14 and 30 weeks of gestation. Sections were treated with histological staining [hematoxylin-eosin (HE) and Masson's trichrome (TriM)] and with immunohistochemical methods to detect nerve fibers (anti-S100), adrenergic fibers (anti-TH), cholinergic fibers (anti-VAChT) and nitrergic fibers (anti-nNOS). The sections were then digitalized using a high-resolution scanner and the 3D images were reconstructed using winsurf software. These experiments revealed the coexistence of adrenergic and cholinergic fibers within the SHP and the HNs. One-third of these cholinergic fibers were nitrergic fibers [anti-VACHT (+)/anti-NOS (+)] and potentially pro-erectile, while the others were non-nitrergic [anti-VACHT (+)/anti-NOS (-)]. We found these cholinergic fibers arose from the lumbar nerve roots. This study described the nature of the SHP nerve fibers which gives a better understanding of the urinary and sexual dysfunctions after surgical injuries.
Collapse
Affiliation(s)
- Mazen Zaitouna
- Laboratory of Experimental Surgery, EA4122, Faculty of Medicine, University Paris Sud, 63 avenue Gabriel Péri, Le Kremlin-Bicetre, France.
| | | | | | | | | |
Collapse
|
3
|
Nangle MR, Keast JR. Semaphorin 3A inhibits growth of adult sympathetic and parasympathetic neurones via distinct cyclic nucleotide signalling pathways. Br J Pharmacol 2011; 162:1083-95. [PMID: 21054346 DOI: 10.1111/j.1476-5381.2010.01108.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Semaphorin 3A (Sema3A) is an important secreted repulsive guidance factor for many developing neurones. Sema3A continues to be expressed in adulthood, and expression of its receptor, neuropilin-1 (Nrp-1), can be altered by nerve injury. Autonomic neurones innervating the pelvic viscera are particularly susceptible to damage during pelvic surgical procedures, and failure to regenerate or aberrant growth of sympathetic and parasympathetic nerves lead to organ dysfunction. However, it is not known if adult pelvic neurones are potential targets for Sema3A. EXPERIMENTAL APPROACH The effects of Sema3A and activation or inhibition of cyclic nucleotide signalling were assessed in adult rat pelvic ganglion neurones in culture using a growth cone collapse assay. KEY RESULTS Sema3A caused growth cone collapse in both parasympathetic and sympathetic neurones expressing Nrp-1. However, the effect of Sema3A was mediated by distinct cyclic nucleotide signalling pathways in each neurone type. In parasympathetic neurones, cAMP and downstream activation of protein kinase A were required for growth cone collapse. In sympathetic neurones, cGMP was required for Sema3A-induced collapse; cAMP can also cause collapse but was not required. Sema3A-mediated, cGMP-dependent collapse in sympathetic neurones may require activation of cyclic nucleotide-gated ion channels (CNGCs). CONCLUSIONS AND IMPLICATIONS We propose that Sema3A is an important guidance factor for adult pelvic autonomic neurones, and that manipulation of their distinct signalling mechanisms could potentially promote functional selective regeneration or attenuate aberrant growth. To our knowledge, this is also the first study to implicate CNGCs in regulating growth cone dynamics of adult neurones.
Collapse
Affiliation(s)
- M R Nangle
- Pain Management Research Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia.
