1
|
Shetty M, Malhotra S. Novel Tracers for the Imaging of Cardiac Amyloidosis. J Nucl Med Technol 2023:jnmt.123.265568. [PMID: 37192820 DOI: 10.2967/jnmt.123.265568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
Radionuclide scintigraphy with technetium-labeled bisphosphonates has brought a paradigm shift in diagnosing cardiac amyloidosis (CA), with transthyretin CA now being effectively diagnosed without the need for tissue biopsy. Yet, deficits remain, such as methods for the noninvasive diagnosis of light-chain CA, means to detect CA early, prognostication, monitoring, and therapy response assessment. To address these issues, there has been growing interest in the development and implementation of amyloid-specific radiotracers for PET. The aim of this review is to educate the reader on these novel imaging tracers. Though still investigational, these novel tracers-given their many advantages-are clearly the future of nuclear imaging in CA.
Collapse
Affiliation(s)
- Mrinali Shetty
- Columbia University Irving Medical Center, New York, New York; and
| | | |
Collapse
|
2
|
Keshavarz M, Farrokhi MR, Amirinezhad Fard E, Mehdipour M. Contribution of Lysosome and Sigma Receptors to Neuroprotective Effects of Memantine Against Beta-Amyloid in the SH-SY5Y Cells. Adv Pharm Bull 2020; 10:452-457. [PMID: 32665905 PMCID: PMC7335986 DOI: 10.34172/apb.2020.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 08/27/2019] [Accepted: 11/14/2019] [Indexed: 12/27/2022] Open
Abstract
Purpose: Memantine is an approved drug for the treatment of Alzheimer’s disease (AD). Autophagy, lysosome dysfunction, and sigma receptors have possible roles in the pathophysiology of AD. Therefore, we aimed to investigate the contribution of sigma receptors and lysosome inhibition to the neuroprotective effects of memantine against amyloid-beta (Aβ)-induced neurotoxicity in SH-SY5Y cells. Methods: We determined the neuroprotective effects of memantine (2.5 µM), dizocilpine (MK801, as a selective N-methyl-D-aspartate (NMDA) receptor antagonist) (5 μM) against Aβ25– 35 (2 μg/μL)-induced neurotoxicity. We used chloroquine (10, 20, and 40 μM) as a lysosome inhibitor and BD-1063 (1, 10, and 30 μM) as a selective sigma receptor antagonist. The MTT assay was used to measure the neurotoxicity in the SH-SY5Y cells. Data were analyzed using the one-way ANOVA. Results: Memantine (2.5 µM), dizocilpine (5 µM), chloroquine (10 and 20 µM) and BD-1063 (1, 10 and 30 µM) decreased the neurotoxic effects of Aβ on the SH-SY5Y cells. However, chloroquine (40 µM) increased the neurotoxic effects of Aβ. Cell viability in the cells treated with memantine + Aβ + chloroquine (10, 20, and 40 μM) was significantly lower than the memantine + Aβ-treated group. Moreover, cell viability in the memantine + Aβ group was higher than the memantine + Aβ + BD-1063 (10 and 30 μM) groups. Conclusion: The lysosomal and sigma receptors may contribute to the neuroprotective mechanism of memantine and other NMDA receptor antagonists. Moreover, the restoration of lysosomes function and the modulation of sigma receptors are potential targets in the treatment of AD.
Collapse
Affiliation(s)
- Mojtaba Keshavarz
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Reza Farrokhi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Amirinezhad Fard
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdipour
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Dhanavade MJ, Sonawane KD. Amyloid beta peptide-degrading microbial enzymes and its implication in drug design. 3 Biotech 2020; 10:247. [PMID: 32411571 PMCID: PMC7214582 DOI: 10.1007/s13205-020-02240-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurological brain disorder. AD pathophysiology is mainly represented by formation of neuritic plaques and neurofibrillary tangles (NFTs). Neuritic plaques are made up of amyloid beta (Aβ) peptides, which play a central role in AD pathogenesis. In AD brain, Aβ peptide accumulates due to overproduction, insufficient clearance and defective proteolytic degradation. The degradation and cleavage mechanism of Aβ peptides by several human enzymes have been discussed previously. In the mean time, numerous experimental and bioinformatics reports indicated the significance of microbial enzymes having potential to degrade Aβ peptides. Thus, there is a need to shift the focus toward the substrate specificity and structure-function relationship of Aβ peptide-degrading microbial enzymes. Hence, in this review, we discussed in vitro and in silico studies of microbial enzymes viz. cysteine protease and zinc metallopeptidases having ability to degrade Aβ peptides. In silico study showed that cysteine protease can cleave Aβ peptide between Lys16-Cys17; similarly, several other enzymes also showed capability to degrade Aβ peptide at different sites. Thus, this review paves the way to explore the role of microbial enzymes in Aβ peptide degradation and to design new lead compounds for AD treatment.
Collapse
Affiliation(s)
- Maruti J. Dhanavade
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004 India
| | - Kailas D. Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra 416004 India
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004 India
| |
Collapse
|
4
|
Telles-Longui M, Mourelle D, Schöwe NM, Cipolli GC, Malerba HN, Buck HS, Viel TA. α7 nicotinic ACh receptors are necessary for memory recovery and neuroprotection promoted by attention training in amyloid-β-infused mice. Br J Pharmacol 2019; 176:3193-3205. [PMID: 31144293 DOI: 10.1111/bph.14744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/04/2019] [Accepted: 05/10/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Attention training reverses the neurodegeneration and memory loss promoted by infusion of amyloid-β (Aβ) peptide in rats and increases the density of α7 nicotinic ACh receptors (α7nAChRs) in brain areas related to memory. Hence, we aimed to assess the role of α7nAChRs in the memory recovery promoted by attention training. EXPERIMENTAL APPROACH C57Bl/6 mice were chronically infused with Aβ, Aβ plus the α7 antagonist methyllycaconitine (MLA), or MLA alone. Control animals were infused with vehicle. Animals were subjected weekly to the active avoidance shuttle box for 4 weeks (attention training). The brain and serum were collected for biochemical and histological analysis. KEY RESULTS Aβ caused cognitive impairment, which was reversed by the weekly training, whereas Aβ + MLA also promoted memory loss but with no reversal with weekly training. MLA alone also promoted memory loss but with only partial reversal with the training. Animals infused with Aβ alone showed senile plaques in hippocampus, no change in BDNF levels in cortex, hippocampus, and serum, but increased AChE activity in cortex and hippocampus. Co-treatment with MLA increased AChE activity and senile plaque deposition in hippocampus as well as reducing BDNF in hippocampus and serum, suggesting a lack of α7nAChR function leads to a loss of neuroprotection mechanisms. CONCLUSIONS AND IMPLICATIONS The α7nAChR has a determinant role in memory recovery and brain resilience in the presence of neurodegeneration promoted by Aβ peptide. These data support further studies concerning these receptors as pharmacological targets for future therapies.
Collapse
Affiliation(s)
- Milena Telles-Longui
- Graduate Course on Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Danilo Mourelle
- Graduate Course on Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Natalia Mendes Schöwe
- Graduate Course on Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil.,Research Group on Neuropharmacology of Aging, São Paulo, Brazil
| | | | - Helena Nascimento Malerba
- Graduate Course on Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil.,Research Group on Neuropharmacology of Aging, São Paulo, Brazil
| | - Hudson Sousa Buck
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil.,Research Group on Neuropharmacology of Aging, São Paulo, Brazil
| | - Tania Araujo Viel
- Graduate Course on Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil.,School of Arts, Sciences and Humanities, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW The aim of the present manuscript is to review the latest advancements of radionuclide molecular imaging in the diagnosis and prognosis of individuals with cardiac amyloidosis. RECENT FINDINGS 99mTechnetium labeled bone tracer scintigraphy had been known to image cardiac amyloidosis, since the 1980s; over the past decade, bone scintigraphy has been revived specifically to diagnose transthyretin cardiac amyloidosis. 18F labeled and 11C labeled amyloid binding radiotracers developed for imaging Alzheimer's disease, have been repurposed since 2013, to image light chain and transthyretin cardiac amyloidosis. 99mTechnetium bone scintigraphy for transthyretin cardiac amyloidosis, and amyloid binding targeted PET imaging for light chain and transthyretin cardiac amyloidosis, are emerging as highly accurate methods. Targeted radionuclide imaging may soon replace endomyocardial biopsy in the evaluation of patients with suspected cardiac amyloidosis. Further research is warranted on the role of targeted imaging to quantify cardiac amyloidosis and to guide therapy.
