1
|
Liu Y, Deng Y, Xu S, Yang Y, Zhang K, Liu J, Xu Z, Lv S, Wang Y, Sha L, Xu Q, Luo J, Cai X. Neuromodulatory Compensation of Cortical Neural Activity on Electrodeposited Pt/Ir Modified Microelectrode Arrays for Temperature Transients. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44538-44548. [PMID: 39072533 DOI: 10.1021/acsami.4c09556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Temperature has a profound influence on various neuromodulation processes and has emerged as a focal point. However, the effects of acute environmental temperature fluctuations on cultured cortical networks have been inadequately elucidated. To bridge this gap, we have developed a brain-on-a-chip platform integrating cortical networks and electrodeposited Pt/Ir modified microelectrode arrays (MEAs) with 3D-printed bear-shaped triple chambers, facilitating control of temperature transients. This innovative system administers thermal stimuli while concurrently monitoring neuronal activity, including spikes and local field potentials, from 60 microelectrodes (diameter: 30 μm; impedance: 9.34 ± 1.37 kΩ; and phase delay: -45.26 ± 2.85°). Temperature transitions of approximately ±10 °C/s were applied to cortical networks on MEAs via in situ perfusion within the triple chambers. Subsequently, we examined the spatiotemporal dynamics of the brain-on-a-chip under temperature regulation at both the group level (neuronal population) and their interactions (network dynamics) and the individual level (cellular activity). Specifically, we found that after the temperature reduction neurons enhanced the overall information transmission efficiency of the network through synchronous firing to compensate for the decreased efficiency of single-cell level information transmission, in contrast to temperature elevation. By leveraging the integration of high-performance MEAs with perfusion chambers, this investigation provides a comprehensive understanding of the impact of temperature on the spatiotemporal dynamics of neural networks, thereby facilitating future exploration of the intricate interplay between temperature and brain function.
Collapse
Affiliation(s)
- Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Deng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Shihong Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longze Sha
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Qi Xu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wildenberg G, Li H, Sampathkumar V, Sorokina A, Kasthuri N. Isochronic development of cortical synapses in primates and mice. Nat Commun 2023; 14:8018. [PMID: 38049416 PMCID: PMC10695974 DOI: 10.1038/s41467-023-43088-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/31/2023] [Indexed: 12/06/2023] Open
Abstract
The neotenous, or delayed, development of primate neurons, particularly human ones, is thought to underlie primate-specific abilities like cognition. We tested whether synaptic development follows suit-would synapses, in absolute time, develop slower in longer-lived, highly cognitive species like non-human primates than in shorter-lived species with less human-like cognitive abilities, e.g., the mouse? Instead, we find that excitatory and inhibitory synapses in the male Mus musculus (mouse) and Rhesus macaque (primate) cortex form at similar rates, at similar times after birth. Primate excitatory and inhibitory synapses and mouse excitatory synapses also prune in such an isochronic fashion. Mouse inhibitory synapses are the lone exception, which are not pruned and instead continuously added throughout life. The monotony of synaptic development clocks across species with disparate lifespans, experiences, and cognitive abilities argues that such programs are likely orchestrated by genetic events rather than experience.
Collapse
Affiliation(s)
- Gregg Wildenberg
- Department of Neurobiology, The University of Chicago, Chicago, USA.
- Argonne National Laboratory, Biosciences Division, Lemont, USA.
| | - Hanyu Li
- Department of Neurobiology, The University of Chicago, Chicago, USA
- Argonne National Laboratory, Biosciences Division, Lemont, USA
| | - Vandana Sampathkumar
- Department of Neurobiology, The University of Chicago, Chicago, USA
- Argonne National Laboratory, Biosciences Division, Lemont, USA
| | - Anastasia Sorokina
- Department of Neurobiology, The University of Chicago, Chicago, USA
- Argonne National Laboratory, Biosciences Division, Lemont, USA
| | - Narayanan Kasthuri
- Department of Neurobiology, The University of Chicago, Chicago, USA.
- Argonne National Laboratory, Biosciences Division, Lemont, USA.
| |
Collapse
|
3
|
Michaiel AM, Bernard A. Neurobiology and changing ecosystems: Toward understanding the impact of anthropogenic influences on neurons and circuits. Front Neural Circuits 2022; 16:995354. [PMID: 36569799 PMCID: PMC9769128 DOI: 10.3389/fncir.2022.995354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Rapid anthropogenic environmental changes, including those due to habitat contamination, degradation, and climate change, have far-reaching effects on biological systems that may outpace animals' adaptive responses. Neurobiological systems mediate interactions between animals and their environments and evolved over millions of years to detect and respond to change. To gain an understanding of the adaptive capacity of nervous systems given an unprecedented pace of environmental change, mechanisms of physiology and behavior at the cellular and biophysical level must be examined. While behavioral changes resulting from anthropogenic activity are becoming increasingly described, identification and examination of the cellular, molecular, and circuit-level processes underlying those changes are profoundly underexplored. Hence, the field of neuroscience lacks predictive frameworks to describe which neurobiological systems may be resilient or vulnerable to rapidly changing ecosystems, or what modes of adaptation are represented in our natural world. In this review, we highlight examples of animal behavior modification and corresponding nervous system adaptation in response to rapid environmental change. The underlying cellular, molecular, and circuit-level component processes underlying these behaviors are not known and emphasize the unmet need for rigorous scientific enquiry into the neurobiology of changing ecosystems.
Collapse
|
4
|
Feng Z, Saha L, Dritsa C, Wan Q, Glebov OO. Temperature-dependent structural plasticity of hippocampal synapses. Front Cell Neurosci 2022; 16:1009970. [DOI: 10.3389/fncel.2022.1009970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The function of the central nervous system (CNS) is strongly affected by temperature. However, the underlying processes remain poorly understood. Here, we show that hypothermia and hyperthermia trigger bidirectional re-organization of presynaptic architecture in hippocampal neurons, resulting in synaptic strengthening, and weakening, respectively. Furthermore, hypothermia remodels inhibitory postsynaptic scaffold into enlarged, sparse synapses enriched in GABAA receptors. This process does not require protein translation, and instead is regulated by actin dynamics. Induction of hypothermia in vivo enhances inhibitory synapses in the hippocampus, but not in the cortex. This is confirmed by the proteomic analysis of cortical synapses, which reveals few temperature-dependent changes in synaptic content. Our results reveal a region-specific form of environmental synaptic plasticity with a mechanism distinct from the classic temperature shock response, which may underlie functional response of CNS to temperature.
Collapse
|
5
|
Lü XY, Meng C, An S, Zhao YF, Wang ZG. Study on influence of external factors on the electrical excitability of PC12 quasi-neuronal networks through Voltage Threshold Measurement Method. PLoS One 2022; 17:e0265078. [PMID: 35263381 PMCID: PMC8906582 DOI: 10.1371/journal.pone.0265078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/22/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this paper was to investigate the influence of four different external factors (acetylcholine, ethanol, temperature and lidocaine hydrochloride) on PC12 quasi-neuronal networks by multielectrode-array-based Voltage Threshold Measurement Method (VTMM). At first, VTMM was employed to measure the lowest amplitude of the voltage stimulating pulses that could just trigger the action potential from PC12 quasi-neuronal networks under normal conditions, and the amplitude was defined as the normal voltage threshold (VTh). Then the changes of the VTh of PC12 quasi-neuronal networks treated by the four external factors were tested respectively. The results showed the normal VTh of PC12 quasi-neuronal networks was 36 mV. The VTh has negative correlation with the concentration of acetylcholine and has positive correlation with the concentration of ethanol. The curves of the correlation of the VTh with temperature and the concentration of lidocaine hydrochloride were U-shaped and Λ-shaped respectively. Comparing with our earlier studies on hippocampal neuronal networks and hippocampal slices, PC12 quasi-neuronal networks not only had the same typical voltage threshold characteristic, but also had similar changes on electrical excitability when treated by the four external factors mentioned above. Therefore, the rapid-formed PC12 quasi-neuronal networks could replace neuronal networks in proper conditions, and VTMM could be used to analyze the influence of external factors on the electrical excitability of PC12 quasi-neuronal networks.
Collapse
Affiliation(s)
- Xiao-Ying Lü
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
- * E-mail: (XYL); (ZGW)
| | - Chen Meng
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, China
| | - Shuai An
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, China
| | - Yong-Fang Zhao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, China
| | - Zhi-Gong Wang
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
- Institute of RF- & OE-ICs, Southeast University, Nanjing, Jiangsu Province, China
- * E-mail: (XYL); (ZGW)
| |
Collapse
|
6
|
Rey S, Marra V, Smith C, Staras K. Nanoscale Remodeling of Functional Synaptic Vesicle Pools in Hebbian Plasticity. Cell Rep 2021; 30:2006-2017.e3. [PMID: 32049027 PMCID: PMC7016504 DOI: 10.1016/j.celrep.2020.01.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/21/2019] [Accepted: 01/14/2020] [Indexed: 12/23/2022] Open
Abstract
Vesicle pool properties are known determinants of synaptic efficacy, but their potential role as modifiable substrates in forms of Hebbian plasticity is still unclear. Here, we investigate this using a nanoscale readout of functionally recycled vesicles in natively wired hippocampal CA3→CA1 circuits undergoing long-term potentiation (LTP). We show that the total recycled vesicle pool is larger after plasticity induction, with the smallest terminals exhibiting the greatest relative expansion. Changes in the spatial organization of vesicles accompany potentiation including a specific increase in the number of recycled vesicles at the active zone, consistent with an ultrastructural remodeling component of synaptic strengthening. The cAMP-PKA pathway activator, forskolin, selectively mimics some features of LTP-driven changes, suggesting that distinct and independent modules of regulation accompany plasticity expression. Our findings provide evidence for a presynaptic locus of LTP encoded in the number and arrangement of functionally recycled vesicles, with relevance for models of long-term plasticity storage.