| | | |
Collapse
|
4
|
Nangle MR, Keast JR. Deafferentation and axotomy each cause neurturin-independent upregulation of c-Jun in rodent pelvic ganglia. Exp Neurol 2009; 215:271-80. [DOI: 10.1016/j.expneurol.2008.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 10/20/2008] [Accepted: 10/20/2008] [Indexed: 11/25/2022]
|
5
|
Keast JR, Kepper ME. Differential regulation of trkA and p75 in noradrenergic pelvic autonomic ganglion cells after deafferentation of their cholinergic neighbours. Eur J Neurosci 2008. [DOI: 10.1111/j.1460-9568.2001.01374.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Kato R, Wolfe D, Coyle CH, Huang S, Wechuck JB, Goins WF, Krisky DM, Tsukamoto T, Nelson JB, Glorioso JC, Chancellor MB, Yoshimura N. Herpes simplex virus vector-mediated delivery of glial cell line-derived neurotrophic factor rescues erectile dysfunction following cavernous nerve injury. Gene Ther 2007; 14:1344-52. [PMID: 17611585 DOI: 10.1038/sj.gt.3302990] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Erectile dysfunction (ED) is frequently associated with injury to the cavernous nerve sustained during pelvic surgery. Functional recovery from cavernous nerve injury is generally incomplete and occurs over an extended time frame. We employed a therapeutic gene transfer approach with herpes simplex virus (HSV) vector expressing glial cell line-derived neurotrophic factor (GDNF). Rat cavernous nerve was injured bilaterally using a clamp and dry ice. For HSV-treated groups, 20 microl of purified vector stock was administered directly to and around the damaged nerve. Delivery of an HSV vector expressing both green fluorescent protein (GFP) and lacZ (HSV-LacZ) was used as a control. Intracavernous pressure along with systemic arterial pressure (ICP/AP) was measured 2 and 4 weeks after the nerve injury. Fluorogold (FG) was injected into the penile crus 7 days before killing to assess nerve survival. Approximately 60% of major pelvic ganglion (MPG) cells were GFP positive after viral administration. At 4 weeks after nerve injury, rats treated with HSV-GDNF exhibited significant recovery of ICP/AP compared with control vector or untreated groups. The HSV-GDNF group also yielded more FG-positive MPG cells than the control vector group. HSV vector-mediated delivery of GDNF presents a viable approach for the treatment of ED following cavernous nerve injury.
Collapse
Affiliation(s)
- R Kato
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Takahara Y, Maeda M, Nakatani T, Kiyama H. Transient suppression of the vesicular acetylcholine transporter in urinary bladder pathways following spinal cord injury. Brain Res 2006; 1137:20-8. [PMID: 17229408 DOI: 10.1016/j.brainres.2006.12.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/05/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
The aim of this study was to examine the expression profile of the vesicular acetylcholine transporter (VAChT), which is a cholinergic pre-synaptic marker, in the lower neural tract following spinal cord injury (SCI) and its effect on coordination of micturition. In adult female Sprague-Dawley rats, SCI was induced by complete transection of the spinal cord at T9. At various time points, 3, 7, 14 and 28 days, after SCI, cystometry was performed on conscious rats. Bladder areflexia was observed during the first week. Twenty-eight days after SCI the rats showed reflex contractions and voiding. The expression of VAChT was examined with immunohistochemistry. The number of VAChT-positive nerve terminals, which were surrounding neuronal soma, was transiently decreased in pelvic ganglion and spinal cord (L1, L2, L6 and S1). In particular VAChT terminals surrounding motor neurons in the ventral horn and autonomic pre-ganglion cells were dramatically decreased from 3 to 14 days after SCI. Similarly, and the number of VAChT-positive fibers in the bladder wall was also decreased. The intensity of VAChT terminals recovered in all above regions in conjunction with recovery of bladder function. These observations indicate that the transient decrease of the VAChT-positive nerve might cause a failure of cholinergic neuronal transmission along the urinary bladder tract after SCI. As the cholinergic system was recovered at least in rat, the functional recovery of neurogenic bladder syndrome in SCI patients may become possible by further understanding the mechanism underlying the recovery of cholinergic system in rat.