Collapse
Affiliation(s)
- Paco E Bravo
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, the Noninvasive Cardiovascular Imaging Program, Departments of Medicine (Cardiology) and Radiology, Cardiac Amyloidosis Program, Department of Medicine, Brigham and Women's Hospital, 70 Francis Street, Shapiro 5th Floor, Room 128, Boston, MA, 02115, USA
| | - Sharmila Dorbala
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, the Noninvasive Cardiovascular Imaging Program, Departments of Medicine (Cardiology) and Radiology, Cardiac Amyloidosis Program, Department of Medicine, Brigham and Women's Hospital, 70 Francis Street, Shapiro 5th Floor, Room 128, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Nixon RA. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. FASEB J 2017; 31:2729-2743. [PMID: 28663518 DOI: 10.1096/fj.201700359] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
Abstract
Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and β-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote β-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies β-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-β, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA; .,Department of Psychiatry and Department of Cell Biology, New York University Langone Medical Center, New York, New York, USA
| |
Collapse
|
7
|
Morzelle MC, Salgado JM, Telles M, Mourelle D, Bachiega P, Buck HS, Viel TA. Neuroprotective Effects of Pomegranate Peel Extract after Chronic Infusion with Amyloid-β Peptide in Mice. PLoS One 2016; 11:e0166123. [PMID: 27829013 PMCID: PMC5102433 DOI: 10.1371/journal.pone.0166123] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/24/2016] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease is a chronic and degenerative condition that had no treatment until recently. The current therapeutic strategies reduce progression of the disease but are expensive and commonly cause side effects that are uncomfortable for treated patients. Functional foods to prevent and/or treat many conditions, including neurodegenerative diseases, represent a promising field of study currently gaining attention. To this end, here we demonstrate the effects of pomegranate (Punica granatum) peel extract (PPE) regarding spatial memory, biomarkers of neuroplasticity, oxidative stress and inflammation in a mouse model of neurodegeneration. Male C57Bl/6 mice were chronically infused for 35 days with amyloid-β peptide 1–42 (Aβ) or vehicle (control) using mini-osmotic pumps. Another group, also infused with Aβ, was treated with PPE (p.o.– βA+PPE, 800 mg/kg/day). Spatial memory was evaluated in the Barnes maze. Animals treated with PPE and in the control group exhibited a reduction in failure to find the escape box, a finding that was not observed in the Aβ group. The consumption of PPE reduced amyloid plaque density, increased the expression of neurotrophin BDNF and reduced the activity of acetylcholinesterase enzyme. A reduction in lipid peroxidation and in the concentration of the pro-inflammatory cytokine TNF-α was also observed in the PPE group. No hepatic lesions were observed in animals treated with PPE. In conclusion, administration of pomegranate peel extract has neuroprotective effects involving multiple mechanisms to prevent establishment and progression of the neurodegenerative process induced by infusion with amyloid-β peptide in mice.
Collapse
Affiliation(s)
- Maressa Caldeira Morzelle
- Department of Agri-food Industry, Food and Nutrition, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Pádua Dias Avenue, P.O. Box. 9, 13418–900, Piracicaba, SP, Brazil
| | - Jocelem Mastrodi Salgado
- Department of Agri-food Industry, Food and Nutrition, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Pádua Dias Avenue, P.O. Box. 9, 13418–900, Piracicaba, SP, Brazil
| | - Milena Telles
- Graduation Course on Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, Avenida Professor Lineu Prestes, 1524, 05508–900, São Paulo, Brazil
| | - Danilo Mourelle
- Graduation Course on Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, Avenida Professor Lineu Prestes, 1524, 05508–900, São Paulo, Brazil
| | - Patricia Bachiega
- Department of Agri-food Industry, Food and Nutrition, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Pádua Dias Avenue, P.O. Box. 9, 13418–900, Piracicaba, SP, Brazil
| | - Hudson Sousa Buck
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, R. Dr. Cesario Motta Junior, 61, 111° andar, São Paulo, SP 01221–020, Brazil
| | - Tania Araujo Viel
- Graduation Course on Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, Avenida Professor Lineu Prestes, 1524, 05508–900, São Paulo, Brazil
- School of Arts, Sciences and Humanities, Universidade de São Paulo, Av. Arlindo Bettio, 1000, São Paulo, SP 03828–080, Brazil
- * E-mail:
| |
Collapse
|
8
|
Mazzitelli S, Filipello F, Rasile M, Lauranzano E, Starvaggi-Cucuzza C, Tamborini M, Pozzi D, Barajon I, Giorgino T, Natalello A, Matteoli M. Amyloid-β 1-24 C-terminal truncated fragment promotes amyloid-β 1-42 aggregate formation in the healthy brain. Acta Neuropathol Commun 2016; 4:110. [PMID: 27724899 PMCID: PMC5057504 DOI: 10.1186/s40478-016-0381-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 01/21/2023] Open
Abstract
Substantial data indicate that amyloid-β (Aβ), the major component of senile plaques, plays a central role in Alzheimer’s Disease and indeed the assembly of naturally occurring amyloid peptides into cytotoxic aggregates is linked to the disease pathogenesis. Although Aβ42 is a highly aggregating form of Aβ, the co-occurrence of shorter Aβ peptides might affect the aggregation potential of the Aβ pool. In this study we aimed to assess whether the structural behavior of human Aβ42 peptide inside the brain is influenced by the concomitant presence of N-terminal fragments produced by the proteolytic activity of glial cells. We show that the occurrence of the human C-terminal truncated 1–24 Aβ fragment impairs Aβ42 clearance through blood brain barrier and promotes the formation of Aβ42 aggregates even in the healthy brain. By showing that Aβ1-24 has seeding properties for aggregate formation in intracranially injected wild type mice, our study provide the proof-of-concept that peptides produced upon Aβ42 cleavage by activated glial cells may cause phenotypic defects even in the absence of genetic mutations associated with Alzheimer’s Disease, possibly contributing to the development of the sporadic form of the pathology.
Collapse
|
9
|
Structure of amyloid oligomers and their mechanisms of toxicities: Targeting amyloid oligomers using novel therapeutic approaches. Eur J Med Chem 2016; 114:41-58. [DOI: 10.1016/j.ejmech.2016.02.065] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 01/22/2023]
|
10
|
Köhler C, Dinekov M, Götz J. Active glycogen synthase kinase-3 and tau pathology-related tyrosine phosphorylation in pR5 human tau transgenic mice. Neurobiol Aging 2013; 34:1369-79. [DOI: 10.1016/j.neurobiolaging.2012.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/05/2012] [Accepted: 11/22/2012] [Indexed: 02/08/2023]
|
11
|
Sawmiller DR, Nguyen HT, Markov O, Chen M. High-energy compounds promote physiological processing of Alzheimer's amyloid-β precursor protein and boost cell survival in culture. J Neurochem 2012; 123:525-31. [PMID: 22906069 DOI: 10.1111/j.1471-4159.2012.07923.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/03/2012] [Accepted: 08/14/2012] [Indexed: 11/28/2022]
Abstract
Physiological or α-processing of amyloid-β precursor protein (APP) prevents the formation of Aβ, which is deposited in the aging brain and may contribute to Alzheimer's disease. As such, drugs promoting this pathway could be useful for prevention of the disease. Along this line, we searched through a number of substances and unexpectedly found that a group of high-energy compounds (HECs), namely ATP, phosphocreatine, and acetyl coenzyme A, potently increased APP α-processing in cultured SH-SY5Y cells, whereas their cognate counterparts, i.e., ADP, creatine, or coenzyme A did not show the same effects. Other HECs such as GTP, CTP, phosphoenol pyruvate, and S-adenosylmethionine also promoted APP α-processing with varying potencies and the effects were abolished by energy inhibitors rotenone or NaN(3). The overall efficacy of the HECs in the process ranged from three- to four-fold, which was significantly greater than that exhibited by other physiological stimulators such as glutamate and nicotine. This suggested that the HECs were perhaps the most efficient physiological stimulators for APP α-processing. Moreover, the HECs largely offset the inefficient APP α-processing in aged human fibroblasts or in cells impaired by rotenone or H(2) O(2). Most importantly, some HECs markedly boosted the survival rate of SH-SY5Y cells in the death process induced by energy suppression or oxidative stress. These findings suggest a new, energy-dependent regulatory mechanism for the putative α-secretase and thus will help substantially in its identification. At the same time, the study raises the possibility that the HECs may be useful to energize and strengthen the aging brain cells to slow down the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Darrell R Sawmiller
- Aging Research Laboratory, Bay Pines VA Healthcare System, Bay Pines, FL, USA
| | | | | | | |
Collapse
|
12
|
Morawski M, Brückner G, Jäger C, Seeger G, Matthews RT, Arendt T. Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer's disease neuropathology. Brain Pathol 2012; 22:547-61. [PMID: 22126211 DOI: 10.1111/j.1750-3639.2011.00557.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brain extracellular matrix (ECM) is organized in specific patterns assumed to mirror local features of neuronal activity and synaptic plasticity. Aggrecan-based perineuronal nets (PNs) and brevican-based perisynaptic axonal coats (ACs) form major structural phenotypes of ECM contributing to the laminar characteristics of cortical areas. In Alzheimer's disease (AD), the deposition of amyloid proteins and processes related to neurofibrillary degeneration may affect the integrity of the ECM scaffold. In this study we investigate ECM organization in primary sensory, secondary and associative areas of the temporal and occipital lobe. By detecting all major PN components we show that the distribution, structure and molecular properties of PNs remain unchanged in AD. Intact PNs occurred in close proximity to amyloid plaques and were even located within their territory. Counting of PNs revealed no significant alteration in AD. Moreover, neurofibrillary tangles never occurred in neurons associated with PNs. ACs were only lost in the core of amyloid plaques in parallel with the loss of synaptic profiles. In contrast, hyaluronan was enriched in the majority of plaques. We conclude that the loss of brevican is associated with the loss of synapses, whereas PNs and related matrix components resist disintegration and may protect neurons from degeneration.
