1
|
Zhang H, Deska-Gauthier D, MacKay CS, Hari K, Lucas-Osma AM, Borowska-Fielding J, Letawsky RL, Rancic V, Akay T, Fenrich KK, Bennett DJ, Zhang Y. Widespread innervation of motoneurons by spinal V3 neurons globally amplifies locomotor output in mice. Cell Rep 2025; 44:115212. [PMID: 39817902 DOI: 10.1016/j.celrep.2024.115212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 12/02/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025] Open
Abstract
While considerable progress has been made in understanding the neuronal circuits that underlie the patterning of locomotor behaviors, less is known about the circuits that amplify motoneuron output to adjust muscle force. Here, we demonstrate that propriospinal V3 neurons (Sim1+) account for ∼20% of excitatory input to motoneurons across hindlimb muscles. V3 neurons also form extensive connections among themselves and with other excitatory premotor neurons, such as V2a neurons. Optical activation of V3 neurons in a single segment rapidly amplifies locomotor-related motoneuron output at all lumbar segments in in vitro spinal cord and the awake adult mouse. Despite similar innervation from V3 neurons to flexor and extensor motoneuron pools, V3 neurons preferentially activate extensor muscles. Genetically or optogenetically silencing V3 neurons leads to slower and weaker mice with a reduced ability to adjust extensor muscle force. Thus, V3 neurons serve as global command neurons that amplify locomotion intensity.
Collapse
Affiliation(s)
- Han Zhang
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2S2, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2G4, Canada; Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Dylan Deska-Gauthier
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Colin S MacKay
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Krishnapriya Hari
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Ana M Lucas-Osma
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2S2, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2G4, Canada
| | | | - Reese L Letawsky
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Vladimir Rancic
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2S2, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2G4, Canada; Institute for Smart Augmentative and Restorative Technologies, University of Alberta, Edmonton, AB T6G 1G7, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2S2, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2G4, Canada; Institute for Smart Augmentative and Restorative Technologies, University of Alberta, Edmonton, AB T6G 1G7, Canada
| | - David J Bennett
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2S2, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2G4, Canada
| | - Ying Zhang
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
2
|
Calabrese RL, Marder E. Degenerate neuronal and circuit mechanisms important for generating rhythmic motor patterns. Physiol Rev 2025; 105:95-135. [PMID: 39453990 DOI: 10.1152/physrev.00003.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 10/27/2024] Open
Abstract
In 1996, we published a review article (Marder E, Calabrese RL. Physiol Rev 76: 687-717, 1996) describing the state of knowledge about the structure and function of the central pattern-generating circuits important for producing rhythmic behaviors. Although many of the core questions persist, much has changed since 1996. Here, we focus on newer studies that reveal ambiguities that complicate understanding circuit dynamics, despite the enormous technical advances of the recent past. In particular, we highlight recent studies of animal-to-animal variability and our understanding that circuit rhythmicity may be supported by multiple state-dependent mechanisms within the same animal and that robustness and resilience in the face of perturbation may depend critically on the presence of modulators and degenerate circuit mechanisms. Additionally, we highlight the use of computational models to ask whether there are generalizable principles about circuit motifs that can be found across rhythmic motor systems in different animal species.
Collapse
Affiliation(s)
| | - Eve Marder
- Brandeis University, Waltham, Massachusetts, United States
| |
Collapse
|
3
|
Trevisan AJ, Han K, Chapman P, Kulkarni AS, Hinton JM, Ramirez C, Klein I, Gatto G, Gabitto MI, Menon V, Bikoff JB. The transcriptomic landscape of spinal V1 interneurons reveals a role for En1 in specific elements of motor output. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613279. [PMID: 39345580 PMCID: PMC11429899 DOI: 10.1101/2024.09.18.613279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Neural circuits in the spinal cord are composed of diverse sets of interneurons that play crucial roles in shaping motor output. Despite progress in revealing the cellular architecture of the spinal cord, the extent of cell type heterogeneity within interneuron populations remains unclear. Here, we present a single-nucleus transcriptomic atlas of spinal V1 interneurons across postnatal development. We find that the core molecular taxonomy distinguishing neonatal V1 interneurons perdures into adulthood, suggesting conservation of function across development. Moreover, we identify a key role for En1, a transcription factor that marks the V1 population, in specifying one unique subset of V1Pou6f2 interneurons. Loss of En1 selectively disrupts the frequency of rhythmic locomotor output but does not disrupt flexion/extension limb movement. Beyond serving as a molecular resource for this neuronal population, our study highlights how deep neuronal profiling provides an entry point for functional studies of specialized cell types in motor output.