Collapse
Affiliation(s)
- Yuki Takahara
- Department of Anatomy and Neurobiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | | | | | | |
Collapse
|
8
|
Palma CA, Keast JR. Structural effects and potential changes in growth factor signalling in penis-projecting autonomic neurons after axotomy. BMC Neurosci 2006; 7:41. [PMID: 16716234 PMCID: PMC1479832 DOI: 10.1186/1471-2202-7-41] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 05/23/2006] [Indexed: 12/22/2022] Open
Abstract
Background The responses of adult parasympathetic ganglion neurons to injury and the neurotrophic mechanisms underlying their axonal regeneration are poorly understood. This is especially relevant to penis-projecting parasympathetic neurons, which are vulnerable to injury during pelvic surgery such as prostatectomy. We investigated the changes in pelvic ganglia of adult male rats in the first week after unilateral cavernous (penile) nerve axotomy (cut or crush lesions). In some experiments FluoroGold was injected into the penis seven days prior to injury to allow later identification of penis-projecting neurons. Neurturin and glial cell line-derived neurotrophic factor (GDNF) are neurotrophic factors for penile parasympathetic neurons, so we also examined expression of relevant receptors, GFRα1 and GFRα2, in injured pelvic ganglion neurons. Results Axotomy caused prolific growth of axon collaterals (sprouting) in pelvic ganglia ipsilateral to the injury. These collaterals were most prevalent in the region near the exit of the penile nerve. This region contained the majority of FluoroGold-labelled neurons. Many sprouting fibres formed close associations with sympathetic and parasympathetic pelvic neurons, including many FluoroGold neurons. However immunoreactivity for synaptic proteins could not be demonstrated in these collaterals. Preganglionic terminals showed a marked loss of synaptic proteins, suggesting a retrograde effect of the injury beyond the injured neurons. GFRα2 immunofluorescence intensity was decreased in the cytoplasm of parasympathetic neurons, but GFRα1 immunofluorescence was unaffected in these neurons. Conclusion These studies show that there are profound changes within the pelvic ganglion after penile nerve injury. Sprouting of injured postganglionic axons occurs concurrently with structural or chemical changes in preganglionic terminals. New growth of postganglionic axon collaterals within the ganglion raises the possibility of the formation of aberrant synaptic connections between injured and un-injured ganglion neurons. Together these changes demonstrate a broader effect on the pelvic autonomic circuitry than simply loss of neuroeffector connections. These structural changes are accompanied by potential changes in neurotrophic factor signalling due to altered expression of receptors for members of the GDNF family. Together our results advance understanding of the responses of pelvic autonomic nerve circuits to injury and may assist in designing strategies for promoting regeneration.
Collapse
Affiliation(s)
- Catalina A Palma
- Prince of Wales Medical Research Institute, University of New South Wales, Sydney NSW, Australia
| | - Janet R Keast
- Prince of Wales Medical Research Institute, University of New South Wales, Sydney NSW, Australia
- Pain Management Research Institute, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, St Leonards NSW 2065, Australia
| |
Collapse
|
9
|
Keast JR. Plasticity of pelvic autonomic ganglia and urogenital innervation. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:141-208. [PMID: 16487791 DOI: 10.1016/s0074-7696(06)48003-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pelvic ganglia contain a mixture of sympathetic and parasympathetic neurons and provide most of the motor innervation of the urogenital organs. They show a remarkable sensitivity to androgens and estrogens, which impacts on their development into sexually dimorphic structures and provide an array of mechanisms by which plasticity of these neurons can occur during puberty and adulthood. The structure of pelvic ganglia varies widely among species, ranging from rodents, which have a pair of large ganglia, to humans, in whom pelvic ganglion neurons are distributed in a large, complex plexus. This plexus is frequently injured during pelvic surgical procedures, yet strategies for its repair have yet to be developed. Advances in this area will come from a better understanding of the effects of injury on the cellular signaling process in pelvic neurons and also the role of neurotrophic factors during development, maintenance, and repair of these axons.