Collapse
Affiliation(s)
- Markus Morawski
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, Universität Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Chambon C, Wegener N, Gravius A, Danysz W. Behavioural and cellular effects of exogenous amyloid-β peptides in rodents. Behav Brain Res 2011; 225:623-41. [PMID: 21884730 DOI: 10.1016/j.bbr.2011.08.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/10/2011] [Accepted: 08/16/2011] [Indexed: 12/29/2022]
Abstract
A better understanding of Alzheimer's disease (AD) and the development of disease modifying therapies are some of the biggest challenges of the 21st century. One of the core features of AD are amyloid plaques composed of amyloid-beta (Aβ) peptides. The first hypothesis proposed that cognitive deficits are linked to plaque-development and transgenic mice have been generated to study this link, thereby providing a good model to develop new therapeutic approaches. Since later it was recognised that in AD patients the cognitive deficit is rather correlated to soluble amyloid levels, consequently, a new hypothesis appeared associating the earliest amyloid toxicity to these soluble species. The purpose of this review is to give a summary of behavioural and cellular data obtained after soluble Aβ peptide administration into rodents' brain, thereby showing that this model is a valid tool to investigate AD pathology when no plaques are present. Additionally, this method offers an excellent, efficient model to test compounds which could act at such early stages of the disease.
Collapse
Affiliation(s)
- Caroline Chambon
- In Vivo Pharmacology, Merz Pharmaceuticals GmbH, Eckenheimer Landstrasse 100, D-60318 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
14
|
Beck K, Schachtrup C. Vascular damage in the central nervous system: a multifaceted role for vascular-derived TGF-β. Cell Tissue Res 2011; 347:187-201. [PMID: 21850492 DOI: 10.1007/s00441-011-1228-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 07/22/2011] [Indexed: 01/16/2023]
Abstract
The brain function depends on a continuous supply of blood. The blood-brain barrier (BBB), which is formed by vascular cells and glia, separates components of the circulating blood from neurons and maintains the precisely regulated brain milieu required for proper neuronal function. A compromised BBB alters the transport of molecules between the blood and brain and has been associated with or shown to precede neurodegenerative disease. Blood components immediately leak into the brain after mechanical damage or as a consequence of a compromised BBB in brain disease changing the extracellular environment at sites of vascular damage. It is intriguing how blood-derived components alter the cellular and molecular constituents of the neurovascular interface after BBB opening. We recently identified an unexpected role for the blood protein fibrinogen, which is deposited in the nervous system promptly after vascular damage, as an initial scar inducer by promoting the availability of active TGF-β. Fibrinogen-bound latent TGF-β interacts with astrocytes, leading to active TGF-β formation and activation of the TGF-β/Smad signaling pathway. Here, we discuss the pleiotropic effects of potentially vascular-derived TGF-β on cells at the neurovascular interface and we speculate how these biological effects might contribute to degeneration and regeneration processes. Summarizing the effects of the components derived from the brain vascular system on nervous system regeneration might support the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Kristina Beck
- Centre of Chronic Immunodeficiency, University Medical Centre Freiburg and University of Freiburg, 79106 Freiburg, Germany
| | | |
Collapse
|
15
|
Obulesu M, Dowlathabad MR, Bramhachari PV. Carotenoids and Alzheimer's disease: an insight into therapeutic role of retinoids in animal models. Neurochem Int 2011; 59:535-41. [PMID: 21672580 DOI: 10.1016/j.neuint.2011.04.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 03/16/2011] [Accepted: 04/20/2011] [Indexed: 01/09/2023]
Abstract
Carotenoids play a pivotal role in prevention of many degenerative diseases mediated by oxidative stress including neurodegenerative diseases like Alzheimer's Disease (AD). The involvement of retinoids in physiology, AD pathology and their therapeutic role in vitro and in vivo has been extensively studied. This review focuses on the role of carotenoids like retinoic acid (RA), all trans retinoic acid (ATRA), lycopene and β-carotene in prevention of AD symptoms primarily through inhibition of amyloid beta (Aβ) formation, deposition and fibril formation either by reducing the levels of p35 or inhibiting corresponding enzymes. The role of antioxidant micronutrients in prevention or delaying of AD symptoms has been included. This study emphasizes the dietary supplementation of carotenoids to combat AD and warrants further studies on animal models to unravel their mechanism of neuroprotection.
Collapse
Affiliation(s)
- M Obulesu
- Department of Biotechnology, Rayalaseema University, Kurnool, Andhra Pradesh, India.
| | | | | |
Collapse
|
16
|
|
17
|
Rendakov NL, Topchieva LV, Vinogradova IA, Nemova NN. Alteration of cathepsins and actin genes expression in rat brain during ageing. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2011; 436:50-52. [PMID: 21374014 DOI: 10.1134/s0012496611010157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Indexed: 05/30/2023]
Affiliation(s)
- N L Rendakov
- Karelian Scientific Center, Russian Academy of Sciences, Petrozavodsk, Russia.
| | | | | | | |
Collapse
|
18
|
Kosenko E, Poghosyan A, Kaminsky Y. Subcellular compartmentalization of proteolytic enzymes in brain regions and the effects of chronic β-amyloid treatment. Brain Res 2011; 1369:184-93. [DOI: 10.1016/j.brainres.2010.10.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 12/14/2022]
|
19
|
Liang B, Duan BY, Zhou XP, Gong JX, Luo ZG. Calpain activation promotes BACE1 expression, amyloid precursor protein processing, and amyloid plaque formation in a transgenic mouse model of Alzheimer disease. J Biol Chem 2010; 285:27737-44. [PMID: 20595388 PMCID: PMC2934641 DOI: 10.1074/jbc.m110.117960] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 06/27/2010] [Indexed: 12/17/2022] Open
Abstract
Abnormal activation of calpain is implicated in synaptic dysfunction and participates in neuronal death in Alzheimer disease (AD) and other neurological disorders. Pharmacological inhibition of calpain has been shown to improve memory and synaptic transmission in the mouse model of AD. However, the role and mechanism of calpain in AD progression remain elusive. Here we demonstrate a role of calpain in the neuropathology in amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic mice, an established mouse model of AD. We found that overexpression of endogenous calpain inhibitor calpastatin (CAST) under the control of the calcium/calmodulin-dependent protein kinase II promoter in APP/PS1 mice caused a remarkable decrease of amyloid plaque burdens and prevented Tau phosphorylation and the loss of synapses. Furthermore, CAST overexpression prevented the decrease in the phosphorylation of the memory-related molecules CREB and ERK in the brain of APP/PS1 mice and improved spatial learning and memory. Interestingly, treatment of cultured primary neurons with amyloid-beta (Abeta) peptides caused an increase in the level of beta-site APP-cleaving enzyme 1 (BACE1), the key enzyme responsible for APP processing and Abeta production. This effect was inhibited by CAST overexpression. Consistently, overexpression of calpain in heterologous APP expressing cells up-regulated the level of BACE1 and increased Abeta production. Finally, CAST transgene prevented the increase of BACE1 in APP/PS1 mice. Thus, calpain activation plays an important role in APP processing and plaque formation, probably by regulating the expression of BACE1.