Collapse
Affiliation(s)
- Alexandra J. Trevisan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Katie Han
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Anand S. Kulkarni
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Jennifer M. Hinton
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Cody Ramirez
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Ines Klein
- Department of Neurology, University Hospital of Cologne, Cologne, 50937, Germany
| | - Graziana Gatto
- Department of Neurology, University Hospital of Cologne, Cologne, 50937, Germany
| | - Mariano I. Gabitto
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
- Department of Statistics, University of Washington, Seattle, WA, 98109, USA
| | - Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, 10033, USA
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
- Lead Contact
| |
Collapse
|
4
|
Renaux E, Baudouin C, Schakman O, Gay O, Martin M, Marchese D, Achouri Y, Rezsohazy R, Gofflot F, Clotman F. Arid3c identifies an uncharacterized subpopulation of V2 interneurons during embryonic spinal cord development. Front Cell Neurosci 2024; 18:1466056. [PMID: 39479525 PMCID: PMC11521906 DOI: 10.3389/fncel.2024.1466056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
Motor activity is organized by neuronal networks composed of motor neurons and a wide variety of pre-motor interneuron populations located in the brainstem and spinal cord. Differential expression and single-cell RNA sequencing studies recently unveiled that these populations subdivide into multiple subsets. However, some interneuron subsets have not been described yet, and the mechanisms contributing to this neuronal diversification have only been partly deciphered. In this study, we aimed to identify additional markers to further describe the diversity of spinal V2 interneuron populations. Here, we compared the transcriptome of V2 interneurons with that of the other cells of the embryonic spinal cord and extracted a list of genes enriched in V2 interneurons, including Arid3c. Arid3c identifies an uncharacterized subset of V2 that partially overlaps with V2c interneurons. These two populations are characterized by the production of Onecut factors and Sox2, suggesting that they could represent a single functional V2 unit. Furthermore, we show that the overexpression or inactivation of Arid3c does not alter V2 production, but its absence results in minor defects in locomotor execution, suggesting a possible function in subtle aspects of spinal locomotor circuit formation.
Collapse
Affiliation(s)
- Estelle Renaux
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Charlotte Baudouin
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Olivier Schakman
- Université catholique de Louvain, Institute of Neuroscience, Behavioral Analysis Platform (BEAP), Brussels, Belgium
| | - Ondine Gay
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon Cedex, France
| | - Manon Martin
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Louvain-la-Neuve, Belgium
| | - Damien Marchese
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
| | - Younès Achouri
- Université catholique de Louvain, de Duve Institute, Transgenic Core Facility, Brussels, Belgium
| | - René Rezsohazy
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
| | - Françoise Gofflot
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| |
Collapse
|
5
|
Vijatovic D, Toma FA, Harrington ZPM, Sommer C, Hauschild R, Trevisan AJ, Chapman P, Julseth MJ, Brenner-Morton S, Gabitto MI, Dasen JS, Bikoff JB, Sweeney LB. Spinal neuron diversity scales exponentially with swim-to-limb transformation during frog metamorphosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614050. [PMID: 39345366 PMCID: PMC11430061 DOI: 10.1101/2024.09.20.614050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Vertebrates exhibit a wide range of motor behaviors, ranging from swimming to complex limb-based movements. Here we take advantage of frog metamorphosis, which captures a swim-to-limb-based movement transformation during the development of a single organism, to explore changes in the underlying spinal circuits. We find that the tadpole spinal cord contains small and largely homogeneous populations of motor neurons (MNs) and V1 interneurons (V1s) at early escape swimming stages. These neuronal populations only modestly increase in number and subtype heterogeneity with the emergence of free swimming. In contrast, during frog metamorphosis and the emergence of limb movement, there is a dramatic expansion of MN and V1 interneuron number and transcriptional heterogeneity, culminating in cohorts of neurons that exhibit striking molecular similarity to mammalian motor circuits. CRISPR/Cas9-mediated gene disruption of the limb MN and V1 determinants FoxP1 and Engrailed-1, respectively, results in severe but selective deficits in tail and limb function. Our work thus demonstrates that neural diversity scales exponentially with increasing behavioral complexity and illustrates striking evolutionary conservation in the molecular organization and function of motor circuits across species.
Collapse
Affiliation(s)
- David Vijatovic
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | | | | | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Alexandra J. Trevisan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mara J. Julseth
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Mariano I. Gabitto
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, 98109, USA
| | - Jeremy S. Dasen
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Lora B. Sweeney
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
6
|
Gutiérrez-Ibáñez C, Wylie DR. Investigation of central pattern generators in the spinal cord of chicken embryos. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:801-814. [PMID: 38521869 PMCID: PMC11384640 DOI: 10.1007/s00359-024-01694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 03/25/2024]
Abstract
For most quadrupeds, locomotion involves alternating movements of the fore- and hindlimbs. In birds, however, while walking generally involves alternating movements of the legs, to generate lift and thrust, the wings are moved synchronously with each other. Neural circuits in the spinal cord, referred to as central pattern generators (CPGs), are the source of the basic locomotor rhythms and patterns. Given the differences in the patterns of movement of the wings and legs, it is likely that the neuronal components and connectivity of the CPG that coordinates wing movements differ from those that coordinate leg movements. In this study, we used in vitro preparations of embryonic chicken spinal cords (E11-E14) to compare the neural responses of spinal CPGs that control and coordinate wing flapping with those that control alternating leg movements. We found that in response to N-methyl-D-aspartate (NMDA) or a combination of NMDA and serotonin (5-HT), the intact chicken spinal cord produced rhythmic outputs that were synchronous both bilaterally and between the wing and leg segments. Despite this, we found that this rhythmic output was disrupted by an antagonist of glycine receptors in the lumbosacral (legs), but not the brachial (wing) segments. Thus, our results provide evidence of differences between CPGs that control the wings and legs in the spinal cord of birds.