Collapse
Affiliation(s)
- Janet R Keast
- Pain Management Research Institute, University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
10
|
Keast JR. Remodelling of connections in pelvic ganglia after hypogastric nerve crush. Neuroscience 2004; 126:405-14. [PMID: 15207358 DOI: 10.1016/j.neuroscience.2004.03.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2004] [Indexed: 12/23/2022]
Abstract
Pelvic ganglia innervate the urogenital organs and contain both sympathetic and parasympathetic neurons. Previous studies have shown that within days of cutting either the lumbar or sacral preganglionic axons that innervate pelvic ganglia, many axon collaterals grow and appear to form specific connections with denervated pelvic neurons. Here we have examined the longer term consequences of partial deafferentation by studying pelvic ganglia up to 7 weeks after hypogastric nerve (HGN) crush, a lesion which also allows faster regeneration of spinal axons. Noradrenergic neurons were denervated by HGN crush, as demonstrated by loss of varicosities immunostained for the synaptic proteins, synaptophysin and synapsin. A week after HGN crush, axon collaterals grew from parasympathetic pelvic ganglion neurons, shown by the presence of numerous varicose fibers immunostained for vasoactive intestinal peptide (VIP). These VIP fibers were poorly stained or unstained for synaptophysin, even after 7 weeks. At early post-operative times the VIP fibers grew irregularly; however, with longer post-operative times they appeared to target particular VIP-negative, noradrenergic neurons. Our results also indicate that some lumbar preganglionic axons regenerated during the post-operative period, although this only affected a minority of sympathetic neurons. These reinnervated sympathetic neurons were not associated with VIP fibers, suggesting that the new intrinsic connections may have precluded regeneration or targeting of preganglionic axons. Together these results demonstrate that there is considerable remodelling within pelvic ganglia after partial deafferentation. This occurs under conditions where spinal preganglionic axons can regenerate. New intra-ganglionic connectivity may be permanent and may impact on this regeneration.
Collapse
Affiliation(s)
- J R Keast
- Prince of Wales Medical Research Institute, University of New South Wales, Barker Street, Randwick, Sydney, NSW 2031, Australia.
| |
Collapse
|
11
|
Middleton JW, Keast JR. Artificial autonomic reflexes: using functional electrical stimulation to mimic bladder reflexes after injury or disease. Auton Neurosci 2004; 113:3-15. [PMID: 15296790 DOI: 10.1016/j.autneu.2004.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 04/28/2004] [Indexed: 12/30/2022]
Abstract
Autonomic reflexes controlling bladder storage (continence) and emptying (micturition) involve spinal and supraspinal nerve pathways, with complex mechanisms coordinating smooth muscle activity of the lower urinary tract with voluntary muscle activity of the external urethral sphincter (EUS). These reflexes can be severely disrupted by various diseases and by neurotrauma, particularly spinal cord injury (SCI). Functional electrical stimulation (FES) refers to a group of techniques that involve application of low levels of electrical current to artificially induce or modify nerve activation or muscle contraction, in order to restore function, improve health or rectify physiological dysfunction. Various types of FES have been developed specifically for improving bladder function and while successful for many urological patients, still require substantial refinement for use after spinal cord injury. Improved knowledge of the neural circuitry and physiology of human bladder reflexes, and the mechanisms by which various types of FES alter spinal outflow, is urgently required. Following spinal cord injury, physical and chemical changes occur within peripheral, spinal and supraspinal components of bladder reflex circuitry. Better understanding of this plasticity may determine the most suitable methods of FES at particular times after injury, or may lead to new FES approaches that exploit this remodeling or perhaps even influence the plasticity. Advances in studies of the neuroanatomy, neurophysiology and plasticity of lumbosacral nerve circuits will provide many further opportunities to improve FES approaches, and will provide "artificial autonomic reflexes" that much more closely resemble the original, healthy neuronal regulatory mechanisms.