Collapse
Affiliation(s)
- Bin Liang
- From the Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bao-Yu Duan
- From the Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiu-Ping Zhou
- From the Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia-Xin Gong
- From the Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen-Ge Luo
- From the Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
20
|
Ding Y, Qiao A, Fan GH. Indirubin-3'-monoxime rescues spatial memory deficits and attenuates β-amyloid-associated neuropathology in a mouse model of Alzheimer's disease. Neurobiol Dis 2010; 39:156-68. [DOI: 10.1016/j.nbd.2010.03.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 01/14/2023] Open
|
21
|
Amaral FA, Lemos MTR, Dong KE, Bittencourt MFQP, Caetano AL, Pesquero JB, Viel TA, Buck HS. Participation of kinin receptors on memory impairment after chronic infusion of human amyloid-beta 1-40 peptide in mice. Neuropeptides 2010; 44:93-7. [PMID: 19926131 DOI: 10.1016/j.npep.2009.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 09/06/2009] [Accepted: 10/16/2009] [Indexed: 11/26/2022]
Abstract
Chronic infusion of human amyloid-beta 1-40 (Abeta) in the lateral ventricle (LV) of rats is associated with memory impairment and increase of kinin receptors in cortical and hippocampal areas. Deletion of kinin B1 or B2 receptors abolished memory impairment caused by an acute single injection of Abeta in the LV. As brain tissue and kinin receptors could unlikely react to acute or chronic administration of a similar quantity of Abeta, we evaluated the participation of B1 or B2 receptors in memory impairment after chronic infusion of Abeta. Male C57Bl/6J (wt), knock-out B1 (koB1) or B2 (koB2) mice (12weeks of age) previously trained in a two-way shuttle-box and achieving conditioned avoidance responses (CAR, % of 50 trials) were infused with AB (550pmol, 0.12microL/h, 28days) or vehicle in the LV using a mini-osmotic pump. They were tested before the surgery (T0), 7 and 35days after the infusion started (T7; T35). In T0, no difference was observed between CAR of the control (Cwt=59.7+/-6.7%; CkoB1=46.7+/-4.0%; CkoB2=64.4+/-5.8%) and Abeta (Abetawt=66.0+/-3.0%; AbetakoB1=66.8+/-8.2%; AbetakoB2=58.7+/-5.9%) groups. In T7, AbetakoB2 showed a significant decrease in CAR (41.0+/-8.6%) compared to the control-koB2 (72.8+/-2.2%, P<0.05). In T35, a significant decrease (P<0.05) was observed in Abetawt (40.7+/-3.3%) and AbetakoB2 (41.2+/-10.7%) but not in the AbetakoB1 (64.0+/-14.0%) compared to their control groups. No changes were observed in the controls at T35. We suggest that in chronic infusion of BA, B1 receptors could play an important role in the neurodegenerative process. Conversely, the premature memory impairment of koB2 suggests that it may be a protective factor.
Collapse
Affiliation(s)
- Fabio Agostini Amaral
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, Rua Dr. Cesario Motta Junior, 61, São Paulo, SP, CEP 01221-020, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Di Stefano A, Sozio P, Cerasa L, Iannitelli A, Cataldi A, Zara S, Giorgioni G, Nasuti C. Ibuprofen and Lipoic Acid Diamide as Co-Drug with Neuroprotective Activity: Pharmacological Properties and Effects in β-Amyloid (1–40) Infused Alzheimer's Disease Rat Model. Int J Immunopathol Pharmacol 2010; 23:589-99. [DOI: 10.1177/039463201002300221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Both oxidative stress and inflammation are elevated in brains of Alzheimer's disease patients, but their pathogenic significance still remains unclear. Current evidence support the hypothesis that non-steroidal anti-inflammatory drugs (NSAIDs) and antioxidant therapy might protect against the development of Alzheimer's disease, and ibuprofen has the strongest epidemiological support. In the present work our attention was focused on (R)-α-lipoic acid considered as a potential neuroprotective agent in Alzheimer's disease therapy. In particular, we investigated a new co-drug (1) obtained by joining (R)-α-lipoic acid and ibuprofen via a diamide bond, for evaluating its potential to antagonize the deleterious structural and cognitive effects of β-amyloid (1–40) in an infused Alzheimer's disease rat model. Our results indicated that infusion of β-amyloid (1–40) impairs memory performance through a progressive cognitive deterioration; however, ibuprofen and co-drug 1 seemed to protect against behavioural detriment induced by simultaneous administration of β-amyloid (1–40) protein. The obtained data were supported by the histochemical findings of the present study: β-amyloid protein was less expressed in 1-treated than in ibuprofen and (R)-α-lipoic acid alone-treated cerebral cortex. Taken together, the present findings suggest that co-drug 1 treatment may protect against the cognitive dysfunction induced by intracerebroventricular infusion of β-amyloid (1–40) in rats. Thus, co-drug 1 could prove useful as a tool for controlling Alzheimer's disease-induced cerebral amyloid deposits and behavioural deterioration.
Collapse
Affiliation(s)
| | | | | | | | - A. Cataldi
- Dipartimento di Biomorfologia, Università “G. d'Annunzio”, Chieti
| | - S. Zara
- Dipartimento di Biomorfologia, Università “G. d'Annunzio”, Chieti
| | - G. Giorgioni
- Dipartimento di Scienze Chimiche, Università di Camerino, Camerino
| | - C. Nasuti
- Dipartimento di Medicina Sperimentale e Sanità Pubblica, Università di Camerino, Camerino, Italy
| |
Collapse
|
23
|
Sondag CM, Dhawan G, Combs CK. Beta amyloid oligomers and fibrils stimulate differential activation of primary microglia. J Neuroinflammation 2009; 6:1. [PMID: 19123954 PMCID: PMC2632990 DOI: 10.1186/1742-2094-6-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 01/05/2009] [Indexed: 12/31/2022] Open
Abstract
Background Beta amyloid (Aβ) peptides are the major constituents of the senile plaques present in Alzheimer's diseased brain. Pathogenesis has been associated with the aggregated form of the peptide as these fibrils are the conformation readily found in the plaques. However, recent studies have shown that the nonaggregated, soluble assemblies of Aβ have the potential to stimulate neuronal dysfunction and may play a prominent role in the pathogenesis of Alzheimer's disease. Methods Soluble, synthetic Aβ1–42 oligomers were prepared producing mainly dimer-trimer conformations as assessed by SDS-PAGE. Similar analysis demonstrated fibril preparations to produce large insoluble aggregates unable to migrate out of the stacking portion of the gels. These peptide preparations were used to stimulate primary murine microglia and cortical neuron cultures. Microglia were analyzed for changes in signaling response and secretory phenotype via Western analysis and ELISA. Viability was examined by quantifying lactate dehydrogenase release from the cultures. Results Aβ oligomers and fibrils were used to stimulate microglia for comparison. Both the oligomers and fibrils stimulated proinflammatory activation of primary microglia but the specific conformation of the peptide determined the activation profile. Oligomers stimulated increased levels of active, phosphorylated Lyn and Syk kinase as well as p38 MAP kinase compared to fibrils. Moreover, oligomers stimulated a differential secretory profile for interleukin 6, monocyte chemoattractant protein-1 and keratinocyte chemoattractant when compared to fibrils. Finally, soluble oligomers stimulated death of cultured cortical neurons that was exacerbated by the presence of microglia. Conclusion These data suggest that fibrils and oligomers stimulate unique signaling responses in microglia leading to discrete secretory changes and effects on neuron survival. This suggests that inflammation changes during disease may be the consequence of unique peptide-stimulated events and each conformation may represent an individual anti-inflammatory therapeutic target.
Collapse
Affiliation(s)
- Cindy M Sondag
- Department of Pharmacology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA.
| | | | | |
Collapse
|
24
|
Klein DM, Felsenstein KM, Brenneman DE. Cathepsins B and L differentially regulate amyloid precursor protein processing. J Pharmacol Exp Ther 2008; 328:813-21. [PMID: 19064719 DOI: 10.1124/jpet.108.147082] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown that cathepsins control amyloid beta (Abeta) levels in chromaffin cells via a regulated secretory pathway. In the present study, this concept was extended to investigations in primary hippocampal neurons to test whether Abeta release was coregulated by cathepsins and electrical activity, proposed components of a regulated secretory pathway. Inhibition of cathepsin B (catB) activity with CA074Me or attenuation of catB expression through small interfering RNA produced decreases in Abeta release, similar to levels produced with suppression of beta-site APP-cleaving enzyme 1 (BACE1) expression. To test whether the catB-dependent release of Abeta was linked to ongoing electrical activity, neurons were treated with tetrodotoxin (TTX) and CA074Me. These comparisons demonstrated no additivity between decreases in Abeta release produced by TTX and CA074Me. In contrast, pharmacological inhibition of cathepsin L (catL) selectively elevated Abeta42 levels but not Abeta40 or total Abeta. Mechanistic studies measuring C-terminal fragments of amyloid precursor protein (APP) suggested that catL elevated alpha-secretase activity, thereby suppressing Abeta42 levels. The mechanism of catB-mediated regulation of Abeta release remains unclear but may involve elevation of beta-secretase. In summary, these studies provide evidence for a significant alternative pathway for APP processing that involves catB and activity-dependent release of Abeta in a regulated secretory pathway for primary neurons.