Collapse
Affiliation(s)
- Cristián Gutiérrez-Ibáñez
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E0, Canada.
- Grass Laboratory, Marine Biological Laboratory, Woods Hole, MA, USA.
| | - Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E0, Canada
| |
Collapse
|
7
|
Goffin L, Lemoine D, Clotman F. Potential contribution of spinal interneurons to the etiopathogenesis of amyotrophic lateral sclerosis. Front Neurosci 2024; 18:1434404. [PMID: 39091344 PMCID: PMC11293063 DOI: 10.3389/fnins.2024.1434404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 08/04/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) consists of a group of adult-onset fatal and incurable neurodegenerative disorders characterized by the progressive death of motor neurons (MNs) throughout the central nervous system (CNS). At first, ALS was considered to be an MN disease, caused by cell-autonomous mechanisms acting specifically in MNs. Accordingly, data from ALS patients and ALS animal models revealed alterations in excitability in multiple neuronal populations, including MNs, which were associated with a variety of cellular perturbations such as protein aggregation, ribonucleic acid (RNA) metabolism defects, calcium dyshomeostasis, modified electrophysiological properties, and autophagy malfunctions. However, experimental evidence rapidly demonstrated the involvement of other types of cells, including glial cells, in the etiopathogenesis of ALS through non-cell autonomous mechanisms. Surprisingly, the contribution of pre-motor interneurons (INs), which regulate MN activity and could therefore critically modulate their excitability at the onset or during the progression of the disease, has to date been severely underestimated. In this article, we review in detail how spinal pre-motor INs are affected in ALS and their possible involvement in the etiopathogenesis of the disease.
Collapse
Affiliation(s)
| | | | - Frédéric Clotman
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, Belgium
| |
Collapse
|
8
|
Zhang H, Deska-Gauthier D, MacKay CS, Hari K, Lucas-Osma AM, Borowska-Fielding J, Letawsky RL, Akay T, Fenrich KK, Bennett DJ, Zhang Y. Widespread innervation of motoneurons by spinal V3 neurons globally amplifies locomotor output in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585199. [PMID: 38558998 PMCID: PMC10980013 DOI: 10.1101/2024.03.15.585199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
While considerable progress has been made in understanding the neuronal circuits that underlie the patterning of locomotor behaviours such as walking, less is known about the circuits that amplify motoneuron output to enable adaptable increases in muscle force across different locomotor intensities. Here, we demonstrate that an excitatory propriospinal neuron population (V3 neurons, Sim1 + ) forms a large part of the total excitatory interneuron input to motoneurons (∼20%) across all hindlimb muscles. Additionally, V3 neurons make extensive connections among themselves and with other excitatory premotor neurons (such as V2a neurons). These circuits allow local activation of V3 neurons at just one segment (via optogenetics) to rapidly depolarize and amplify locomotor-related motoneuron output at all lumbar segments in both the in vitro spinal cord and the awake adult mouse. Interestingly, despite similar innervation from V3 neurons to flexor and extensor motoneuron pools, functionally, V3 neurons exhibit a pronounced bias towards activating extensor muscles. Furthermore, the V3 neurons appear essential to extensor activity during locomotion because genetically silencing them leads to slower and weaker mice with a poor ability to increase force with locomotor intensity, without much change in the timing of locomotion. Overall, V3 neurons increase the excitability of motoneurons and premotor neurons, thereby serving as global command neurons that amplify the locomotion intensity.
Collapse
|
9
|
Petruska JC. Identification and characterization of a potentially novel dorsal cutaneous muscle in rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577894. [PMID: 38352413 PMCID: PMC10862791 DOI: 10.1101/2024.01.30.577894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In the course of performing a detailed dissection of adult rat to map the cutaneous nerves of cervical, thoracic, and lumbar levels a small and unexpected structure was isolated. It appeared to be a cutaneous striated muscle and was observed in both male and female rats and in mice but absent from cats and humans. With the skin reflected laterally from midline, the muscle lies closely apposed to the lateral border of the Thoracic Trapezius (Spinotrapezius) muscle and is easily missed in standard gross dissections. Focussed prosections were performed to identify the origin, insertion, and course of gross innervation. Identification of each of these elements showed them to be distinct from the nearby Trapezius and Cutaneous Trunci (Cutaneous Maximus in mouse) muscles. The striated muscle nature of the structure was validated with whole-mount microscopy. Consulting a range of published rodent anatomical atlases and gross anatomical experts revealed no prior descriptions. This preliminary report is an opportunity for the anatomical and research communities to provide input to either confirm the novelty of this muscle or refer to prior published descriptions in rodents or other species while the muscle, its innervation, and function are further characterized. Presuming this muscle is indeed novel, the name "Cutaneous Scapularis muscle" is proposed in accord with general principles of the anatomical field.