Collapse
Affiliation(s)
- Stephanie Rey
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Vincenzo Marra
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester L1 7RH, United Kingdom
| | - Catherine Smith
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Kevin Staras
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.
| |
Collapse
|
7
|
Takembo CN, Fouda HPE. Effect of temperature fluctuation on the localized pattern of action potential in cardiac tissue. Sci Rep 2020; 10:15087. [PMID: 32934327 PMCID: PMC7493951 DOI: 10.1038/s41598-020-72188-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/17/2020] [Indexed: 02/02/2023] Open
Abstract
Based on the improved FitzHugh-Nagumo myocardial model driven by a constant external current, the effect of temperature fluctuation in a network of electrically coupled myocardial cells are investigated through analytical and numerical computations. Through the technique of multiple scale expansion, we successfully reduced the complex nonlinear system of equations to a more tractable and solvable nonlinear amplitude equation on which the analysis of linear stability is performed. Interestingly from this analysis, a plot of critical amplitude of action potential versus wave number revealed the growth rate of modulational instability (MI) is an increasing function of the thermoelectric couplings; [Formula: see text] and [Formula: see text], under fixed conditions of nonlinear electrical couplings. In order to verify our analytical predictions through the study the long-time evolution of the modulated cardiac impulses, numerical computation is finally carried out. Numerical experiment revealed the existence of localized coherent structures with some recognized features of synchronization. Through the mechanism of MI, changes in thermoelectrical couplings promote wave localization and mode transition in electrical activities in the cell lattice. Results could provide new insights in understanding the underlying mechanism of the manifestation of sudden heart disorder subjected to heavily temperature fluctuation.
Collapse
Affiliation(s)
- Clovis Ntahkie Takembo
- Department of Electrical and Electronic Engineering, College of Technology, University of Buéa, P.O. Box 63, Buéa, Cameroon.
| | - Henri Paul Ekobena Fouda
- Laboratory of Biophysics, Department of Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
8
|
Avegno EM, Middleton JW, Gilpin NW. Synaptic GABAergic transmission in the central amygdala (CeA) of rats depends on slice preparation and recording conditions. Physiol Rep 2020; 7:e14245. [PMID: 31587506 PMCID: PMC6778595 DOI: 10.14814/phy2.14245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 11/24/2022] Open
Abstract
The central nucleus of the amygdala (CeA) is a primarily GABAergic brain region implicated in stress and addictive disorders. Using in vitro slice electrophysiology, many studies measure GABAergic neurotransmission to evaluate the impact of experimental manipulations on inhibitory tone in the CeA, as a measure of alterations in CeA activity and function. In a recent study, we reported spontaneous inhibitory postsynaptic current (sIPSC) frequencies higher than those typically reported in CeA neurons in the literature, despite utilizing similar recording protocols and internal recording solutions. The purpose of this study was to systematically evaluate two common methods of slice preparation, an NMDG-based aCSF perfusion method and an ice-cold sucrose solution, as well as the use of an in-line heater to control recording temperature, on measures of intrinsic excitability and spontaneous inhibitory neurotransmission in CeA neurons. We report that both slice preparation and recording conditions significantly impact spontaneous GABAergic transmission in CeA neurons, and that recording temperature, but not slicing solution, alters measures of intrinsic excitability in CeA neurons. Bath application of corticotropin-releasing factor (CRF) increased sIPSC frequency under all conditions, but the magnitude of this effect was significantly different across recording conditions that elicited different baseline GABAergic transmission. Furthermore, CRF effects on synaptic transmission differed according to data reporting methods (i.e., raw vs. normalized data), which is important to consider in relation to baseline synaptic transmission values. These studies highlight the impact of experimental conditions and data reporting methods on neuronal excitability and synaptic transmission in the CeA.
Collapse
Affiliation(s)
- Elizabeth M Avegno
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Jason W Middleton
- Department of Cell Biology and Anatomy, Louisiana State University Health Science Center, New Orleans, Louisiana.,Department of Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, Louisiana.,Department of Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana
| |
Collapse
|
9
|
Van Hook MJ. Temperature effects on synaptic transmission and neuronal function in the visual thalamus. PLoS One 2020; 15:e0232451. [PMID: 32353050 PMCID: PMC7192487 DOI: 10.1371/journal.pone.0232451] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous neuronal properties including the synaptic vesicle release process, neurotransmitter receptor complement, and postsynaptic ion channels are involved in transforming synaptic inputs into postsynaptic spiking. Temperature is a significant influencer of neuronal function and synaptic integration. Changing temperature can affect neuronal physiology in a diversity of ways depending on how it affects different members of the cell’s ion channel complement. Temperature’s effects on neuronal function are critical for pathological states such as fever, which can trigger seizure activity, but are also important in interpreting and comparing results of experiments conducted at room vs physiological temperature. The goal of this study was to examine the influence of temperature on synaptic properties and ion channel function in thalamocortical (TC) relay neurons in acute brain slices of the dorsal lateral geniculate nucleus, a key synaptic target of retinal ganglion cells in the thalamus. Warming the superfusate in patch clamp experiments with acutely-prepared brain slices led to an overall inhibition of synaptically-driven spiking behavior in TC neurons in response to a retinal ganglion cell spike train. Further study revealed that this was associated with an increase in presynaptic synaptic vesicle release probability and synaptic depression and altered passive and active membrane properties. Additionally, warming the superfusate triggered activation of an inwardly rectifying potassium current and altered the voltage-dependence of voltage-gated Na+ currents and T-type calcium currents. This study highlights the importance of careful temperature control in ex vivo physiological experiments and illustrates how numerous properties such as synaptic inputs, active conductances, and passive membrane properties converge to determine spike output.
Collapse
Affiliation(s)
- Matthew J. Van Hook
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States of America
- * E-mail: ,
| |
Collapse
|
10
|
Synaptotagmin-1 enables frequency coding by suppressing asynchronous release in a temperature dependent manner. Sci Rep 2019; 9:11341. [PMID: 31383906 PMCID: PMC6683208 DOI: 10.1038/s41598-019-47487-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
To support frequency-coded information transfer, mammalian synapses tightly synchronize neurotransmitter release to action potentials (APs). However, release desynchronizes during AP trains, especially at room temperature. Here we show that suppression of asynchronous release by Synaptotagmin-1 (Syt1), but not release triggering, is highly temperature sensitive, and enhances synchronous release during high-frequency stimulation. In Syt1-deficient synapses, asynchronous release increased with temperature, opposite to wildtype synapses. Mutations in Syt1 C2B-domain polybasic stretch (Syt1 K326Q,K327Q,K331Q) did not affect synchronization during sustained activity, while the previously observed reduced synchronous response to a single AP was confirmed. However, an inflexible linker between the C2-domains (Syt1 9Pro) reduced suppression, without affecting synchronous release upon a single AP. Syt1 9Pro expressing synapses showed impaired synchronization during AP trains, which was rescued by buffering global Ca2+ to prevent asynchronous release. Hence, frequency coding relies on Syt1's temperature sensitive suppression of asynchronous release, an aspect distinct from its known vesicle recruitment and triggering functions.
Collapse
|
11
|
How to Build a Fast and Highly Sensitive Sound Detector That Remains Robust to Temperature Shifts. J Neurosci 2019; 39:7260-7276. [PMID: 31315946 DOI: 10.1523/jneurosci.2510-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 06/13/2019] [Accepted: 07/09/2019] [Indexed: 12/26/2022] Open
Abstract
Frogs must have sharp hearing abilities during the warm summer months to successfully find mating partners. This study aims to understand how frog hair cell ribbon-type synapses preserve both sensitivity and temporal precision during temperature changes. Under room (∼24°C) and high (∼32°C) temperature, we performed in vitro patch-clamp recordings of hair cells and their afferent fibers in amphibian papillae of either male or female bullfrogs. Afferent fibers exhibited a wide heterogeneity in membrane input resistance (Rin) from 100 mΩ to 1000 mΩ, which may contribute to variations in spike threshold and firing frequency. At higher temperatures, most fibers increased their frequency of spike firing due to an increase in spontaneous EPSC frequencies. Hair cell resting membrane potential (Vrest) remained surprisingly stable during temperature increases, because Ca2+ influx and K+ outflux increased simultaneously. This increase in Ca2+ current likely enhanced spontaneous EPSC frequencies. These larger "leak currents" at Vrest also lowered Rin and produced higher electrical resonant frequencies. Lowering Rin will reduce the hair cells receptor potential and presumably moderate the systems sensitivity. Using membrane capacitance measurements, we suggest that hair cells can partially compensate for this reduced sensitivity by increasing exocytosis efficiency and the size of the readily releasable pool of synaptic vesicles. Furthermore, paired recordings of hair cells and their afferent fibers showed that synaptic delays shortened and multivesicular release becomes more synchronous at higher temperatures, which should improve temporal precision. Together, our results explain many previous in vivo observations on the temperature dependence of spikes in auditory nerves.SIGNIFICANCE STATEMENT The vertebrate inner ear detects and transmits auditory information over a broad dynamic range of sound frequency and intensity. It achieves remarkable sensitivity to soft sounds and precise frequency selectivity. How does the ear of cold-blooded vertebrates maintain its performance level as temperature changes? More specifically, how does the hair cell to afferent fiber synapse in bullfrog amphibian papilla adjust to a wide range of physiological temperatures without losing its sensitivity and temporal fidelity to sound signals? This study uses in vitro experiments to reveal the biophysical mechanisms that explain many observations made from in vivo auditory nerve fiber recordings. We find that higher temperature facilitates vesicle exocytosis and electrical tuning to higher sound frequencies, which benefits sensitivity and selectivity.