Collapse
Affiliation(s)
- Donna M Klein
- Drug Discovery, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, Spring House, Pennsylvania, USA.
| | | | | |
Collapse
|
25
|
Viel TA, Lima Caetano A, Nasello AG, Lancelotti CL, Nunes VA, Araujo MS, Buck HS. Increases of kinin B1 and B2 receptors binding sites after brain infusion of amyloid-beta 1–40 peptide in rats. Neurobiol Aging 2008; 29:1805-14. [PMID: 17570564 DOI: 10.1016/j.neurobiolaging.2007.04.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 04/07/2007] [Accepted: 04/23/2007] [Indexed: 11/17/2022]
Abstract
Although numerous inflammation pathways have been implicated in Alzheimer's disease, the involvement of the kallikrein-kinin system is still under investigation. We anatomically localized and quantified the density of kinin B(1) and B(2) receptors binding sites in the rat brain after the infusion of amyloid-beta (Abeta) peptide in the right lateral brain ventricle for 5 weeks. The conditioned avoidance test showed a significant reduction of memory consolidation in rats infused with Abeta (68.6+/-20.9%, P<0.05) when compared to control group (90.8+/-4.1%; infused with vehicle). Autoradiographic studies performed in brain samples of both groups using [(125)I]HPP-[des-Arg(10)]-Hoe-140 (150pM, 90min, 25 degrees C) showed a significant increase in density of B(1) receptor binding sites in the ventral hippocampal commissure (1.23+/-0.07fmol/mg), fimbria (1.31+/-0.05fmol/mg), CA1 and CA3 hippocampal areas (1.05+/-0.03 and 1.24+/-0.02fmol/mg, respectively), habenular nuclei (1.30+/-0.04fmol/mg), optical tract (1.30+/-0.05fmol/mg) and internal capsule (1.26+/-0.05fmol/mg) in Abeta group. For B(2) receptors ([(125)I]HPP-Hoe-140, 200pM, 90min, 25 degrees C), a significant increase in density of binding sites was observed in optical tract (2.04+/-0.08fmol/mg), basal nucleus of Meynert (1.84+/-0.18fmol/mg), lateral septal nucleus - dorsal and intermediary portions (1.66+/-0.29fmol/mg), internal capsule (1.74+/-0.19fmol/mg) and habenular nuclei (1.68+/-0.11fmol/mg). In control group, none of these nuclei showed [(125)I]HPP-Hoe-140 labeling. This significant increase in densities of kinin B(1) and B(2) receptors in animals submitted to Abeta infusion was observed mainly in brain regions related to cognitive behavior, suggesting the involvement of the kallikrein-kinin system in Alzheimer's disease in vivo.
Collapse
Affiliation(s)
- Tania Araujo Viel
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, Sao Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
26
|
Eslami P, Johnson MF, Terzakaryan E, Chew C, Harris-White ME. TGF beta2-induced changes in LRP-1/T beta R-V and the impact on lysosomal A beta uptake and neurotoxicity. Brain Res 2008; 1241:176-87. [PMID: 18804458 DOI: 10.1016/j.brainres.2008.08.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/21/2008] [Accepted: 08/25/2008] [Indexed: 01/01/2023]
Abstract
Numerous studies suggest a central role for the low-density lipoprotein receptor-related protein/transforming growth factor beta receptor V in Alzheimer's Disease. We continue our investigation of a ligand for this receptor, transforming growth factor beta2, which is also implicated in Alzheimer Disease pathogenesis, but whose mechanism(s) remain elusive. Confocal imaging reveals that transforming growth factor beta2 rapidly targets amyloid beta peptide to the lysosomal compartment in cortical neurons and induces cell death. Low-density lipoprotein receptor-related protein/transforming growth factor beta receptor V is known as an endocytic receptor, delivering proteins to the lysosomal compartment for degradation. Transforming growth factor beta2 may alter this pathway resulting in increased uptake, intracellular accumulation and toxicity of amyloid beta peptide. RT-PCR and Western blot analysis of transforming growth factor beta2-treated cells demonstrate that transforming growth factor beta2 modestly increases the mRNA and protein levels of low-density lipoprotein receptor-related protein/transforming growth factor beta receptor V as well as increases the uptake activity. Furthermore, transforming growth factor beta2 alters the morphology and numbers of lysosomes in neurons. Lucifer Yellow and lysosomal hydrolase analysis show that transforming growth factor beta2 makes lysosomal membranes unstable and leaky and this effect is exacerbated with the addition of amyloid beta protein. Our data support a key role for low-density lipoprotein receptor-related protein/transforming growth factor beta receptor V in mediating transforming growth factor beta2 enhancement of amyloid beta peptide uptake and neurotoxicity.
Collapse
Affiliation(s)
- Pirooz Eslami
- Department of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
The amyloid beta-protein (Abeta), which accumulates abnormally in Alzheimer disease (AD), is degraded by a diverse set of proteolytic enzymes. Abeta-cleaving proteases, largely ignored until only recently, are now known to play a pivotal role in the regulation of cerebral Abeta levels and amyloid plaque formation in animal models, and accumulating evidence suggests that defective Abeta proteolysis may be operative in many AD cases. This review summarizes the growing body of evidence supporting the involvement of specific Abeta-cleaving proteases in the etiology and potential treatment of AD. Recognition of the importance of Abeta degradation to the overall economy of Abeta has revised our thinking about the mechanistic basis of AD pathogenesis and identified a novel class of enzymes that may serve as both therapeutic targets and therapeutic agents.
Collapse
|
28
|
Amritraj A, Hawkes C, Phinney AL, Mount HT, Scott CD, Westaway D, Kar S. Altered levels and distribution of IGF-II/M6P receptor and lysosomal enzymes in mutant APP and APP + PS1 transgenic mouse brains. Neurobiol Aging 2007; 30:54-70. [PMID: 17561313 DOI: 10.1016/j.neurobiolaging.2007.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 03/30/2007] [Accepted: 05/02/2007] [Indexed: 11/21/2022]
Abstract
The insulin-like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptor participates in the trafficking of lysosomal enzymes from the trans-Golgi network or the cell surface to lysosomes. In Alzheimer's disease (AD) brains, marked up-regulation of the lysosomal system in vulnerable neuronal populations has been correlated with altered metabolic functions. To establish whether IGF-II/M6P receptors and lysosomal enzymes are altered in the brain of transgenic mice harboring different familial AD mutations, we measured the levels and distribution of the receptor and lysosomal enzymes cathepsins B and D in select brain regions of transgenic mice overexpressing either mutant presenilin 1 (PS1; PS1(M146L+L286V)), amyloid precursor protein (APP; APP(KM670/671NL+V717F)) or APP+PS1 (APP(KM670/671NL+V717F)+PS1(M146L+L286V)) transgenes. Our results revealed that levels and expression of the IGF-II/M6P receptor and lysosomal enzymes are increased in the hippocampus and frontal cortex of APP and APP+PS1, but not in PS1, transgenic mouse brains compared with wild-type controls. The changes were more prominent in APP+PS1 than in APP single transgenic mice. Additionally, all beta-amyloid-containing neuritic plaques in the hippocampal and cortical regions of APP and APP+PS1 transgenic mice were immunopositive for both lysosomal enzymes, whereas only a subset of the plaques displayed IGF-II/M6P receptor immunoreactivity. These results suggest that up-regulation of the IGF-II/M6P receptor and lysosomal enzymes in neurons located in vulnerable regions reflects an altered functioning of the endosomal-lysosomal system which may be associated with the increased intracellular and/or extracellular A beta deposits observed in APP and APP+PS1 transgenic mouse brains.
Collapse
Affiliation(s)
- A Amritraj
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Iores-Marçal LM, Viel TA, Buck HS, Nunes VA, Gozzo AJ, Cruz-Silva I, Miranda A, Shimamoto K, Ura N, Araujo MS. Bradykinin release and inactivation in brain of rats submitted to an experimental model of Alzheimer's disease. Peptides 2006; 27:3363-9. [PMID: 17030465 DOI: 10.1016/j.peptides.2006.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 07/12/2006] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
The kallikrein-kinin system is involved in a variety of physiological and pathological processes. Components of this system, identified in rat and human brains, can be altered in neurodegenerative processes such as Alzheimer's disease. Here, we studied kinin release and its inactivation in rats submitted to chronic cerebroventricular infusion of beta-amyloid (Abeta) peptide. Neurodegeneration was confirmed by histological analysis of brain samples. In cerebrospinal fluid of animals infused with Abeta, bradykinin concentration was increased, as determined by radioimmunoassay. However, in the brain of Abeta group, we only detected the tripeptide Arg-Pro-Pro, purified by reversed-phase chromatography and characterized by liquid chromatography-electrospray ionization mass spectrometry. This fragment of bradykinin indicated the possible participation of kinin-processing enzymes in the brain such as a prolyl oligopeptidase.