Collapse
Affiliation(s)
- Jeffrey C Petruska
- University of Louisville, Department of Anatomical Sciences and Neurobiology, Kentucky Spinal Cord Injury Research Center, Louisville, KY USA 40202
| |
Collapse
|
10
|
Deska-Gauthier D, Borowska-Fielding J, Jones C, Zhang H, MacKay CS, Michail R, Bennett LA, Bikoff JB, Zhang Y. Embryonic temporal-spatial delineation of excitatory spinal V3 interneuron diversity. Cell Rep 2024; 43:113635. [PMID: 38160393 PMCID: PMC10877927 DOI: 10.1016/j.celrep.2023.113635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/24/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Spinal neural circuits that execute movement are composed of cardinal classes of neurons that emerged from distinct progenitor lineages. Each cardinal class contains multiple neuronal subtypes characterized by distinct molecular, anatomical, and physiological characteristics. Through a focus on the excitatory V3 interneuron class, here we demonstrate that interneuron subtype diversity is delineated through a combination of neurogenesis timing and final laminar settling position. We have revealed that early-born and late-born embryonic V3 temporal classes further diversify into subclasses with spatially and molecularly discrete identities. While neurogenesis timing accounts for V3 morphological diversification, laminar settling position accounts for electrophysiological profiles distinguishing V3 subtypes within the same temporal classes. Furthermore, V3 interneuron subtypes display independent behavioral recruitment patterns demonstrating a functional modularity underlying V3 interneuron diversity. These studies provide a framework for how early embryonic temporal and spatial mechanisms combine to delineate spinal interneuron classes into molecularly, anatomically, and functionally relevant subtypes in adults.
Collapse
Affiliation(s)
- Dylan Deska-Gauthier
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Joanna Borowska-Fielding
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Chris Jones
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Han Zhang
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Colin S MacKay
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Ramez Michail
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Laura A Bennett
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jay B Bikoff
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ying Zhang
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
11
|
Pallucchi I, Bertuzzi M, Madrid D, Fontanel P, Higashijima SI, El Manira A. Molecular blueprints for spinal circuit modules controlling locomotor speed in zebrafish. Nat Neurosci 2024; 27:78-89. [PMID: 37919423 PMCID: PMC10774144 DOI: 10.1038/s41593-023-01479-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
The flexibility of motor actions is ingrained in the diversity of neurons and how they are organized into functional circuit modules, yet our knowledge of the molecular underpinning of motor circuit modularity remains limited. Here we use adult zebrafish to link the molecular diversity of motoneurons (MNs) and the rhythm-generating V2a interneurons (INs) with the modular circuit organization that is responsible for changes in locomotor speed. We show that the molecular diversity of MNs and V2a INs reflects their functional segregation into slow, intermediate or fast subtypes. Furthermore, we reveal shared molecular signatures between V2a INs and MNs of the three speed circuit modules. Overall, by characterizing how the molecular diversity of MNs and V2a INs relates to their function, connectivity and behavior, our study provides important insights not only into the molecular mechanisms for neuronal and circuit diversity for locomotor flexibility but also for charting circuits for motor actions in general.
Collapse
Affiliation(s)
- Irene Pallucchi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Maria Bertuzzi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - David Madrid
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pierre Fontanel
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Shin-Ichi Higashijima
- Division of Behavioral Neurobiology, National Institute for Basic Biology, Okazaki, Japan
- Neuronal Networks Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Japan
| | | |
Collapse
|
12
|
Roome RB, Levine AJ. The organization of spinal neurons: Insights from single cell sequencing. Curr Opin Neurobiol 2023; 82:102762. [PMID: 37657185 PMCID: PMC10727478 DOI: 10.1016/j.conb.2023.102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/16/2023] [Accepted: 07/22/2023] [Indexed: 09/03/2023]
Abstract
To understand how the spinal cord enacts complex sensorimotor functions, researchers have studied, classified, and functionally probed it's many neuronal populations for over a century. Recent developments in single-cell RNA-sequencing can characterize the gene expression signatures of the entire set of spinal neuron types and can simultaneously provide an unbiased view of their relationships to each other. This approach has revealed that the location of neurons predicts transcriptomic variability, as dorsal spinal neurons become highly distinct over development as ventral spinal neurons become less so. Temporal specification is also a major source of gene expression variation, subdividing many of the canonical embryonic lineage domains. Together, birthdate and cell body location are fundamental organizing features of spinal neuron diversity.