Collapse
|
12
|
Xu Y, Ma J, Zhan X, Yang L, Jia Y. Temperature effect on memristive ion channels. Cogn Neurodyn 2019; 13:601-611. [PMID: 31741695 DOI: 10.1007/s11571-019-09547-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/10/2019] [Accepted: 07/01/2019] [Indexed: 11/30/2022] Open
Abstract
Neuron shows distinct dependence of electrical activities on membrane patch temperature, and the mode transition of electrical activity is induced by the patch temperature through modulating the opening and closing rates of ion channels. In this paper, inspired by the physical effect of memristor, the potassium and sodium ion channels embedded in the membrane patch are updated by using memristor-based voltage gate variables, and an external stimulus is applied to detect the variety of mode selection in electrical activities under different patch temperatures. It is found that each ion channel can be regarded as a physical memristor, and the shape of pinched hysteresis loop of memristor is dependent on both input voltage and patch temperature. The pinched hysteresis loops of two ion-channel memristors are dramatically enlarged by increasing patch temperature, and the hysteresis lobe areas are monotonously reduced with the increasing of excitation frequency if the frequency of external stimulus exceeds certain threshold. However, for the memristive potassium channel, the AREA1 corresponding to the threshold frequency is increased with the increasing of patch temperature. The amplitude of conductance for two ion-channel memristors depends on the variation of patch temperature. The results of this paper might provide insights to modulate the neural activities in appropriate temperature condition completely, and involvement of external stimulus enhance the effect of patch temperature.
Collapse
Affiliation(s)
- Ying Xu
- 1Department of Physics, Central China Normal University, Wuhan, 430079 China
| | - Jun Ma
- 2Department of Physics, Lanzhou University of Technology, Lanzhou, 730050 China.,3School of Science, Chongqing University of Posts and Telecommunications, Chongqing, 430065 China.,4NAAM-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589 Saudi Arabia
| | - Xuan Zhan
- 1Department of Physics, Central China Normal University, Wuhan, 430079 China
| | - Lijian Yang
- 1Department of Physics, Central China Normal University, Wuhan, 430079 China
| | - Ya Jia
- 1Department of Physics, Central China Normal University, Wuhan, 430079 China
| |
Collapse
|
13
|
Walter A, Finelli K, Bai X, Johnson B, Neuberger T, Seidenberg P, Bream T, Hallett M, Slobounov S. Neurobiological effect of selective brain cooling after concussive injury. Brain Imaging Behav 2019; 12:891-900. [PMID: 28712093 DOI: 10.1007/s11682-017-9755-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The search for effective treatment facilitating recovery from concussive injury, as well as reducing risk for recurrent concussion is an ongoing challenge. This study aimed to determine: a) feasibility of selective brain cooling to facilitate clinical symptoms resolution, and b) biological functions of the brain within athletes in acute phase of sports-related concussion. Selective brain cooling for 30 minutes using WElkins sideline cooling system was administered to student-athletes suffering concussive injury (n=12; tested within 5±3 days) and those without history of concussion (n=12). fMRI and ASL sequences were obtained before and immediately after cooling to better understanding the mechanism by which cooling affects neurovascular coupling. Concussed subjects self-reported temporary relief from physical symptoms after cooling. There were no differences in the number or strength of functional connections within Default Mode Network (DMN) between groups prior to cooling. However, we observed a reduction in the strength and number of connections of the DMN with other ROIs in both groups after cooling. Unexpectedly, we observed a significant increase in cerebral blood flow (CBF) assessed by ASL after selective cooling in the concussed subjects compared to the normal controls. We suggest that compromised neurovascular coupling in acute phase of injury may be temporarily restored by cooling to match CBF with surges in the metabolic demands of the brain. Upon further validation, selective brain cooling could be a potential clinical tool in the minimization of symptoms and pathological changes after concussion.
Collapse
Affiliation(s)
- Alexa Walter
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA.
- Department of Kinesiology, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA.
| | - Katie Finelli
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Department of Kinesiology, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
| | - Xiaoxiao Bai
- Social, Life, and Engineering Sciences Imaging Center, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- 120G Chandlee Lab University Park, University Park, PA, 16802, USA
| | - Brian Johnson
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Department of Kinesiology, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
| | - Thomas Neuberger
- Social, Life, and Engineering Sciences Imaging Center, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- 113 Chandlee Lab University Park, University Park, PA, 16802, USA
| | - Peter Seidenberg
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Penn State University Intercollegiate Athletics, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- , 1850 E. Park Avenue, Suite 112, State College, PA, 16803, USA
| | - Timothy Bream
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Penn State University Intercollegiate Athletics, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Lasch Building University Park, University Park, PA, 16802, USA
| | - Mark Hallett
- NIH, NINDS, Medical Neurology Branch Building 10 Room 7D37 10 Center Drive MSC 1428, Bethesda, MD, 20892, USA
| | - Semyon Slobounov
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Department of Kinesiology, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
| |
Collapse
|
14
|
Abbineni PS, Axelrod D, Holz RW. Visualization of expanding fusion pores in secretory cells. J Gen Physiol 2018; 150:1640-1646. [PMID: 30470717 PMCID: PMC6279363 DOI: 10.1085/jgp.201812186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/06/2018] [Indexed: 11/20/2022] Open
Abstract
Abbineni et al. examine recent imaging work on fusion pores and discuss the dynamics of PI-4,5-P2 accumulation on granule membranes.
Collapse
Affiliation(s)
- Prabhodh S Abbineni
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Daniel Axelrod
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI .,Department of Physics and LSA Biophysics, University of Michigan Medical School, Ann Arbor, MI
| | - Ronald W Holz
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
15
|
Chanaday NL, Kavalali ET. Time course and temperature dependence of synaptic vesicle endocytosis. FEBS Lett 2018; 592:3606-3614. [DOI: 10.1002/1873-3468.13268] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/02/2018] [Accepted: 10/06/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Natali L. Chanaday
- Department of Pharmacology; Vanderbilt Brain Institute; Vanderbilt University; Nashville TN USA
| | - Ege T. Kavalali
- Department of Pharmacology; Vanderbilt Brain Institute; Vanderbilt University; Nashville TN USA
| |
Collapse
|
16
|
Abstract
Fever-associated seizures or epilepsy (FASE) is primarily characterised by the occurrence of a seizure or epilepsy usually accompanied by a fever. It is common in infants and children, and generally includes febrile seizures (FS), febrile seizures plus (FS+), Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFSP). The aetiology of FASE is unclear. Genetic factors may play crucial roles in FASE. Mutations in certain genes may cause a wide spectrum of phenotypical overlap ranging from isolated FS, FS+ and GEFSP to DS. Synapse-associated proteins, postsynaptic GABAA receptor, and sodium channels play important roles in synaptic transmission. Mutations in these genes may involve in the pathogenesis of FASE. Elevated temperature promotes synaptic vesicle (SV) recycling and enlarges SV size, which may enhance synaptic transmission and contribute to FASE occurring. This review provides an overview of the loci, genes, underlying pathogenesis and the fever-inducing effect of FASE. It may provide a more comprehensive understanding of pathogenesis and contribute to the clinical diagnosis of FASE.
Collapse
|
17
|
24S-hydroxycholesterol suppresses neuromuscular transmission in SOD1(G93A) mice: A possible role of NO and lipid rafts. Mol Cell Neurosci 2018; 88:308-318. [PMID: 29550246 DOI: 10.1016/j.mcn.2018.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/08/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the initial denervation of skeletal muscle and subsequent death of motor neurons. A dying-back pattern of ALS suggests a crucial role for neuromuscular junction dysfunction. In the present study, microelectrode recording of postsynaptic currents and optical detection of synaptic vesicle traffic (FM1-43 dye) and intracellular NO levels (DAF-FM DA) were used to examine the effect of the major brain-derived cholesterol metabolite 24S-hydroxycholesterol (24S-HC, 0.4 μM) on neuromuscular transmission in the diaphragm of transgenic mice carrying a mutant superoxide dismutase 1 (SODG93A). We found that 24S-HC suppressed spontaneous neurotransmitter release and neurotransmitter exocytosis during high-frequency stimulation. The latter was accompanied by a decrease in both the rate of synaptic vesicle recycling and activity-dependent enhancement of NO production. Inhibition of NO synthase with L-NAME also attenuated synaptic vesicle exocytosis during high-frequency stimulation and completely abolished the effect of 24S-HC itself. Of note, 24S-HC enhanced the labeling of synaptic membranes with B-subunit of cholera toxin, suggesting an increase in lipid ordering. Lipid raft-disrupting agents (methyl-β-cyclodextrin, sphingomyelinase) prevented the action of 24S-HC on both lipid raft marker labeling and NO synthesis. Together, these experiments indicate that 24S-HC is able to suppress the exocytotic release of neurotransmitter in response to intense activity via a NO/lipid raft-dependent pathway in the neuromuscular junctions of SODG93A mice.