Collapse
Affiliation(s)
- Lígia M Iores-Marçal
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Rua Três de Maio 100, 04044-020, S. Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mueller-Steiner S, Zhou Y, Arai H, Roberson ED, Sun B, Chen J, Wang X, Yu G, Esposito L, Mucke L, Gan L. Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer's disease. Neuron 2006; 51:703-14. [PMID: 16982417 DOI: 10.1016/j.neuron.2006.07.027] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 06/19/2006] [Accepted: 07/28/2006] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) may result from the accumulation of amyloid-beta (Abeta) peptides in the brain. The cysteine protease cathepsin B (CatB) is associated with amyloid plaques in AD brains and has been suspected to increase Abeta production. Here, we demonstrate that CatB actually reduces levels of Abeta peptides, especially the aggregation-prone species Abeta1-42, through proteolytic cleavage. Genetic inactivation of CatB in mice with neuronal expression of familial AD-mutant human amyloid precursor protein (hAPP) increased the relative abundance of Abeta1-42, worsening plaque deposition and other AD-related pathologies. Lentivirus-mediated expression of CatB in aged hAPP mice reduced preexisting amyloid deposits, even thioflavin S-positive plaques. Under cell-free conditions, CatB effectively cleaved Abeta1-42, generating C-terminally truncated Abeta peptides that are less amyloidogenic. Thus, CatB likely fulfills antiamyloidogenic and neuroprotective functions. Insufficient CatB activity might promote AD; increasing CatB activity could counteract the neuropathology of this disease.
Collapse
Affiliation(s)
- Sarah Mueller-Steiner
- Gladstone Institute of Neurological Disease, University of California, San Francisco, 1650 Owens Street, 94158, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Apoptotic neuronal cell death is the cardinal feature of aging and neurodegenerative diseases, but its mechanisms remain obscure. Caspases, members of the cysteine protease family, are known to be critical effectors in central nervous system cellular apoptosis. More recently, the calcium-dependent proteases, calpains, have been implicated in cellular apoptotic processes. Indeed, several members of the Bcl-2 family of cell death regulators, nuclear transcription factors (p53) and caspases themselves are processed by calpains. Progressive regional loss of neurons underlies the irreversible pathogenesis of various neurodegenerative diseases such as Alzheimer's disease in adult brain. Alzheimer's disease is characterized by extracellular plaques of amyloid-beta peptide aggregates and intracellular neurofibrillary tangles composed of hyperphosphorylated tau leading to apoptotic cell death. In this review, we summarize the arguments showing that calpains modulate processes that govern the function and metabolism of these two key proteins in the pathogenesis of Alzheimer's disease. To conclude, this article reviews our understanding of calpain-dependent apoptotic neuronal cell death and the ability of these proteases to regulate intracellular signaling pathways leading to chronic neurodegenerative disorders such as Alzheimer's disease. Further research on these calpain-dependent mechanisms which promote or prevent cell apoptosis should help us to develop new approaches for preventing and treating neurodegenerative disorders.
Collapse
Affiliation(s)
- F Raynaud
- UMR5539, EPHE-CNRS-UM2, cc107, Université de Montpellier II, France
| | | |
Collapse
|
32
|
Marcum JL, Mathenia JK, Chan R, Guttmann RP. Oxidation of thiol-proteases in the hippocampus of Alzheimer's disease. Biochem Biophys Res Commun 2005; 334:342-8. [PMID: 16018967 DOI: 10.1016/j.bbrc.2005.06.089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 06/16/2005] [Indexed: 10/25/2022]
Abstract
The hippocampus of Alzheimer's disease brain has been shown to be highly oxidized compared to age-matched controls. One of the most sensitive targets of oxidation is anionic sulfur which can be found within the active site of members of the cysteine-protease family. Thus, while members of the cysteine-protease family such as the calpains and caspases have been found to be in an active conformation in vulnerable brain regions in AD it is possible that their proteolytic activity is hampered due to the robust oxidative stress found at these locations. To address this issue, the amount of caseinolytic activity present in the hippocampus from post-mortem brain samples of AD and age-matched controls was determined. No difference in caseinolytic activity in the absence of exogenous reducing agent was observed between AD and control. However, after addition of the thiol-specific reducing agent, dithiothreitol (DTT), the amount of caseinolytic activity was significantly increased in AD compared to the DTT-mediated increase in control. This suggests that the cysteine proteases are more oxidized in AD brain and that latent proteolytic activity in AD brain can be released by antioxidants. Further testing revealed that the calcium-dependent caseinolytic activity was significantly lower in AD brain compared to controls. This is despite the fact that the major calcium-dependent thiol protease, calpain, is threefold more activated in AD brain based on autolytic activation measured by Western blotting. This calcium-dependent protease difference between AD and control brains was negated by addition of DTT. These data suggest that cysteine protease activity in AD brain is inactivated by oxidants, which is evident by the ability of thiol-specific reducing agents such as DTT to rescue and recover activity.
Collapse
Affiliation(s)
- Jennifer L Marcum
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | | | | | | |
Collapse
|
33
|
Xie Z, Harris-White ME, Wals PA, Frautschy SA, Finch CE, Morgan TE. Apolipoprotein J (clusterin) activates rodent microglia in vivo and in vitro. J Neurochem 2005; 93:1038-46. [PMID: 15857407 DOI: 10.1111/j.1471-4159.2005.03065.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apolipoprotein J (apoJ; also known as clusterin and sulfated glycoprotein (SGP)-2) is associated with senile plaques in degenerating regions of Alzheimer's disease brains, where activated microglia are also prominent. We show a functional link between apoJ and activated microglia by demonstrating that exogenous apoJ activates rodent microglia in vivo and in vitro. Intracerebroventricular infusion of purified human plasma apoJ ( approximately 4 microg over 28 days) activated parenchymal microglia to a phenotype characterized by enlarged cell bodies and processes (phosphotyrosine immunostaining). In vitro, primary rat microglia were also activated by apoJ, with changes in morphology and induction of major histocompatibility complex class II (MHCII) antigen. ApoJ increased the secretion of reactive nitrogen intermediates in a dose-dependent manner (EC(50) 112 nm), which was completely blocked by aminoguanidine (AG), a nitric oxide synthase inhibitor. However, AG did not block the increased secretion of tumor necrosis factor-alpha by apoJ (EC(50) 55 nm). Microglial activation by apoJ was also blocked by an anti-apoJ monoclonal antibody (G7), and by chemical cleavage of apoJ with 2-nitro-5-thiocyanobenzoate. The mitogen-activated protein kinase kinase and protein kinase C inhibitors PD98059 and H7 inhibited apoJ-mediated induction of reactive nitrogen intermediate secretion from cultured microglia. As a functional measure, apoJ-activated microglia secreted neurotoxic agents in a microglia-neuron co-culture model. We hypothesize that ApoJ contributes to chronic inflammation and neurotoxicity through direct effects on microglia.
Collapse
Affiliation(s)
- Z Xie
- Andrus Gerontology Center and Department of Biological Sciences, University of Southern California, Los Angeles, 90089, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The amyloid precursor protein (APP) was initially detected in cells of the central nervous system where it is considered to be involved in the pathogenesis of Alzheimer's disease. However, APP is also found in peripheral organs with exceptionally strong expression in the mammalian epidermis where it fulfils a variety of distinct biological roles. Full length APP appears to facilitate keratinocyte adhesion due to its ability to interact with the extracellular matrix. The C-terminus of APP also serves as adapter protein for binding the motor protein kinesin thereby mediating the centripetal transport of melanosomes in epidermal melanocytes. By the action of alpha-secretase sAPPalpha, the soluble N-terminal portion of APP, is released. sAPPalpha has been shown to be a potent epidermal growth factor thus stimulating proliferation and migration of keratinocytes as well as the exocytic release of melanin by melanocytes. The release of sAPPalpha can be almost completely blocked by inhibiting alpha-secretase with hydroxamic acid-based zinc metalloproteinase inhibitors. In hyperproliferative keratinocytes from psoriatic skin this inhibition results in normalized growth.
Collapse
Affiliation(s)
- Volker Herzog
- Institute of Cell Biology, University of Bonn, Bonn, Germany.
| | | | | | | |
Collapse
|
35
|
White JA, Manelli AM, Holmberg KH, Van Eldik LJ, Ladu MJ. Differential effects of oligomeric and fibrillar amyloid-β1–42 on astrocyte-mediated inflammation. Neurobiol Dis 2005; 18:459-65. [PMID: 15755672 DOI: 10.1016/j.nbd.2004.12.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 10/19/2004] [Accepted: 12/22/2004] [Indexed: 12/31/2022] Open
Abstract
Activated glia, as a result of chronic inflammation, are associated with amyloid-beta peptide (Abeta) deposits in the brain of Alzheimer's disease (AD) patients. In vitro, glia are activated by Abeta inducing secretion of pro-inflammatory molecules. Recent studies have focused on soluble oligomers (or protofibrils) of Abeta as the toxic species in AD. In the present study, using rat astrocyte cultures, oligomeric Abeta induced initial high levels of IL-1beta decreasing over time and, in contrast, fibrillar Abeta increased IL-1beta levels over time. In addition, oligomeric Abeta, but not fibrillar Abeta, induced high levels of iNOS, NO, and TNF-alpha. Our results suggest that oligomers induced a profound, early inflammatory response, whereas fibrillar Abeta showed less increase of pro-inflammatory molecules, consistent with a more chronic form of inflammation.