Collapse
|
12
|
Kato R, Kiryu-Seo S, Sato Y, Hisasue S, Tsukamoto T, Kiyama H. Cavernous nerve injury elicits GAP-43 mRNA expression but not regeneration of injured pelvic ganglion neurons. Brain Res 2003; 986:166-73. [PMID: 12965241 DOI: 10.1016/s0006-8993(03)03249-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recovery of erectile dysfunction after cavernous nerve injury takes a long period. To elucidate this mechanism, unilateral cavernous nerve of male rat was cut, and the expression level of a nerve regeneration marker, the growth associated protein-43 (GAP-43) mRNA was evaluated by in situ hybridization and RT-PCR. While GAP-43 mRNA expression was transiently increased in the injured neurons of the major pelvic ganglion (MPG) at 7 days after nerve injury, continuous increase of GAP-43 mRNA was observed in the contralateral MPG from 7 days to 6 months after the nerve injury. Histochemical double-labeling studies for either neuronal NOS (nNOS) or tyrosine hydroxylase (TH) and the GAP-43 mRNA expression demonstrated that in injured MPG the transient up-regulation of GAP-43 mRNA was mainly seen in nNOS negative and/or TH positive neurons, suggesting non-parasympathetic post-ganglionic neurons, and also demonstrated that in contralateral MPG GAP-43 mRNA positive neurons were gradually increased in nNOS positive but TH negative neurons, suggesting parasympathetic post-ganglionic neurons. When a retrograde tracer Fluorogold (FG) was injected into the penile crus 7 days before histological experiments, FG-positive neurons were, if any, hardly seen in nNOS-positive neurons of the injured MPG for at least 6 months, whereas numerous FG-positive cells were seen in nNOS-positive neurons of the contralateral MPG. These results suggest that post-ganglionic projecting neurons of the intact side, which express increased GAP-43 mRNA, would be most likely to contribute to the recovery of the erectile function after unilateral cavernous nerve injury possibly by a plastic change such as nerve sprouting.
Collapse
Affiliation(s)
- Ryuichi Kato
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Szulczyk B, Szulczyk P. Postdecentralization plasticity of voltage-gated K+ currents in glandular sympathetic neurons in rats. Eur J Neurosci 2003; 18:43-52. [PMID: 12859336 DOI: 10.1046/j.1460-9568.2003.02722.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This paper presents the kinetic and pharmacological properties of voltage-gated K(+) currents in anatomically identified glandular postganglionic sympathetic neurons isolated from the superior cervical ganglia in rats. The neurons were labelled by injecting the fluorescent tracer Fast Blue into the submandibular gland. The first group of neurons remained intact, i.e. innervated by the preganglionic axons until the day of current recordings (control neurons). The second group of neurons was denervated by severing the superior cervical trunk 4-6 weeks prior to current recordings (decentralized neurons). In every control and decentralized neuron three categories of voltage-dependent K(+) currents were found. (i) The I(Af) K(+) current, steady state, inactivated at hyperpolarized membrane potentials. This current was fast activated and fast time-dependently inactivated, insensitive to TEA and partially depressed by 4-AP. (ii) The I(As) K(+) current, which was steady-state inactivated at less hyperpolarized membrane potentials than I(Af). The current activation and time-dependent inactivation kinetics were slower than those of I(Af). I(As) was blocked by TEA and partially inhibited by 4-AP. (iii) The IK K(+) current did not undergo steady-state inactivation. In decentralized compared to control neurons the maximum I(Af) K(+) current density (at +50 mV) increased from 116.9 +/- 8.2 to 189.0 +/- 11.5 pA/pF, the 10-90% current rise time decreased from 2.3 to 0.7 ms and the recovery from inactivation was faster. Similarly, in decentralized compared to control neurons the maximum I(As) K(+) current density (at +50 mV) increased from 49.9 +/- 3.5 to 74.3 +/- 5.0 pA/pF, the 10-90% current rise time shortened from 29 to 16 ms and the recovery from inactivation of the current was also faster. The maximum density (at +50 mV) of I(K) in decentralized compared to control neurons decreased from 76.6 +/- 3.9 to 60.7 +/- 6.3 pA/pF. We suggest that the upregulation of voltage-gated time-dependently-inactivated K(+) currents and their faster recovery from inactivation serve to restrain the activity of glandular sympathetic neurons after decentralization.