Collapse
Affiliation(s)
- R Brian Roome
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, USA. https://twitter.com/BrianRoome
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, USA.
| |
Collapse
|
13
|
Lin S, Hari K, Black S, Khatmi A, Fouad K, Gorassini MA, Li Y, Lucas-Osma AM, Fenrich KK, Bennett DJ. Locomotor-related propriospinal V3 neurons produce primary afferent depolarization and modulate sensory transmission to motoneurons. J Neurophysiol 2023; 130:799-823. [PMID: 37609680 PMCID: PMC10650670 DOI: 10.1152/jn.00482.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023] Open
Abstract
When a muscle is stretched, sensory feedback not only causes reflexes but also leads to a depolarization of sensory afferents throughout the spinal cord (primary afferent depolarization, PAD), readying the whole limb for further disturbances. This sensory-evoked PAD is thought to be mediated by a trisynaptic circuit, where sensory input activates first-order excitatory neurons that activate GABAergic neurons that in turn activate GABAA receptors on afferents to cause PAD, though the identity of these first-order neurons is unclear. Here, we show that these first-order neurons include propriospinal V3 neurons, as they receive extensive sensory input and in turn innervate GABAergic neurons that cause PAD, because optogenetic activation or inhibition of V3 neurons in mice mimics or inhibits sensory-evoked PAD, respectively. Furthermore, persistent inward sodium currents intrinsic to V3 neurons prolong their activity, explaining the prolonged duration of PAD. Also, local optogenetic activation of V3 neurons at one segment causes PAD in other segments, due to the long propriospinal tracts of these neurons, helping to explain the radiating nature of PAD. This in turn facilitates monosynaptic reflex transmission to motoneurons across the spinal cord. In addition, V3 neurons directly innervate proprioceptive afferents (including Ia), causing a glutamate receptor-mediated PAD (glutamate PAD). Finally, increasing the spinal cord excitability with either GABAA receptor blockers or chronic spinal cord injury causes an increase in the glutamate PAD. Overall, we show the V3 neuron has a prominent role in modulating sensory transmission, in addition to its previously described role in locomotion.NEW & NOTEWORTHY Locomotor-related propriospinal neurons depolarize sensory axons throughout the spinal cord by either direct glutamatergic axoaxonic contacts or indirect innervation of GABAergic neurons that themselves form axoaxonic contacts on sensory axons. This depolarization (PAD) increases sensory transmission to motoneurons throughout the spinal cord, readying the sensorimotor system for external disturbances. The glutamate-mediated PAD is particularly adaptable, increasing with either an acute block of GABA receptors or chronic spinal cord injury, suggesting a role in motor recovery.
Collapse
Affiliation(s)
- Shihao Lin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Krishnapriya Hari
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Sophie Black
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Aysan Khatmi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Monica A Gorassini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yaqing Li
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ana M Lucas-Osma
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - David J Bennett
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
El Manira A. Modular circuit organization for speed control of locomotor movements. Curr Opin Neurobiol 2023; 82:102760. [PMID: 37597455 DOI: 10.1016/j.conb.2023.102760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/21/2023]
Abstract
Our movements and actions stem from complex processes in the central nervous system. Precise adaptation of locomotor movements is essential for effectively interacting with the environment. To understand the mechanisms underlying these movements, it is crucial to determine the organization of spinal circuits at the level of individual neurons and synapses. This review highlights the insights gained from studying spinal circuits in adult zebrafish and discusses their broader implications for our understanding of locomotor control across species.
Collapse
|
15
|
Eleftheriadis PE, Pothakos K, Sharples SA, Apostolou PE, Mina M, Tetringa E, Tsape E, Miles GB, Zagoraiou L. Peptidergic modulation of motor neuron output via CART signaling at C bouton synapses. Proc Natl Acad Sci U S A 2023; 120:e2300348120. [PMID: 37733738 PMCID: PMC10523464 DOI: 10.1073/pnas.2300348120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/17/2023] [Indexed: 09/23/2023] Open
Abstract
The intensity of muscle contraction, and therefore movement vigor, needs to be adaptable to enable complex motor behaviors. This can be achieved by adjusting the properties of motor neurons, which form the final common pathway for all motor output from the central nervous system. Here, we identify roles for a neuropeptide, cocaine- and amphetamine-regulated transcript (CART), in the control of movement vigor. We reveal distinct but parallel mechanisms by which CART and acetylcholine, both released at C bouton synapses on motor neurons, selectively amplify the output of subtypes of motor neurons that are recruited during intense movement. We find that mice with broad genetic deletion of CART or selective elimination of acetylcholine from C boutons exhibit deficits in behavioral tasks that require higher levels of motor output. Overall, these data uncover spinal modulatory mechanisms that control movement vigor to support movements that require a high degree of muscle force.