Collapse
Affiliation(s)
- Jill A White
- Department of Medicine, Division of Geriatrics, Evanston Northwestern Healthcare Research Institute, Evanston, IL 60201, USA
| | | | | | | | | |
Collapse
|
36
|
Morelli L, Bulloj A, Leal MC, Castaño EM. Amyloid beta degradation: a challenging task for brain peptidases. Subcell Biochem 2005; 38:129-45. [PMID: 15709476 DOI: 10.1007/0-387-23226-5_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Amyloid beta (Abeta) accumulates in the neuropil and within the walls of cerebral vessels in association with normal aging, dementia or stroke. Abeta is released from its precursor protein as soluble monomeric species yet, under pathological conditions, it self-aggregates to form soluble oligomers or insoluble fibrils that may be toxic to neurons and vascular cells. Abeta levels could be lowered by inhibiting its generation or by promoting its clearance by transport or degradation. Here we will summarize recent findings on brain proteases capable of degrading Abeta, with a special focus on those enzymes for which there is genetic, transgenic or biochemical evidence supporting a role in the proteolysis of Abeta in vivo.
Collapse
Affiliation(s)
- Laura Morelli
- Instituto de Química y Fisicoquímica Biológicas, CONICET, Cátedra de Química Biológica Patológica, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
37
|
Whitehead SN, Hachinski VC, Cechetto DF. Interaction Between a Rat Model of Cerebral Ischemia and β-Amyloid Toxicity. Stroke 2005; 36:107-12. [PMID: 15591213 DOI: 10.1161/01.str.0000149627.30763.f9] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Clinical data suggest that Alzheimer disease (AD) and stroke together potentiate cognitive impairment. Inflammatory mechanisms are involved in AD pathology and stroke and may be the mediator between AD and stroke toxicity.
Methods—
AD was modeled by cerebroventricular injections of β-amyloid (Aβ[25–35]) and subcortical lacunar infarcts by striatal endothelin injections. Inflammatory mechanisms were examined using immunohistochemical analysis. Memory and motor tasks were assessed using the Montoya staircase test.
Results—
Aβ injections elicited increases in pathological and inflammatory correlates of AD in multiple forebrain sites. Increases in astrocytosis and reactive microglia in the hippocampus were enhanced with the combination of endothelin and Aβ(25–35). Aβ(25–35) treatment decreased performance in the Montoya staircase behavioral test.
Conclusions—
The enhanced inflammatory response with Aβ toxicity and ischemia may mediate the inability to improve behavioral performance caused by the stroke. Anti-inflammatory treatment may ameliorate the pathological and behavioral deficits associated with the combination of AD and stroke.
Collapse
Affiliation(s)
- Shawn N Whitehead
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
38
|
Harris-White ME, Balverde Z, Lim GP, Kim P, Miller SA, Hammer H, Galasko D, Frautschy SA. Role of LRP in TGF?2-mediated neuronal uptake of A? and effects on memory. J Neurosci Res 2004; 77:217-28. [PMID: 15211588 DOI: 10.1002/jnr.20149] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is increasing evidence that soluble amyloid-beta peptide (Abeta) uptake into neurons is an early event in the pathogenesis of Alzheimer's disease (AD). Identification of the early events leading to neuronal dysfunction is key to developing therapeutic strategies, but relative roles of receptors and factors modulating uptake are poorly understood. Studies have shown that transforming growth factor beta (TGFbeta), particularly TGFbeta2, can influence the targeting of Abeta to cells in vitro. TGFbeta2 can target Abeta to neurons in organotypic hippocampal slice cultures (OHSC). We examine a specific mechanism for TGFbeta2-mediated targeting of Abeta to neurons. The receptor-associated protein (RAP), a low-density lipoprotein receptor-related protein (LRP) antagonist, can attenuate the cellular targeting of Abeta both in vitro and in vivo and prevent Abeta/TGFbeta2-induced memory retention deficits. Using both in vitro and in vivo methods, we identify LRP as playing a role in TGFbeta2-mediated Abeta uptake, neurodegeneration, and spatial memory impairment.
Collapse
Affiliation(s)
- Marni E Harris-White
- Department of Medicine, University of California, Los Angeles, California 91343, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Takuma H, Tomiyama T, Kuida K, Mori H. Amyloid Beta Peptide-Induced Cerebral Neuronal Loss Is Mediated By Caspase-3 In Vivo. J Neuropathol Exp Neurol 2004; 63:255-61. [PMID: 15055449 DOI: 10.1093/jnen/63.3.255] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Amyloid beta peptide (A beta) is widely believed to play a central and etiological role in Alzheimer disease (AD). A beta has been shown to have cytotoxic effects in neural cells, although the mechanism by which it does this is still unclear. To examine the involvement of the apoptotic cascade in A beta-induced cell death, we used mice deficient in caspase-3 (CPP 32), a key protease in this cascade. We microinjected A beta(1-40) into hippocampal regions of the brains of adult mice because AD is an adult-onset disease. We found significant cellular loss in the hippocampal regions of wild-type mice and dramatic rescue of neuronal cell death in caspase-3-deficient mice, with a gene dosage effect. In addition to adult mice, we observed little A beta-induced death of cultured neurons prepared from fetal brains of caspase-3-deficient mice but did observe death of such neurons from wild-type mice. The difference in A beta-induced neuronal death between wild-type and caspase-3-deficient mice was highly significant, indicating that A beta-induced neuronal death is mediated in vivo as well as in vitro by the caspase-3 apoptotic cascade.
Collapse
Affiliation(s)
- Hiroshi Takuma
- Department of Neuroscience, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | | | | |
Collapse
|
40
|
Melchor JP, Pawlak R, Strickland S. The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-beta (Abeta) degradation and inhibits Abeta-induced neurodegeneration. J Neurosci 2003; 23:8867-71. [PMID: 14523088 PMCID: PMC6740393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Accumulation of the amyloid-beta (Abeta) peptide depends on both its generation and clearance. To better define clearance pathways, we have evaluated the role of the tissue plasminogen activator (tPA)-plasmin system in Abeta degradation in vivo. In two different mouse models of Alzheimer's disease, chronically elevated Abeta peptide in the brain correlates with the upregulation of plasminogen activator inhibitor-1 (PAI-1) and inhibition of the tPA-plasmin system. In addition, Abeta injected into the hippocampus of mice lacking either tPA or plasminogen persists, inducing PAI-1 expression and causing activation of microglial cells and neuronal damage. Conversely, Abeta injected into wild-type mice is rapidly cleared and does not cause neuronal degeneration. Thus, the tPA-plasmin proteolytic cascade aids in the clearance of Abeta, and reduced activity of this system may contribute to the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Jerry P Melchor
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
41
|
Pocock JM, Liddle AC, Hooper C, Taylor DL, Davenport CM, Morgan SC. Activated microglia in Alzheimer's disease and stroke. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2002:105-32. [PMID: 12066408 DOI: 10.1007/978-3-662-05073-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- J M Pocock
- Cell Signalling Laboratory, Institute of Neurology, University College, 1 Wakefield Street, London WC1NPJ, UK.
| | | | | | | | | | | |
Collapse
|
42
|
Robinson SR, Bishop GM. Abeta as a bioflocculant: implications for the amyloid hypothesis of Alzheimer's disease. Neurobiol Aging 2002; 23:1051-72. [PMID: 12470802 DOI: 10.1016/s0197-4580(01)00342-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Research into Alzheimer's disease (AD) has been guided by the view that deposits of fibrillar amyloid-beta peptide (Abeta) are neurotoxic and are largely responsible for the neurodegeneration that accompanies the disease. This 'amyloid hypothesis' has claimed support from a wide range of molecular, genetic and animal studies. We critically review these observations and highlight inconsistencies between the predictions of the amyloid hypothesis and the published data. We show that the data provide equal support for a 'bioflocculant hypothesis', which posits that Abeta is normally produced to bind neurotoxic solutes (such as metal ions), while the precipitation of Abeta into plaques may be an efficient means of presenting these toxins to phagocytes. We conclude that if the deposition of Abeta represents a physiological response to injury then therapeutic treatments aimed at reducing the availability of Abeta may hasten the disease process and associated cognitive decline in AD.
Collapse
Affiliation(s)
- Stephen R Robinson
- Department of Psychology, Monash University, Clayton, Vic. 3800, Australia.
| | | |
Collapse
|
43
|
Lesné S, Blanchet S, Docagne F, Liot G, Plawinski L, MacKenzie ET, Auffray C, Buisson A, Piétu G, Vivien D. Transforming growth factor-beta1-modulated cerebral gene expression. J Cereb Blood Flow Metab 2002; 22:1114-23. [PMID: 12218417 DOI: 10.1097/00004647-200209000-00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) plays a central role in the response of the brain to different types of injury. Increased TGF-beta1 has been found in the central nervous system of patients with acute or chronic disorders such as stroke or Alzheimer disease. To further define the molecular targets of TGF-beta1 in cerebral tissues, a selection of high-density cDNA arrays was used to characterize the mRNA expression profile of 7,000 genes in transgenic mice overexpressing TGF-beta1 from astrocytes as compared with the wild-type line. Selected findings were further evaluated by reverse transcription-polymerase chain reactions from independent transgenic and wild-type mice. Furthermore, the expression pattern of seven selected genes such as Delta-1, CRADD, PRSC-1, PAI-1, Apo-1/Fas, CTS-B, and TbetaR-II were confirmed in either cultured cortical neurons or astrocytes following TGF-beta1 treatment. The authors' observations enlarge the repertoire of known TGF-beta1-modulated genes and their possible involvement in neurodegenerative processes.