Collapse
|
18
|
An S, Zhao YF, Lü XY, Wang ZG. Quantitative evaluation of extrinsic factors influencing electrical excitability in neuronal networks: Voltage Threshold Measurement Method (VTMM). Neural Regen Res 2018; 13:1026-1035. [PMID: 29926830 PMCID: PMC6022462 DOI: 10.4103/1673-5374.233446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The electrical excitability of neural networks is influenced by different environmental factors. Effective and simple methods are required to objectively and quantitatively evaluate the influence of such factors, including variations in temperature and pharmaceutical dosage. The aim of this paper was to introduce ‘the voltage threshold measurement method’, which is a new method using microelectrode arrays that can quantitatively evaluate the influence of different factors on the electrical excitability of neural networks. We sought to verify the feasibility and efficacy of the method by studying the effects of acetylcholine, ethanol, and temperature on hippocampal neuronal networks and hippocampal brain slices. First, we determined the voltage of the stimulation pulse signal that elicited action potentials in the two types of neural networks under normal conditions. Second, we obtained the voltage thresholds for the two types of neural networks under different concentrations of acetylcholine, ethanol, and different temperatures. Finally, we obtained the relationship between voltage threshold and the three influential factors. Our results indicated that the normal voltage thresholds of the hippocampal neuronal network and hippocampal slice preparation were 56 and 31 mV, respectively. The voltage thresholds of the two types of neural networks were inversely proportional to acetylcholine concentration, and had an exponential dependency on ethanol concentration. The curves of the voltage threshold and the temperature of the medium for the two types of neural networks were U-shaped. The hippocampal neuronal network and hippocampal slice preparations lost their excitability when the temperature of the medium decreased below 34 and 33°C or increased above 42 and 43°C, respectively. These results demonstrate that the voltage threshold measurement method is effective and simple for examining the performance/excitability of neuronal networks.
Collapse
Affiliation(s)
- Shuai An
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, China
| | - Yong-Fang Zhao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, China
| | - Xiao-Ying Lü
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Zhi-Gong Wang
- Institute of RF- & OE-ICs, Southeast University, Nanjing; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
19
|
Lukas M, Holthoff K, Egger V. Long-Term Plasticity at the Mitral and Tufted Cell to Granule Cell Synapse of the Olfactory Bulb Investigated with a Custom Multielectrode in Acute Brain Slice Preparations. Methods Mol Biol 2018; 1820:157-167. [PMID: 29884945 DOI: 10.1007/978-1-4939-8609-5_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Single extracellular stimulation electrodes are a widespread means to locally activate synaptic inputs in acute brain slices. Here we describe the fabrication and application of a multielectrode stimulator that was developed for conditions under which independent stimulation of several nearby sites is desirable. For the construction of the multielectrode we have developed a method by which electrode wires can be spaced at minimal distances of 100 μm. This configuration increases the efficiency of stimulation paradigms, such as the comparison of proximal induced and control inputs for studies of synaptic plasticity.In our case the multielectrode was used for acute olfactory bulb slices to independently excite individual nearby glomeruli; the technique allowed us to demonstrate homosynaptic bidirectional long-term plasticity at the mitral/tufted cell to granule cell synapse. We also describe the determinants for successful recordings of long-term plasticity at this synapse, with mechanical and electrophysiological recording stability being tantamount. Finally, we briefly discuss data analysis procedures.
Collapse
Affiliation(s)
- Michael Lukas
- Institute of Zoology and Regensburg Center of Neuroscience, Regensburg University, Regensburg, Germany
| | - Knut Holthoff
- Hans-Berger Department of Neurology, University Hospital Jena, Jena, Germany
| | - Veronica Egger
- Institute of Zoology and Regensburg Center of Neuroscience, Regensburg University, Regensburg, Germany.
| |
Collapse
|
20
|
Activity-Dependence of Synaptic Vesicle Dynamics. J Neurosci 2017; 37:10597-10610. [PMID: 28954868 DOI: 10.1523/jneurosci.0383-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 11/21/2022] Open
Abstract
The proper function of synapses relies on efficient recycling of synaptic vesicles. The small size of synaptic boutons has hampered efforts to define the dynamical states of vesicles during recycling. Moreover, whether vesicle motion during recycling is regulated by neural activity remains largely unknown. We combined nanoscale-resolution tracking of individual synaptic vesicles in cultured hippocampal neurons from rats of both sexes with advanced motion analyses to demonstrate that the majority of recently endocytosed vesicles undergo sequences of transient dynamical states including epochs of directed, diffusional, and stalled motion. We observed that vesicle motion is modulated in an activity-dependent manner, with dynamical changes apparent in ∼20% of observed boutons. Within this subpopulation of boutons, 35% of observed vesicles exhibited acceleration and 65% exhibited deceleration, accompanied by corresponding changes in directed motion. Individual vesicles observed in the remaining ∼80% of boutons did not exhibit apparent dynamical changes in response to stimulation. More quantitative transient motion analyses revealed that the overall reduction of vesicle mobility, and specifically of the directed motion component, is the predominant activity-evoked change across the entire bouton population. Activity-dependent modulation of vesicle mobility may represent an important mechanism controlling vesicle availability and neurotransmitter release.SIGNIFICANCE STATEMENT Mechanisms governing synaptic vesicle dynamics during recycling remain poorly understood. Using nanoscale resolution tracking of individual synaptic vesicles in hippocampal synapses and advanced motion analysis tools we demonstrate that synaptic vesicles undergo complex sets of dynamical states that include epochs of directed, diffusive, and stalled motion. Most importantly, our analyses revealed that vesicle motion is modulated in an activity-dependent manner apparent as the reduction in overall vesicle mobility in response to stimulation. These results define the vesicle dynamical states during recycling and reveal their activity-dependent modulation. Our study thus provides fundamental new insights into the principles governing synaptic function.
Collapse
|
21
|
Wang YL, Zhang CX. Putting a brake on synaptic vesicle endocytosis. Cell Mol Life Sci 2017; 74:2917-2927. [PMID: 28361181 PMCID: PMC11107501 DOI: 10.1007/s00018-017-2506-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/14/2017] [Accepted: 03/14/2017] [Indexed: 01/16/2023]
Abstract
In chemical synapses, action potentials evoke synaptic vesicle fusion with the presynaptic membrane at the active zone to release neurotransmitter. Synaptic vesicle endocytosis (SVE) then follows exocytosis to recapture vesicle proteins and lipid components for recycling and the maintenance of membrane homeostasis. Therefore, SVE plays an essential role during neurotransmission and is one of the most precisely regulated biological processes. Four modes of SVE have been characterized and both positive and negative regulators have been identified. However, our understanding of SVE regulation remains unclear, especially the identity of negative regulators and their mechanisms of action. Here, we review the current knowledge of proteins that function as inhibitors of SVE and their modes of action in different forms of endocytosis. We also propose possible physiological roles of such negative regulation. We believe that a better understanding of SVE regulation, especially the inhibitory mechanisms, will shed light on neurotransmission in health and disease.
Collapse
Affiliation(s)
- Ya-Long Wang
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Beijing, China
| | - Claire Xi Zhang
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Beijing, China.
| |
Collapse
|
22
|
Dynamic Partitioning of Synaptic Vesicle Pools by the SNARE-Binding Protein Tomosyn. J Neurosci 2017; 36:11208-11222. [PMID: 27807164 DOI: 10.1523/jneurosci.1297-16.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022] Open
Abstract
Neural networks engaged in high-frequency activity rely on sustained synaptic vesicle recycling and coordinated recruitment from functionally distinct synaptic vesicle (SV) pools. However, the molecular pathways matching neural activity to SV dynamics and release requirements remain unclear. Here we identify unique roles of SNARE-binding Tomosyn1 (Tomo1) proteins as activity-dependent substrates that regulate dynamics of SV pool partitioning at rat hippocampal synapses. Our analysis is based on monitoring changes in distinct functionally defined SV pools via V-Glut1-pHluorin fluorescence in cultured hippocampal neurons in response to alterations in presynaptic protein expression. Specifically, we find knockdown of Tomo1 facilitates release efficacy from the Readily Releasable Pool (RRP), and regulates SV distribution to the Total Recycling Pool (TRP), which is matched by a decrease in the SV Resting Pool. Notably, these effects were reversed by Tomo1 rescue and overexpression. Further, we identify that these actions of Tomo1 are regulated via activity-dependent phosphorylation by cyclin-dependent kinase 5 (Cdk5). Assessment of molecular interactions that may contribute to these actions identified Tomo1 interaction with the GTP-bound state of Rab3A, an SV GTPase involved in SV targeting and presynaptic membrane tethering. In addition, Tomo1 via Rab3A-GTP was also observed to interact with Synapsin 1a/b cytoskeletal interacting proteins. Finally, our data indicate that Tomo1 regulation of SV pool sizes serves to adapt presynaptic neurotransmitter release to chronic silencing of network activity. Overall, the results establish Tomo1 proteins as central mediators in neural activity-dependent changes in SV distribution among SV pools. SIGNIFICANCE STATEMENT Although information transfer at central synapses via sustained high-frequency neural activity requires coordinated synaptic vesicle (SV) recycling, the mechanism(s) by which synapses sense and dynamically modify SV pools to match network demands remains poorly defined. To advance understanding, we quantified SV pool sizes and their sensitivity to neural activity while altering Tomo1 expression, a putative regulator of the presynaptic Readily Releasable Pool. Remarkably, we find Tomo1 actions to extend beyond the Readily Releasable Pool to mediate the Total Recycling Pool and SV Resting Pool distribution, and this action is sensitive to neural activity through Cdk5 phosphorylation of Tomo1. Moreover, Tomo1 appears to exert these actions through interaction with Rab3A-GTP and synapsin proteins. Together, our results argue that Tomo1 is a central mediator of SV availability for neurotransmission.