Collapse
Affiliation(s)
| | - Konstantinos Pothakos
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Simon A. Sharples
- School of Psychology and Neuroscience, University of St. Andrews, St. AndrewsKY16 9JP, United Kingdom
| | - Panagiota E. Apostolou
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Maria Mina
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Efstathia Tetringa
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Eirini Tsape
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Gareth B. Miles
- School of Psychology and Neuroscience, University of St. Andrews, St. AndrewsKY16 9JP, United Kingdom
| | - Laskaro Zagoraiou
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| |
Collapse
|
16
|
Punjani N, Deska-Gauthier D, Hachem LD, Abramian M, Fehlings MG. Neuroplasticity and regeneration after spinal cord injury. NORTH AMERICAN SPINE SOCIETY JOURNAL 2023; 15:100235. [PMID: 37416090 PMCID: PMC10320621 DOI: 10.1016/j.xnsj.2023.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Spinal cord injury (SCI) is a debilitating condition with significant personal, societal, and economic burden. The highest proportion of traumatic injuries occur at the cervical level, which results in severe sensorimotor and autonomic deficits. Following the initial physical damage associated with traumatic injuries, secondary pro-inflammatory, excitotoxic, and ischemic cascades are initiated further contributing to neuronal and glial cell death. Additionally, emerging evidence has begun to reveal that spinal interneurons undergo subtype specific neuroplastic circuit rearrangements in the weeks to months following SCI, contributing to or hindering functional recovery. The current therapeutic guidelines and standards of care for SCI patients include early surgery, hemodynamic regulation, and rehabilitation. Additionally, preclinical work and ongoing clinical trials have begun exploring neuroregenerative strategies utilizing endogenous neural stem/progenitor cells, stem cell transplantation, combinatorial approaches, and direct cell reprogramming. This review will focus on emerging cellular and noncellular regenerative therapies with an overview of the current available strategies, the role of interneurons in plasticity, and the exciting research avenues enhancing tissue repair following SCI.
Collapse
Affiliation(s)
- Nayaab Punjani
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Dylan Deska-Gauthier
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Laureen D. Hachem
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Neurosurgery and Spine Program, University of Toronto, Toronto, ON, Canada
| | - Madlene Abramian
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Neurosurgery and Spine Program, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
17
|
Mundra A, Varma Kalidindi K, Chhabra HS, Manghwani J. Spinal cord stimulation for spinal cord injury - Where do we stand? A narrative review. J Clin Orthop Trauma 2023; 43:102210. [PMID: 37663171 PMCID: PMC10470322 DOI: 10.1016/j.jcot.2023.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/14/2023] [Accepted: 06/29/2023] [Indexed: 09/05/2023] Open
Abstract
Recovery of function following a complete spinal cord injury (SCI) or an incomplete SCI where recovery has plateaued still eludes us despite extensive research. Epidural spinal cord stimulation (SCS) was initially used for managing neuropathic pain. It has subsequently demonstrated improvement in motor function in otherwise non-recovering chronic spinal cord injury in animal and human trials. The mechanisms of how it is precisely effective in doing so will need further research, which would help refine the technology for broader application. Transcutaneous spinal cord stimulation (TSCS) is also emerging as a modality to improve the functional outcome in SCI individuals, especially when coupled with appropriate rehabilitation. Apart from motor recovery, ESCS and TSCS have also shown improvement in autonomic, metabolic, genitourinary, and pulmonary function. Since the literature on this is still in its infancy, with no large-scale randomised trials and different studies using different protocols in a wide range of patients, a review of the present literature is imperative to better understand the latest developments in this field. This article examines the existing literature on the use of SCS for SCI individuals with the purpose of enabling functional recovery. It also examines the voids in the present research, thus providing future directions.
Collapse
Affiliation(s)
- Anuj Mundra
- Department of Spine and Rehabilitation, Sri Balaji Action Medical Institute, New Delhi, 110063, India
| | | | - Harvinder Singh Chhabra
- Department of Spine and Rehabilitation, Sri Balaji Action Medical Institute, New Delhi, 110063, India
| | - Jitesh Manghwani
- Indian Spinal Injuries Centre, Vasant Kunj, New Delhi, 110070, India
| |
Collapse
|
18
|
Minassian K, Bayart A, Lackner P, Binder H, Freundl B, Hofstoetter US. Rare phenomena of central rhythm and pattern generation in a case of complete spinal cord injury. Nat Commun 2023; 14:3276. [PMID: 37280242 DOI: 10.1038/s41467-023-39034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Lumbar central pattern generators (CPGs) control the basic rhythm and coordinate muscle activation underlying hindlimb locomotion in quadrupedal mammals. The existence and function of CPGs in humans have remained controversial. Here, we investigated a case of a male individual with complete thoracic spinal cord injury who presented with a rare form of self-sustained rhythmic spinal myoclonus in the legs and rhythmic activities induced by epidural electrical stimulation (EES). Analysis of muscle activation patterns suggested that the myoclonus tapped into spinal circuits that generate muscle spasms, rather than reflecting locomotor CPG activity as previously thought. The EES-induced patterns were fundamentally different in that they included flexor-extensor and left-right alternations, hallmarks of locomotor CPGs, and showed spontaneous errors in rhythmicity. These motor deletions, with preserved cycle frequency and period when rhythmic activity resumed, were previously reported only in animal studies and suggest a separation between rhythm generation and pattern formation. Spinal myoclonus and the EES-induced activity demonstrate that the human lumbar spinal cord contains distinct mechanisms for generating rhythmic multi-muscle patterns.