Collapse
|
44
|
Berthon G. Aluminium speciation in relation to aluminium bioavailability, metabolism and toxicity. Coord Chem Rev 2002. [DOI: 10.1016/s0010-8545(02)00021-8] [Citation(s) in RCA: 277] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
|
46
|
Martins RN, Taddei K, Kendall C, Evin G, Bates KA, Harvey AR. Altered expression of apolipoprotein E, amyloid precursor protein and presenilin-1 is associated with chronic reactive gliosis in rat cortical tissue. Neuroscience 2002; 106:557-69. [PMID: 11591456 DOI: 10.1016/s0306-4522(01)00289-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A major characteristic feature of Alzheimer's disease is the formation of compact, extracellular deposits of beta-amyloid (senile plaques). These deposits are surrounded by reactive astrocytes, microglia and dystrophic neurites. Mutations in three genes have been implicated in early-onset familial Alzheimer's disease. However, inflammatory changes and astrogliosis are also believed to play a role in Alzheimer's pathology. What is unclear is the extent to which these factors initiate or contribute to the disease progression. Previous rat studies demonstrated that heterotopic transplantation of foetal cortical tissue onto the midbrain of neonatal hosts resulted in sustained glial reactivity for many months. Similar changes were not seen in cortex-to-cortex grafts. Using this model of chronic cortical gliosis, we have now measured reactive changes in the levels of the key Alzheimer's disease proteins, namely the amyloid precursor protein, apolipoprotein E and presenilin-1. These changes were visualised immunohistochemically and were quantified by western blot analysis. We report here that chronic cortical gliosis in the rat results in a sustained increase in the levels of apolipoprotein E and total amyloid precursor protein. Reactive astrocytes in heterotopic cortical grafts were immunopositive for both of these proteins. Using a panel of amyloid precursor protein antibodies we demonstrate that chronic reactive gliosis is associated with alternative cleavage of the peptide. No significant changes in apolipoprotein E or amyloid precursor protein expression were seen in non-gliotic cortex-to-cortex transplants. Compared to host cortex, the levels of both N-terminal and C-terminal fragments of presenilin-1 were significantly lower in gliotic heterotopic grafts.The changes described here largely mirror those seen in the cerebral cortex of humans with Alzheimer's disease and are consistent with the proposal that astrogliosis may be an important factor in the pathogenesis of this disease.
Collapse
Affiliation(s)
- R N Martins
- Sir James McCusker Alzheimer Research Unit and University Department of Surgery, The University of Western Australia, Nedlands, Austalia.
| | | | | | | | | | | |
Collapse
|
47
|
Katsuse O, Iseki E, Suzuki K, Kosaka K. Frequency and distribution of TUNEL-positive neurons in brains of dementia with Lewy bodies: comparison with those in brains of Alzheimer's disease. Neuropathology 2001; 21:272-7. [PMID: 11837533 DOI: 10.1046/j.1440-1789.2001.00411.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study investigated the frequency and distribution of TUNEL-positive neurons in brains of dementia with Lewy bodies (DLB) in comparison with those in brains of Alzheimer's disease (AD), Down syndrome (DS) and non-demented elderly persons. In DLB brains, TUNEL-positive neurons were increased in frequency compared with those in non-demented elderly brains, and showed a distribution similar to those in AD and DS brains. DLB cases with TUNEL-positive neurons showing severe Lewy pathology were all neocortical type, while DLB cases of the limbic type showing mild Lewy pathology did not demonstrate TUNEL-positive neurons. In addition, we investigated the relationships between TUNEL-positive neurons and pathological hallmarks of DLB or AD brains. TUNEL-positive neurons had no Lewy bodies or neurofibrillary tangles, and were not located within amyloid deposits. These findings suggest that neuronal damage showing DNA fragmentations occurs in DLB brains as well as in AD and DS brains, and that it is accelerated by progression of Lewy pathology as well as Alzheimer pathology, although it is not directly related to their pathological hallmarks.
Collapse
Affiliation(s)
- O Katsuse
- Department of Psychiatry, Yokohama City University School of Medicine, Japan
| | | | | | | |
Collapse
|
48
|
Hernandez D, Sugaya K, Qu T, McGowan E, Duff K, McKinney M. Survival and plasticity of basal forebrain cholinergic systems in mice transgenic for presenilin-1 and amyloid precursor protein mutant genes. Neuroreport 2001; 12:1377-84. [PMID: 11388415 DOI: 10.1097/00001756-200105250-00018] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The basalo-cortical cholinergic system was characterized in mice expressing mutant human genes for presenilin-1 (PS1), amyloid precursor protein (APP), and combined PS/APP. Dual immunocytochemistry for ChAT and A beta revealed swollen cholinergic processes within cortical plaques in both APP and PS/APP brains by 12 months, suggesting aberrant sprouting or redistribution of cholinergic processes in response to amyloid deposition. At 8 months, cortical and subcortical ChAT activity was normal (PS/APP) or elevated (PS, APP frontal cortex), while cholinergic cell counts (nBM/SI) and receptor binding were unchanged. ChAT mRNA was up-regulated in the nBM/SI of all three transgenic lines at 8 months. The data indicate that the basal forebrain cholinergic system does not degenerate in mice expressing AD-related transgenes, even in mice with extreme amyloid load. The
Collapse
MESH Headings
- Acetylcholine/metabolism
- Aging/physiology
- Alzheimer Disease/genetics
- Alzheimer Disease/metabolism
- Alzheimer Disease/physiopathology
- Amyloid beta-Protein Precursor/genetics
- Amyloid beta-Protein Precursor/metabolism
- Animals
- Basal Nucleus of Meynert/enzymology
- Basal Nucleus of Meynert/growth & development
- Basal Nucleus of Meynert/pathology
- Cell Count
- Cell Survival/genetics
- Cerebral Cortex/enzymology
- Cerebral Cortex/growth & development
- Cerebral Cortex/pathology
- Choline O-Acetyltransferase/genetics
- Choline O-Acetyltransferase/metabolism
- Cholinergic Fibers/metabolism
- Cholinergic Fibers/pathology
- Immunohistochemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic/abnormalities
- Mice, Transgenic/metabolism
- Nerve Degeneration/genetics
- Nerve Degeneration/metabolism
- Nerve Degeneration/physiopathology
- Neuronal Plasticity/genetics
- Plaque, Amyloid/genetics
- Plaque, Amyloid/metabolism
- Plaque, Amyloid/pathology
- Presenilin-1
- RNA, Messenger/metabolism
- Radioligand Assay
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/metabolism
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/metabolism
- Up-Regulation/genetics
Collapse
Affiliation(s)
- D Hernandez
- Department of Pharmacology, Mayo Clinic Jacksonville, FL 32224, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Activated microglia release a number of substances that can influence neuronal signalling and survival. Here we report that microglia stimulated with the peptide chromogranin A (CGA), secreted the cysteine protease, cathepsin B. Conditioned medium from CGA exposed microglia was neurotoxic to the HT22 hippocampal cell line and to primary cultures of cerebellar granule neurones. In both neuronal cell types, the neurotoxicity could be significantly attenuated with z-FA-fmk or by depletion of microglial conditioned medium with cathepsin B antibody. Conditioned medium from activated microglia or cathepsin B alone induced neuronal apoptosis and caspase 3 activation. Our data indicate that CGA-activated microglia can trigger neuronal apoptosis and that this may be mediated through the secretion of cathepsin B. Since cathepsins may also play a role in the amyloidogenic processing of amyloid precursor protein, these results may have significance for tissue damage and neuronal loss in the neuropathology of Alzheimer's disease.
Collapse
Affiliation(s)
- P J Kingham
- Department of Neurochemistry, Institute of Neurology, University College London, London, UK
| | | |
Collapse
|
50
|
Abstract
Alzheimer's disease (AD) is the most common cause of progressive decline of cognitive function in aged humans, and is characterized by the presence of numerous senile plaques and neurofibrillary tangles accompanied by neuronal loss. Some, but not all, of the neuropathological alterations and cognitive impairment in AD can be reproduced genetically and pharmacologically in animals. It should be possible to discover novel drugs that slow the progress or alleviate the clinical symptoms of AD by using these animal models. We review the recent progress in the development of animal models of AD and discuss how to use these model animals to evaluate novel anti-dementia drugs.
Collapse
Affiliation(s)
- K Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Showa-ku, 466-8560, Nagoya, Japan
| | | |
Collapse
|