Collapse
|
23
|
Kasimov M, Fatkhrakhmanova M, Mukhutdinova K, Petrov A. 24S-Hydroxycholesterol enhances synaptic vesicle cycling in the mouse neuromuscular junction: Implication of glutamate NMDA receptors and nitric oxide. Neuropharmacology 2017; 117:61-73. [DOI: 10.1016/j.neuropharm.2017.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 12/29/2022]
|
24
|
Rampérez A, Sánchez-Prieto J, Torres M. Brefeldin A sensitive mechanisms contribute to endocytotic membrane retrieval and vesicle recycling in cerebellar granule cells. J Neurochem 2017; 141:662-675. [PMID: 28295320 DOI: 10.1111/jnc.14017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 11/26/2022]
Abstract
The recycling of synaptic vesicle (SV) proteins and transmitter release occur at multiple sites along the axon. These processes are sensitive to inhibition of the small GTP binding protein ARF1, which regulates the adaptor protein 1 and 3 complex (AP-1/AP-3). As the axon matures, SV recycling becomes restricted to the presynaptic bouton, and its machinery undergoes a complex process of maturation. We used the styryl dye FM1-43 to highlight differences in the efficiency of membrane recycling at different sites in cerebellar granule cells cultured for 7 days in vitro. We used Brefeldin A (BFA) to inhibit AP-1/AP-3-mediated recycling and to test the contribution of this pathway to the heterogeneity of the responses when these cells are strongly stimulated. Combining imaging techniques and ultrastructural analyses, we found a significant decrease in the density of functional boutons and an increase in the presence of endosome-like structures within the boutons of cells incubated with BFA prior to FM1-43 loading. Such effects were not observed when BFA was added 5 min after the end of the loading step, when endocytosis was almost fully completed. In this situation, vesicles were found closer to the active zone (AZ) in boutons exposed to BFA. Together, these data suggest that the AP-1/AP-3 pathway contributes to SV recycling, affecting different steps in all boutons but not equally, and thus being partly responsible for the heterogeneity of the different recycling efficiencies. Cover Image for this issue: doi. 10.1111/jnc.13801.
Collapse
Affiliation(s)
- Alberto Rampérez
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - José Sánchez-Prieto
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Magdalena Torres
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
25
|
Okerlund ND, Schneider K, Leal-Ortiz S, Montenegro-Venegas C, Kim SA, Garner LC, Waites CL, Gundelfinger ED, Reimer RJ, Garner CC. Bassoon Controls Presynaptic Autophagy through Atg5. Neuron 2017; 93:897-913.e7. [DOI: 10.1016/j.neuron.2017.01.026] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/28/2016] [Accepted: 01/25/2017] [Indexed: 12/22/2022]
|
26
|
Actin Is Crucial for All Kinetically Distinguishable Forms of Endocytosis at Synapses. Neuron 2016; 92:1020-1035. [PMID: 27840001 DOI: 10.1016/j.neuron.2016.10.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 06/16/2016] [Accepted: 10/04/2016] [Indexed: 01/18/2023]
Abstract
Mechanical force is needed to mediate endocytosis. Whether actin, the most abundant force-generating molecule, is essential for endocytosis is highly controversial in mammalian cells, particularly synapses, likely due to the use of actin blockers, the efficiency and specificity of which are often unclear in the studied cell. Here we addressed this issue using a knockout approach combined with measurements of membrane capacitance and fission pore conductance, imaging of vesicular protein endocytosis, and electron microscopy. We found that two actin isoforms, β- and γ-actin, are crucial for slow, rapid, bulk, and overshoot endocytosis at large calyx-type synapses, and for slow endocytosis and bulk endocytosis at small hippocampal synapses. Polymerized actin provides mechanical force to form endocytic pits. Actin also facilitates replenishment of the readily releasable vesicle pool, likely via endocytic clearance of active zones. We conclude that polymerized actin provides mechanical force essential for all kinetically distinguishable forms of endocytosis at synapses.
Collapse
|
27
|
Wahlstrom-Helgren S, Klyachko VA. Dynamic balance of excitation and inhibition rapidly modulates spike probability and precision in feed-forward hippocampal circuits. J Neurophysiol 2016; 116:2564-2575. [PMID: 27605532 DOI: 10.1152/jn.00413.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022] Open
Abstract
Feed-forward inhibitory (FFI) circuits are important for many information-processing functions. FFI circuit operations critically depend on the balance and timing between the excitatory and inhibitory components, which undergo rapid dynamic changes during neural activity due to short-term plasticity (STP) of both components. How dynamic changes in excitation/inhibition (E/I) balance during spike trains influence FFI circuit operations remains poorly understood. In the current study we examined the role of STP in the FFI circuit functions in the mouse hippocampus. Using a coincidence detection paradigm with simultaneous activation of two Schaffer collateral inputs, we found that the spiking probability in the target CA1 neuron was increased while spike precision concomitantly decreased during high-frequency bursts compared with a single spike. Blocking inhibitory synaptic transmission revealed that dynamics of inhibition predominately modulates the spike precision but not the changes in spiking probability, whereas the latter is modulated by the dynamics of excitation. Further analyses combining whole cell recordings and simulations of the FFI circuit suggested that dynamics of the inhibitory circuit component may influence spiking behavior during bursts by broadening the width of excitatory postsynaptic responses and that the strength of this modulation depends on the basal E/I ratio. We verified these predictions using a mouse model of fragile X syndrome, which has an elevated E/I ratio, and found a strongly reduced modulation of postsynaptic response width during bursts. Our results suggest that changes in the dynamics of excitatory and inhibitory circuit components due to STP play important yet distinct roles in modulating the properties of FFI circuits.
Collapse
Affiliation(s)
- Sarah Wahlstrom-Helgren
- Departments of Cell Biology & Physiology and Biomedical Engineering, Center for the Investigation of Membrane Excitable Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Vitaly A Klyachko
- Departments of Cell Biology & Physiology and Biomedical Engineering, Center for the Investigation of Membrane Excitable Diseases, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
28
|
Bruckner JJ, Zhan H, O'Connor-Giles KM. Advances in imaging ultrastructure yield new insights into presynaptic biology. Front Cell Neurosci 2015; 9:196. [PMID: 26052269 PMCID: PMC4440913 DOI: 10.3389/fncel.2015.00196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/05/2015] [Indexed: 11/13/2022] Open
Abstract
Synapses are the fundamental functional units of neural circuits, and their dysregulation has been implicated in diverse neurological disorders. At presynaptic terminals, neurotransmitter-filled synaptic vesicles are released in response to calcium influx through voltage-gated calcium channels activated by the arrival of an action potential. Decades of electrophysiological, biochemical, and genetic studies have contributed to a growing understanding of presynaptic biology. Imaging studies are yielding new insights into how synapses are organized to carry out their critical functions. The development of techniques for rapid immobilization and preservation of neuronal tissues for electron microscopy (EM) has led to a new renaissance in ultrastructural imaging that is rapidly advancing our understanding of synapse structure and function.
Collapse
Affiliation(s)
- Joseph J Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison Madison, WI, USA
| | - Hong Zhan
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison Madison, WI, USA
| | - Kate M O'Connor-Giles
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison Madison, WI, USA ; Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison Madison, WI, USA ; Laboratory of Genetics, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
29
|
A nanoscale resolution view on synaptic vesicle dynamics. Synapse 2014; 69:256-67. [DOI: 10.1002/syn.21795] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/20/2014] [Accepted: 11/27/2014] [Indexed: 12/31/2022]
|
30
|
Lučić V. Neuroscience: towards unified vesicle endocytosis. Nature 2014; 515:207-8. [PMID: 25296252 DOI: 10.1038/nature13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vladan Lučić
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
31
|
Watanabe S, Trimbuch T, Camacho-Pérez M, Rost BR, Brokowski B, Söhl-Kielczynski B, Felies A, Davis MW, Rosenmund C, Jorgensen EM. Clathrin regenerates synaptic vesicles from endosomes. Nature 2014; 515:228-33. [PMID: 25296249 PMCID: PMC4291189 DOI: 10.1038/nature13846] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 09/03/2014] [Indexed: 12/22/2022]
Abstract
Ultrafast endocytosis can retrieve a single, large endocytic vesicle as fast as 50-100 ms after synaptic vesicle fusion. However, the fate of the large endocytic vesicles is not known. Here we demonstrate that these vesicles transition to a synaptic endosome about one second after stimulation. The endosome is resolved into coated vesicles after 3 s, which in turn become small-diameter synaptic vesicles 5-6 s after stimulation. We disrupted clathrin function using RNA interference (RNAi) and found that clathrin is not required for ultrafast endocytosis but is required to generate synaptic vesicles from the endosome. Ultrafast endocytosis fails when actin polymerization is disrupted, or when neurons are stimulated at room temperature instead of physiological temperature. In the absence of ultrafast endocytosis, synaptic vesicles are retrieved directly from the plasma membrane by clathrin-mediated endocytosis. These results may explain discrepancies among published experiments concerning the role of clathrin in synaptic vesicle endocytosis.