Collapse
Affiliation(s)
- Karen Minassian
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Aymeric Bayart
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Peter Lackner
- Neurological Center, Clinic Penzing, Vienna, Austria
- Department of Neurology, Clinic Floridsdorf, Vienna, Austria
| | | | | | - Ursula S Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Wilson AC, Sweeney LB. Spinal cords: Symphonies of interneurons across species. Front Neural Circuits 2023; 17:1146449. [PMID: 37180760 PMCID: PMC10169611 DOI: 10.3389/fncir.2023.1146449] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
Vertebrate movement is orchestrated by spinal inter- and motor neurons that, together with sensory and cognitive input, produce dynamic motor behaviors. These behaviors vary from the simple undulatory swimming of fish and larval aquatic species to the highly coordinated running, reaching and grasping of mice, humans and other mammals. This variation raises the fundamental question of how spinal circuits have changed in register with motor behavior. In simple, undulatory fish, exemplified by the lamprey, two broad classes of interneurons shape motor neuron output: ipsilateral-projecting excitatory neurons, and commissural-projecting inhibitory neurons. An additional class of ipsilateral inhibitory neurons is required to generate escape swim behavior in larval zebrafish and tadpoles. In limbed vertebrates, a more complex spinal neuron composition is observed. In this review, we provide evidence that movement elaboration correlates with an increase and specialization of these three basic interneuron types into molecularly, anatomically, and functionally distinct subpopulations. We summarize recent work linking neuron types to movement-pattern generation across fish, amphibians, reptiles, birds and mammals.
Collapse
Affiliation(s)
| | - Lora B. Sweeney
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Lower Austria, Austria
| |
Collapse
|
20
|
Yadav A, Matson KJE, Li L, Hua I, Petrescu J, Kang K, Alkaslasi MR, Lee DI, Hasan S, Galuta A, Dedek A, Ameri S, Parnell J, Alshardan MM, Qumqumji FA, Alhamad SM, Wang AP, Poulen G, Lonjon N, Vachiery-Lahaye F, Gaur P, Nalls MA, Qi YA, Maric D, Ward ME, Hildebrand ME, Mery PF, Bourinet E, Bauchet L, Tsai EC, Phatnani H, Le Pichon CE, Menon V, Levine AJ. A cellular taxonomy of the adult human spinal cord. Neuron 2023; 111:328-344.e7. [PMID: 36731429 PMCID: PMC10044516 DOI: 10.1016/j.neuron.2023.01.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
The mammalian spinal cord functions as a community of cell types for sensory processing, autonomic control, and movement. While animal models have advanced our understanding of spinal cellular diversity, characterizing human biology directly is important to uncover specialized features of basic function and human pathology. Here, we present a cellular taxonomy of the adult human spinal cord using single-nucleus RNA sequencing with spatial transcriptomics and antibody validation. We identified 29 glial clusters and 35 neuronal clusters, organized principally by anatomical location. To demonstrate the relevance of this resource to human disease, we analyzed spinal motoneurons, which degenerate in amyotrophic lateral sclerosis (ALS) and other diseases. We found that compared with other spinal neurons, human motoneurons are defined by genes related to cell size, cytoskeletal structure, and ALS, suggesting a specialized molecular repertoire underlying their selective vulnerability. We include a web resource to facilitate further investigations into human spinal cord biology.
Collapse
Affiliation(s)
- Archana Yadav
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Kaya J E Matson
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Johns Hopkins University Department of Biology, Baltimore, MD 21218, USA
| | - Li Li
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Isabelle Hua
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Joana Petrescu
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA; Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY, USA
| | - Kristy Kang
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA; Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY, USA
| | - Mor R Alkaslasi
- Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA; Department of Neuroscience, Brown University, Providence, RI, USA
| | - Dylan I Lee
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Saadia Hasan
- Inherited Neurodegenerative Diseases Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ahmad Galuta
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Annemarie Dedek
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Sara Ameri
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jessica Parnell
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | | | | - Saud M Alhamad
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Alick Pingbei Wang
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Gaetan Poulen
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Nicolas Lonjon
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Florence Vachiery-Lahaye
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Pallavi Gaur
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International LLC, Glen Echo, MD, USA
| | - Yue A Qi
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke; Bethesda, MD, USA
| | - Michael E Ward
- Inherited Neurodegenerative Diseases Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Michael E Hildebrand
- Inherited Neurodegenerative Diseases Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Pierre-Francois Mery
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France
| | - Emmanuel Bourinet
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France
| | - Luc Bauchet
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France; Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France
| | - Eve C Tsai
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Hemali Phatnani
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA; Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY, USA
| | - Claire E Le Pichon
- Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA.
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
21
|
Brainstem circuits encoding start, speed, and duration of swimming in adult zebrafish. Neuron 2023; 111:372-386.e4. [PMID: 36413988 DOI: 10.1016/j.neuron.2022.10.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/28/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
The flexibility of locomotor movements requires an accurate control of their start, duration, and speed. How brainstem circuits encode and convey these locomotor parameters remains unclear. Here, we have combined in vivo calcium imaging, electrophysiology, anatomy, and behavior in adult zebrafish to address these questions. We reveal that the detailed parameters of locomotor movements are encoded by two molecularly, topographically, and functionally segregated glutamatergic neuron subpopulations within the nucleus of the medial longitudinal fasciculus. The start, duration, and changes of locomotion speed are encoded by vGlut2+ neurons, whereas vGlut1+ neurons encode sudden changes to high speed/high amplitude movements. Ablation of vGlut2+ neurons compromised slow-explorative swimming, whereas vGlut1+ neuron ablation impaired fast swimming. Our results provide mechanistic insights into how separate brainstem subpopulations implement flexible locomotor commands. These two brainstem command subpopulations are suitably organized to integrate environmental cues and hence generate flexible swimming movements to match the animal's behavioral needs.