Collapse
Affiliation(s)
- Bartłomiej Szulczyk
- The Medical University of Warsaw, The Faculty of Medicine, Department of Experimental and Clinical Physiology, Krakowskie Przedmieście 26/28, Warsaw 00-927, Poland
| | | |
Collapse
|
14
|
Houdeau E, Barranger E, Rossano B. Do sensory calcitonin gene-related peptide nerve fibres in the rat pelvic plexus supply autonomic neurons projecting to the uterus and cervix? Neurosci Lett 2002; 332:29-32. [PMID: 12377377 DOI: 10.1016/s0304-3940(02)00907-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sensory nerve fibres containing calcitonin gene-related peptide (CGRP) innervate neurons of the paracervical ganglion (PCG) in the female rat pelvic plexus. We have combined retrograde tracing with immunocytochemistry to investigate whether CGRP-immunoreactive (-IR) fibres supply neurons targeting the genital tract. Of the total neurons projecting to either the uterine horns or the cervix, 38 and 41% received CGRP-IR innervation, respectively. All these neurons displayed choline acetyltransferase-IR, thus are cholinergic. They were found throughout the PCG and other pelvic plexus ganglia, namely accessory ganglia (AG) and hypogastric plexus (HP). Pelvic nerve section showed that afferent fibres in these nerves provided most of the CGRP-IR fibres supplying uterine- or cervical-related neurons in the PCG/AG, none in HP. It is suggested that such sensory-motor network may provide a local pathway for reflex control of genital tract activity, acting through cholinergic nerve projections.
Collapse
Affiliation(s)
- E Houdeau
- Laboratoire de Neurobiologie des Fonctions Végétatives, Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas Cedex, France.
| | | | | |
Collapse
|
15
|
Keast JR, Kepper ME. Differential regulation of trkA and p75 in noradrenergic pelvic autonomic ganglion cells after deafferentation of their cholinergic neighbours. Eur J Neurosci 2001. [DOI: 10.1046/j.1460-9568.2001.01374.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Kepper ME, Keast JR. Transmitter profile and spinal inputs of pelvic ganglion cells projecting with preganglionic axons along the hypogastric and pelvic nerves of the male rat. Neurosci Lett 2000; 280:123-6. [PMID: 10686393 DOI: 10.1016/s0304-3940(00)00771-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pelvic autonomic ganglion cells receive spinal preganglionic inputs via the hypogastric (lumbar) or pelvic (sacral) nerves. Damage to these nerves stimulates axogenesis (sprouting) from pelvic ganglion cells and two possible triggers are deafferentation (decentralisation) or, if some ganglion cells project centrally in these nerves, axotomy. We have used a combination of retrograde tracing and immunohistochemistry in male rats to identify the number of pelvic ganglion cells that project centrally along these nerves, their transmitter type and the spinal level of their preganglionic inputs. Only a small number (<1%) of pelvic ganglion cells project along these nerves; 29-65 project in each hypogastric nerve and 41-71 in each pelvic nerve. These neurons comprise of both cholinergic and noradrenergic classes and the majority receive preganglionic inputs from the nerve in which they also project. These results suggest that damage of the hypogastric and pelvic nerves close to the pelvic ganglion is unlikely to cause axotomy of many pelvic ganglion cells. Therefore deafferentation rather than axotomy is likely to be the primary trigger of axogenesis occurring in pelvic ganglia after these lesions.
Collapse
Affiliation(s)
- M E Kepper
- Department of Physiology and Pharmacology, University of Queensland, St. Lucia, Australia
| | | |
Collapse
|
17
|
Keast JR. Unusual autonomic ganglia: connections, chemistry, and plasticity of pelvic ganglia. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 193:1-69. [PMID: 10494620 DOI: 10.1016/s0074-7696(08)61778-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pelvic ganglia provide the majority of the autonomic nerve supply to reproductive organs, urinary bladder, and lower bowel. Of all autonomic ganglia, they are probably the least understood because in many species their anatomy is particularly complex. Furthermore, they are unusual autonomic ganglia in many ways, including their connections, structure, chemistry, and hormone sensitivity. This review will compare and contrast the normal structure and function of pelvic ganglia with other types of autonomic ganglia (sympathetic, parasympathetic, and enteric). Two aspects of plasticity in the pelvic pathways will also be discussed. First, the influence of gonadal steroids on the maturation and maintenance of pelvic reflex circuits will be considered. Second, the consequences of nerve injury will be discussed, particularly in the context of the pelvic ganglia receiving distributed spinal inputs. The review demonstrates that in many ways the pelvic ganglia differ substantially from other autonomic ganglia. Pelvic ganglia may also provide a useful system in which to study many fundamental neurobiological questions of broader relevance.
Collapse
Affiliation(s)
- J R Keast
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| |
Collapse
|