Collapse
Affiliation(s)
- Shigeki Watanabe
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84112-0840, USA
| | - Thorsten Trimbuch
- Neuroscience Research Center Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Marcial Camacho-Pérez
- Neuroscience Research Center Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Benjamin R Rost
- 1] Neuroscience Research Center Charité Universitätsmedizin Berlin, Berlin 10117, Germany [2] German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Bettina Brokowski
- Neuroscience Research Center Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | | | - Annegret Felies
- Neuroscience Research Center Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - M Wayne Davis
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84112-0840, USA
| | - Christian Rosenmund
- Neuroscience Research Center Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Erik M Jorgensen
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84112-0840, USA
| |
Collapse
|
32
|
Bui L, Glavinović MI. Temperature dependence of vesicular dynamics at excitatory synapses of rat hippocampus. Cogn Neurodyn 2014; 8:277-86. [PMID: 25009670 DOI: 10.1007/s11571-014-9283-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 01/27/2014] [Accepted: 02/09/2014] [Indexed: 10/25/2022] Open
Abstract
How vesicular dynamics parameters depend on temperature and how temperature affects the parameter change during prolonged high frequency stimulation was determined by fitting a model of vesicular storage and release to the amplitudes of the excitatory post-synaptic currents (EPSC) recorded from CA1 neurons in rat hippocampal slices. The temperature ranged from low (13 °C) to higher and more physiological temperature (34 °C). Fitting the model of vesicular storage and release to the EPSC amplitudes during a single pair of brief high-low frequency stimulation trains yields the estimates of all parameters of the vesicular dynamics, and with good precision. Both fractional release and replenishment rate decrease as the temperature rises. Change of the underlying 'basic' parameters (release coupling, replenishment coupling and readily releasable pool size), which the model-fitting also yields is complex. The replenishment coupling between the readily releasable pool (RRP) and resting pool increases with temperature (which renders the replenishment rate higher), but this is more than counterbalanced by greater RRP size (which renders the replenishment rate lower). Finally, during long, high frequency patterned stimulation that leads to significant synaptic depression, the replenishment rate decreases markedly and rapidly at low temperatures (<22 °C), but at high temperatures (>28 °C) the replenishment rate rises with stimulation, making synapses better able to maintain synaptic efficacy.
Collapse
Affiliation(s)
- Loc Bui
- Department of Physiology, McGill University, 3655 Sir William Osler Promenade, Montreal, PQ H3G 1Y6 Canada
| | - Mladen I Glavinović
- Department of Physiology, McGill University, 3655 Sir William Osler Promenade, Montreal, PQ H3G 1Y6 Canada
| |
Collapse
|
33
|
Rho-kinase accelerates synaptic vesicle endocytosis by linking cyclic GMP-dependent protein kinase activity to phosphatidylinositol-4,5-bisphosphate synthesis. J Neurosci 2013; 33:12099-104. [PMID: 23864695 DOI: 10.1523/jneurosci.0730-13.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rho-kinase plays diverse roles in cell motility. During neuronal development, Rho-kinase is involved in neuronal migration, and in neurite outgrowth and retraction. Rho-kinase remains highly expressed in mature neurons, but its physiological roles are poorly understood. Here we report that Rho-kinase plays a key role in the synaptic vesicle recycling system in presynaptic terminals. Vesicles consumed by excessive exocytosis are replenished by accelerating vesicle endocytosis via a retrograde feedback mechanism involving nitric oxide released from postsynaptic cells. This homeostatic control system involves presynaptic cyclic GMP-dependent protein kinase (PKG) and a plasma membrane phospholipid, phosphatidylinositol-4,5-bisphophate (PIP2). We found that application of a Rho-kinase inhibitor, a PKG inhibitor or both, reduced the PIP2 content in Wistar rat brainstem synaptosomes to a similar extent. Likewise, application of the Rho-kinase inhibitor into the calyx of Held presynaptic terminal slowed vesicle endocytosis to the same degree as did application of the PKG inhibitor. This endocytic slowing effect of the Rho-kinase inhibitor was canceled by coapplication of PIP2 into the terminal. By contrast, a RhoA activator increased the PIP2 content and reversed the effect of the PKG inhibitor in brainstem synaptosomes. The RhoA activator, when loaded into calyceal terminals, also rescued the endocytic slowing effect of the PKG inhibitor. Furthermore, intraterminal loading of anti-PIP2 antibody slowed vesicle endocytosis and blocked the rescuing effect of the RhoA activator. We conclude that Rho-kinase links presynaptic PKG activity to PIP2 synthesis, thereby controlling the homeostatic balance of vesicle exocytosis and endocytosis in nerve terminals.
Collapse
|
34
|
Temperature enhances activation and inactivation kinetics of potassium currents in inner hair cells isolated from Guinea-pig cochlea. Clin Exp Otorhinolaryngol 2013; 6:140-5. [PMID: 24069516 PMCID: PMC3781226 DOI: 10.3342/ceo.2013.6.3.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 11/12/2022] Open
Abstract
Objectives Until recently, most patch-clamp recordings in inner hair cells (IHCs) have been performed at room temperature. The results acquired at room temperature should be corrected if they are to be related to in vivo findings. However, the temperature dependency to ion channels in IHCs is unknown. The aim of this study was to investigate the effect of temperature on the potassium currents in IHCs. Methods IHCs were isolated from a mature guinea-pig cochlea and potassium currents were recorded at room temperature (around 25℃) and physiological temperatures (35℃-37℃). Results IHCs showed outwardly rectifying currents in response to depolarizing voltage pulses, with only a slight inward current when hyperpolarized. The amplitude of both outward and inward currents demonstrated no temperature dependency, however, activation and inactivation rates were faster at 36℃ than at room temperature. Half-time for activation was shorter at 36℃ than at room temperature at membrane potentials of -10, +10, +20, +30, and +40 mV. Q10 for the activation rate was 1.83. The inactivation time constant in outward tetraethylammonium-sensitive potassium currents was much smaller at 36℃ than at room temperature between the membrane potentials of -20 and +60 mV. Q10 for the inactivation time constant was 3.19. Conclusion The results of this study suggest that the amplitude of potassium currents in IHCs showed no temperature dependence either in outward or inward-going currents, however, activation and inactivation accelerated at physiological temperatures.
Collapse
|
35
|
Abstract
Studies over the last decade using FM dyes to label vesicles at many terminals, including the calyx-type nerve terminal, led to a well accepted "principle" that only a small fraction of vesicles (∼5-20%) participate in recycling under physiological conditions. This principle imposes a large challenge in maintaining synaptic transmission during repetitive firing, because the small recycling pool may limit the number of available vesicles for release and nerve terminals would have to distinguish the recycling pool from the reserve pool and keep reserve pool vesicles from being used. By recording the presynaptic capacitance changes and the postsynaptic EPSC at rat calyx of Held synapses in the absence or presence of transmitter glutamate in nerve terminals, we developed a new method to count functional recycling vesicles. We found that essentially all vesicles in calyces participated in recycling, challenging the small-recycling-pool principle established by FM dye labeling. Nerve terminals may use all available vesicles to maximize their ability in maintaining synaptic transmission during repetitive firing.
Collapse
|
36
|
A preferentially segregated recycling vesicle pool of limited size supports neurotransmission in native central synapses. Neuron 2013; 76:579-89. [PMID: 23141069 PMCID: PMC3526798 DOI: 10.1016/j.neuron.2012.08.042] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 01/01/2023]
Abstract
At small central synapses, efficient turnover of vesicles is crucial for stimulus-driven transmission, but how the structure of this recycling pool relates to its functional role remains unclear. Here we characterize the organizational principles of functional vesicles at native hippocampal synapses with nanoscale resolution using fluorescent dye labeling and electron microscopy. We show that the recycling pool broadly scales with the magnitude of the total vesicle pool, but its average size is small (∼45 vesicles), highly variable, and regulated by CDK5/calcineurin activity. Spatial analysis demonstrates that recycling vesicles are preferentially arranged near the active zone and this segregation is abolished by actin stabilization, slowing the rate of activity-driven exocytosis. Our approach reveals a similarly biased recycling pool distribution at synapses in visual cortex activated by sensory stimulation in vivo. We suggest that in small native central synapses, efficient release of a limited pool of vesicles relies on their favored spatial positioning within the terminal.
Collapse
|
37
|
Three-dimensional distribution of TrkA neurotrophin receptors in neurite varicosities of differentiated PC12 cells treated with NGF determined by immunoelectron tomography. Cell Tissue Res 2012; 351:1-13. [DOI: 10.1007/s00441-012-1499-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
|
38
|
Temperature-dependent transitions of burst firing patterns in a model pyramidal neuron. NEUROPHYSIOLOGY+ 2012. [DOI: 10.1007/s11062-012-9296-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Kim JA, Connors BW. High temperatures alter physiological properties of pyramidal cells and inhibitory interneurons in hippocampus. Front Cell Neurosci 2012; 6:27. [PMID: 22783167 PMCID: PMC3390787 DOI: 10.3389/fncel.2012.00027] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/13/2012] [Indexed: 01/14/2023] Open
Abstract
Temperature has multiple effects on neurons, yet little is known about the effects of high temperature on the physiology of mammalian central neurons. Hyperthermia can influence behavior and cause febrile seizures. We studied the effects of acute hyperthermia on the immature hippocampus in vitro by recording from pyramidal neurons and inhibitory oriens-lacunosum moleculare (O-LM) interneurons (identified by green fluorescent protein (GFP) expression in the GIN mouse line). Warming to 41°C caused depolarization, spontaneous action potentials, reduced input resistance and membrane time constant, and increased spontaneous synaptic activity of most pyramidal cells and O-LM interneurons. Pyramidal neurons of area CA3 were more strongly excited by hyperthermia than those of area CA1. About 90% of O-LM interneurons in both CA1 and CA3 increased their firing rates at hyperthermic temperatures; interneurons in CA3 fired faster than those in CA1 on average. Blockade of fast synaptic transmission did not abolish the effect of hyperthermia on neuronal excitability. Our results suggest that hyperthermia increases hippocampal excitability, particularly in seizure-prone area CA3, by altering the intrinsic membrane properties of pyramidal cells and interneurons.
Collapse
Affiliation(s)
- Jennifer A Kim
- Department of Neuroscience, Brown University, Providence RI, USA
| | | |
Collapse
|
40
|
Kim E, Owen B, Holmes WR, Grover LM. Decreased afferent excitability contributes to synaptic depression during high-frequency stimulation in hippocampal area CA1. J Neurophysiol 2012; 108:1965-76. [PMID: 22773781 DOI: 10.1152/jn.00276.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long-term potentiation (LTP) is often induced experimentally by continuous high-frequency afferent stimulation (HFS), typically at 100 Hz for 1 s. Induction of LTP requires postsynaptic depolarization and voltage-dependent calcium influx. Induction is more effective if the same number of stimuli are given as a series of short bursts rather than as continuous HFS, in part because excitatory postsynaptic potentials (EPSPs) become strongly depressed during HFS, reducing postsynaptic depolarization. In this study, we examined mechanisms of EPSP depression during HFS in area CA1 of rat hippocampal brain slices. We tested for presynaptic terminal vesicle depletion by examining minimal stimulation-evoked excitatory postsynaptic currents (EPSCs) during 100-Hz HFS. While transmission failures increased, consistent with vesicle depletion, EPSC latencies also increased during HFS, suggesting a decrease in afferent excitability. Extracellular recordings of Schaffer collateral fiber volleys confirmed a decrease in afferent excitability, with decreased fiber volley amplitudes and increased latencies during HFS. To determine the mechanism responsible for fiber volley changes, we recorded antidromic action potentials in single CA3 pyramidal neurons evoked by stimulating Schaffer collateral axons. During HFS, individual action potentials decreased in amplitude and increased in latency, and these changes were accompanied by a large increase in the probability of action potential failure. Time derivative and phase-plane analyses indicated decreases in both axon initial segment and somato-dendritic components of CA3 neuron action potentials. Our results indicate that decreased presynaptic axon excitability contributes to depression of excitatory synaptic transmission during HFS at synapses between Schaffer collaterals and CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Eunyoung Kim
- Department of Pharmacology, Physiology, and Toxicology, Marshall University, School of Medicine, Huntington, West Virginia 25755, USA
| | | | | | | |
Collapse
|
41
|
Ratnayaka A, Marra V, Bush D, Burden JJ, Branco T, Staras K. Recruitment of resting vesicles into recycling pools supports NMDA receptor-dependent synaptic potentiation in cultured hippocampal neurons. J Physiol 2012; 590:1585-97. [PMID: 22271866 PMCID: PMC3413500 DOI: 10.1113/jphysiol.2011.226688] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Most presynaptic terminals in the central nervous system are characterized by two functionally distinct vesicle populations: a recycling pool, which supports action potential-driven neurotransmitter release via vesicle exocytosis, and a resting pool. The relative proportions of these two pools are highly variable between individual synapses, prompting speculation on their specific relationship, and on the possible functions of the resting pool. Using fluorescence imaging of FM-styryl dyes and synaptophysinI-pHluorin (sypHy) as well as correlative electron microscopy approaches, we show here that Hebbian plasticity-dependent changes in synaptic strength in rat hippocampal neurons can increase the recycling pool fraction at the expense of the resting pool in individual synaptic terminals. This recruitment process depends on NMDA-receptor activation, nitric oxide signalling and calcineurin and is accompanied by an increase in the probability of neurotransmitter release at individual terminals. Blockade of actin-mediated intersynaptic vesicle exchange does not prevent recycling pool expansion demonstrating that vesicle recruitment is intrasynaptic. We propose that the conversion of resting pool vesicles to the functionally recycling pool provides a rapid mechanism to implement long-lasting changes in presynaptic efficacy.
Collapse
Affiliation(s)
- Arjuna Ratnayaka
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | | | | | | | | | |
Collapse
|
42
|
Branco T, Marra V, Staras K. Examining size-strength relationships at hippocampal synapses using an ultrastructural measurement of synaptic release probability. J Struct Biol 2010; 172:203-10. [PMID: 19895891 PMCID: PMC3084449 DOI: 10.1016/j.jsb.2009.10.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/25/2009] [Accepted: 10/27/2009] [Indexed: 11/19/2022]
Abstract
Release probability (p(r)) is a fundamental presynaptic parameter which is critical in defining synaptic strength. Knowledge of how synapses set and regulate their p(r) is a fundamental step in understanding synaptic transmission and communication between neurons. Despite its importance, p(r) is difficult to measure directly at single synapses. One important strategy to achieve this has relied on the application of fluorescence-based imaging methods, but this is always limited by the lack of detailed information on the morphological and structural properties of the individual synapses under study, and thus precludes an investigation of the relationship between p(r) and synaptic anatomy. Here we outline a powerful methodology based on using FM-styryl dyes, photoconversion and correlative ultrastructural analysis in dissociated hippocampal cultured neurons, which provides both a direct readout of p(r) as well as nanoscale detail on synaptic organization and structure. We illustrate the value of this approach by investigating, at the level of individual reconstructed terminals, the relationship between release probability and defined vesicle pools. We show that in our population of synapses, p(r) is highly variable, and while it is positively correlated with the number of vesicles docked at the active zone it shows no relationship with the total number of synaptic vesicles. The lack of a direct correlation between total synaptic size and performance in these terminals suggests that factors other than the absolute magnitude of the synapse are the most important determinants of synaptic efficacy.
Collapse
Affiliation(s)
- Tiago Branco
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Vincenzo Marra
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Kevin Staras
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
43
|
Increase of GABAA receptor-mediated tonic inhibition in dentate granule cells after traumatic brain injury. Neurobiol Dis 2010; 38:464-75. [PMID: 20304069 DOI: 10.1016/j.nbd.2010.03.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/10/2010] [Accepted: 03/10/2010] [Indexed: 10/19/2022] Open
Abstract
Traumatic brain injury (TBI) can result in altered inhibitory neurotransmission, hippocampal dysfunction, and cognitive impairments. GABAergic spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) and tonic (extrasynaptic) whole cell currents were recorded in control rat hippocampal dentate granule cells (DGCs) and at 90days after controlled cortical impact (CCI). At 34 degrees C, in CCI DGCs, sIPSC frequency and amplitude were unchanged, whereas mIPSC frequency was decreased (3.10+/-0.84Hz, n=16, and 2.44+/-0.67Hz, n=7, p<0.05). At 23 degrees C, 300nM diazepam increased peak amplitude of mIPSCs in control and CCI DGCs, but the increase was 20% higher in control (26.81+/-2.2pA and 42.60+/-1.22pA, n=9, p=0.031) compared to CCI DGCs (33.46+/-2.98pA and 46.13+/-1.09pA, n=10, p=0.047). At 34 degrees C, diazepam did not prolong decay time constants (6.59+/-0.12ms and 6.62+/-0.98ms, n=9, p=0.12), the latter suggesting that CCI resulted in benzodiazepine-insensitive pharmacology in synaptic GABA(A) receptors (GABA(A)Rs). In CCI DGCs, peak amplitude of mIPSCs was inhibited by 100microM furosemide (51.30+/-0.80pA at baseline and 43.50+/-5.30pA after furosemide, n=5, p<0.001), a noncompetitive antagonist of GABA(A)Rs with an enhanced affinity to alpha4 subunit-containing receptors. Potentiation of tonic current by the GABA(A)R delta subunit-preferring competitive agonist THIP (1 and 3microM) was increased in CCI DGCs (47% and 198%) compared to control DGCs (13% and 162%), suggesting the presence of larger tonic current in CCI DGCs; THIP (1microM) had no effect on mIPSCs. Taken together, these results demonstrate alterations in synaptic and extrasynaptic GABA(A)Rs in DGCs following CCI.
Collapse
|
44
|
Thomsen LB, Jörntell H, Midtgaard J. Presynaptic calcium signalling in cerebellar mossy fibres. Front Neural Circuits 2010; 4:1. [PMID: 20162034 PMCID: PMC2821199 DOI: 10.3389/neuro.04.001.2010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 01/04/2010] [Indexed: 11/13/2022] Open
Abstract
Whole-cell recordings were obtained from mossy fibre terminals in adult turtles in order to characterize the basic membrane properties. Calcium imaging of presynaptic calcium signals was carried out in order to analyse calcium dynamics and presynaptic GABA B inhibition. A tetrodotoxin (TTX)-sensitive fast Na+ spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers. Calcium imaging using Calcium-Green dextran revealed a stimulus-evoked all-or-none TTX-sensitive calcium signal in simple and complex rosettes. All compartments of a complex rosette were activated during electrical activation of the mossy fibre, while individual simple and complex rosettes along an axon appeared to be isolated from one another in terms of calcium signalling. CGP55845 application showed that GABA B receptors mediated presynaptic inhibition of the calcium signal over the entire firing frequency range of mossy fibres. A paired-pulse depression of the calcium signal lasting more than 1 s affected burst firing in mossy fibres; this paired-pulse depression was reduced by GABA B antagonists. While our results indicated that a presynaptic rosette electrophysiologically functioned as a unit, topical GABA application showed that calcium signals in the branches of complex rosettes could be modulated locally, suggesting that cerebellar glomeruli may be dynamically sub-compartmentalized due to ongoing inhibition mediated by Golgi cells. This could provide a fine-grained control of mossy fibre-granule cell information transfer and synaptic plasticity within a mossy fibre rosette.
Collapse
Affiliation(s)
- Louiza B Thomsen
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| | | | | |
Collapse
|
45
|
Counting the number of releasable synaptic vesicles in a presynaptic terminal. Proc Natl Acad Sci U S A 2009; 106:2945-50. [PMID: 19202060 DOI: 10.1073/pnas.0811017106] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptic transmission depends on the continued availability of neurotransmitter-filled synaptic vesicles (SVs) for triggered release from presynaptic boutons. Surprisingly, small boutons in the brain, that already contain comparatively few SVs, are thought to retain the majority of these SVs in a "reserve" pool that is not mobilized under physiological conditions. Why such a scarce synaptic resource is normally inaccessible has been a matter of debate. Here, we readdress this issue by developing an electrophysiological approach for counting SVs released from boutons formed by a single, isolated neuron on itself ("autapses"). We show that, after treatment with Bafilomycin A1 to prevent reloading of discharged SVs with glutamate, each SV is counted only once on first-time release. Hence, by integrating all autaptic currents as they run down over time, we can estimate the total number of SVs released by a single neuron. This total can be normalized to the number of boutons on the neuron, giving the mean number of SVs released per bouton. We estimate that up to approximately 130 vesicles can be released per bouton over approximately 10 min of stimulation at 0.2 Hz. This number of vesicles represents a substantial proportion of the total number of SVs (100-200) that have been counted in these boutons by using electron microscopy. Thus, mild electrical stimulation, when maintained for sufficient time, causes the eventual release of many of the SVs in a bouton, including those in the putative reserve pool. This result suggests that SVs are functionally homogeneous in that the majority can contribute to basal synaptic transmission.
Collapse
|
46
|
Distinctive quantal properties of neurotransmission at excitatory and inhibitory autapses revealed using variance-mean analysis. J Neurosci 2009; 28:13563-73. [PMID: 19074030 DOI: 10.1523/jneurosci.3350-08.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Normal brain function depends on an interplay between glutamatergic and GABAergic synaptic transmission, yet questions remain about the biophysical differences between these two classes of synapse. By taking advantage of a simple culture system, we present here a detailed comparison of excitatory and inhibitory neurotransmission under identical conditions using the variance-mean (V-M) method of quantal analysis. First, we validate V-M analysis for glutamatergic autapses formed by isolated hippocampal pyramidal neurons in culture, confirming that the analysis accurately predicts the quantal amplitude (Q). We also show that V-M analysis is only weakly sensitive to intersite and intrasite quantal variance and to the known inhomogeneities in release probability (P(r)). Next, by repeating the experiments with GABAergic autapses, we confirm that V-M analysis provides an accurate account of inhibitory neurotransmission in this system. Mean P(r), provided by V-M analysis, shows a dependence on extracellular Ca(2+) concentration that is nearly identical for both excitatory and inhibitory autapses. Finally, the V-M method allows us to compare the locus of short-term synaptic plasticity at these connections. Glutamatergic autapses exhibit paired-pulse depression that depends mainly on changes in P(r), whereas depression at GABAergic autapses appears to depend primarily on changes in the number of release sites. We conclude that, apart from differences in the mechanisms of short-term plasticity, the basic quantal properties of excitatory and inhibitory connections in this hippocampal system are remarkably similar.
Collapse
|
47
|
Gaffield MA, Tabares L, Betz WJ. The spatial pattern of exocytosis and post-exocytic mobility of synaptopHluorin in mouse motor nerve terminals. J Physiol 2009; 587:1187-200. [PMID: 19153160 DOI: 10.1113/jphysiol.2008.166728] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We monitored the spatial distribution of exo- and endocytosis at 37 degrees C in mouse motor nerve terminals expressing synaptopHluorin (spH), confirming and extending earlier work at room temperature, which had revealed fluorescent 'hot spots' appearing in repeatable locations during tetanic stimulation. We also tested whether hot spots appeared during mild stimulation. Averaged responses from single shocks showed a clear fluorescence jump, but revealed no sign of hot spots; instead, fluorescence rose uniformly across the terminal. Only after 5-25 stimuli given at high frequency did hot spots appear, suggesting a novel initiation mechanism. Experiments showed that about half of the surface spH molecules were mobile, and that spH movement occurred out of hot spots, demonstrating their origin as exocytic sources, not endocytic sinks. Taken together, our results suggest that synaptic vesicles exocytose equally throughout the terminal with mild stimulation, but preferentially exocytose at specific, repeatable locations during tetanic stimulation.
Collapse
Affiliation(s)
- Michael A Gaffield
- Department of Physiology and Biophysics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | |
Collapse
|
48
|
Granseth B, Lagnado L. The role of endocytosis in regulating the strength of hippocampal synapses. J Physiol 2008; 586:5969-82. [PMID: 19001048 DOI: 10.1113/jphysiol.2008.159715] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The readily releasable pool of vesicles (RRP) varies in size during synaptic activity and is replenished by recruitment from the reserve pool as well as vesicle retrieval after fusion. To investigate which of these steps is rate limiting in supplying vesicles to the RRP, we measured the effects of changes in temperature in cultured hippocampal neurons, where higher average rates of release can be maintained as the temperature is increased. Using a pHluorin-based reporter of exocytosis and endocytosis (sypHy), we find that changes in temperature between 25 degrees C and 35 degrees C do not significantly alter the rate of recruitment from the reserve pool. In contrast, the time constant of endocytosis fell from approximately 17 s at 25 degrees C to approximately 10 s at 35 degrees C (Q(10) = 1.7), while the time constant of vesicle reacidification fell from approximately 5.5 s to approximately 1 s (Q(10) = 5.5). A kinetic model of the vesicle cycle constructed using measured parameters was found to describe variations in vesicle release rate observed during long trains of spikes as well as recovery from synaptic depression after bursts of activity. These results indicate that endocytosis operating with time constants of 10-15 s is the rate-limiting process determining replenishment of the RRP during long-term activity. A fast mode of vesicle retrieval could not be detected at any temperature, nor was it necessary to invoke such a mechanism to account for use-dependent changes in synaptic release probability.
Collapse
Affiliation(s)
- Björn Granseth
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | |
Collapse
|
49
|
Cousin MA. Use of FM1-43 and other derivatives to investigate neuronal function. ACTA ACUST UNITED AC 2008; Chapter 2:Unit 2.6. [PMID: 18428675 DOI: 10.1002/0471142301.ns0206s43] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The fluorescent dye FM1-43 and its derivatives can be used to monitor the physiology of synaptic vesicle turnover in central nerve terminals. They do so by their ability to reversibly partition into membranes, a process that results in a huge increase in fluorescence in comparison to their quantum yield in solution. This unit provides protocols for quantifying total synaptic vesicle turnover, the kinetics and extent of synaptic vesicle exocytosis, and the kinetics and mode of synaptic vesicle endocytosis. Descriptions of other ways these protocols have been used to derive information about the life cycle of the synaptic vesicle are also provided.
Collapse
|
50
|
Leal-Ortiz S, Waites CL, Terry-Lorenzo R, Zamorano P, Gundelfinger ED, Garner CC. Piccolo modulation of Synapsin1a dynamics regulates synaptic vesicle exocytosis. ACTA ACUST UNITED AC 2008; 181:831-46. [PMID: 18519737 PMCID: PMC2396795 DOI: 10.1083/jcb.200711167] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Active zones are specialized regions of the presynaptic plasma membrane designed for the efficient and repetitive release of neurotransmitter via synaptic vesicle (SV) exocytosis. Piccolo is a high molecular weight component of the active zone that is hypothesized to participate both in active zone formation and the scaffolding of key molecules involved in SV recycling. In this study, we use interference RNAs to eliminate Piccolo expression from cultured hippocampal neurons to assess its involvement in synapse formation and function. Our data show that Piccolo is not required for glutamatergic synapse formation but does influence presynaptic function by negatively regulating SV exocytosis. Mechanistically, this regulation appears to be calmodulin kinase II–dependent and mediated through the modulation of Synapsin1a dynamics. This function is not shared by the highly homologous protein Bassoon, which indicates that Piccolo has a unique role in coupling the mobilization of SVs in the reserve pool to events within the active zone.
Collapse
Affiliation(s)
- Sergio Leal-Ortiz
- Deptartment of Psychiatry and Behavioral Science, Nancy Pritzker Laboratory, Stanford University, Palo Alto, CA 94304, USA
| | | | | | | | | | | |
Collapse
|