Collapse
|
22
|
Gosgnach S. Spinal inhibitory interneurons: regulators of coordination during locomotor activity. Front Neural Circuits 2023; 17:1167836. [PMID: 37151357 PMCID: PMC10159059 DOI: 10.3389/fncir.2023.1167836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Since the early 1900's it has been known that a neural network, situated entirely within the spinal cord, is capable of generating the movements required for coordinated locomotion in limbed vertebrates. Due the number of interneurons in the spinal cord, and the extent to which neurons with the same function are intermingled with others that have divergent functions, the components of this neural circuit (now referred to as the locomotor central pattern generator-CPG) have long proven to be difficult to identify. Over the past 20 years a molecular approach has been incorporated to study the locomotor CPG. This approach has resulted in new information regarding the identity of its component interneurons, and their specific role during locomotor activity. In this mini review the role of the inhibitory interneuronal populations that have been shown to be involved in locomotor activity are described, and their specific role in securing left-right, and flexor extensor alternation is outlined. Understanding how these interneuronal populations are activated, modulated, and interact with one another will help us understand how locomotor behavior is produced. In addition, a deeper understanding of the structure and mechanism of function of the locomotor CPG has the potential to assist those developing strategies aimed at enhancing recovery of motor function in spinal cord injured patients.
Collapse
|
23
|
Movement is governed by rotational neural dynamics in spinal motor networks. Nature 2022; 610:526-531. [PMID: 36224394 DOI: 10.1038/s41586-022-05293-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 08/30/2022] [Indexed: 11/08/2022]
Abstract
Although the generation of movements is a fundamental function of the nervous system, the underlying neural principles remain unclear. As flexor and extensor muscle activities alternate during rhythmic movements such as walking, it is often assumed that the responsible neural circuitry is similarly exhibiting alternating activity1. Here we present ensemble recordings of neurons in the lumbar spinal cord that indicate that, rather than alternating, the population is performing a low-dimensional 'rotation' in neural space, in which the neural activity is cycling through all phases continuously during the rhythmic behaviour. The radius of rotation correlates with the intended muscle force, and a perturbation of the low-dimensional trajectory can modify the motor behaviour. As existing models of spinal motor control do not offer an adequate explanation of rotation1,2, we propose a theory of neural generation of movements from which this and other unresolved issues, such as speed regulation, force control and multifunctionalism, are readily explained.
Collapse
|
24
|
Matson KJE, Russ DE, Kathe C, Hua I, Maric D, Ding Y, Krynitsky J, Pursley R, Sathyamurthy A, Squair JW, Levi BP, Courtine G, Levine AJ. Single cell atlas of spinal cord injury in mice reveals a pro-regenerative signature in spinocerebellar neurons. Nat Commun 2022; 13:5628. [PMID: 36163250 PMCID: PMC9513082 DOI: 10.1038/s41467-022-33184-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/31/2022] [Indexed: 12/12/2022] Open
Abstract
After spinal cord injury, tissue distal to the lesion contains undamaged cells that could support or augment recovery. Targeting these cells requires a clearer understanding of their injury responses and capacity for repair. Here, we use single nucleus RNA sequencing to profile how each cell type in the lumbar spinal cord changes after a thoracic injury in mice. We present an atlas of these dynamic responses across dozens of cell types in the acute, subacute, and chronically injured spinal cord. Using this resource, we find rare spinal neurons that express a signature of regeneration in response to injury, including a major population that represent spinocerebellar projection neurons. We characterize these cells anatomically and observed axonal sparing, outgrowth, and remodeling in the spinal cord and cerebellum. Together, this work provides a key resource for studying cellular responses to injury and uncovers the spontaneous plasticity of spinocerebellar neurons, uncovering a potential candidate for targeted therapy. Matson et al. performed single nucleus sequencing of the “spared” spinal cord tissue distal to an injury in mice. They found that spinocerebellar neurons expressed a pro-regenerative gene signature and showed axon outgrowth after injury.
Collapse
Affiliation(s)
- Kaya J E Matson
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Johns Hopkins University Department of Biology, Baltimore, MD, USA
| | - Daniel E Russ
- Division of Cancer Epidemiology and Genetics, Data Science Research Group, National Cancer Institute, NIH, Rockville, MD, USA
| | - Claudia Kathe
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Isabelle Hua
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Yi Ding
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jonathan Krynitsky
- Signal Processing and Instrumentation Section, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
| | - Randall Pursley
- Signal Processing and Instrumentation Section, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
| | - Anupama Sathyamurthy
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Jordan W Squair
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Gregoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Spinal Cord Circuits: Models and Reality. NEUROPHYSIOLOGY+ 2022. [DOI: 10.1007/s11062-022-09927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
26
|
Jankowska E. Basic principles of processing of afferent information by spinal interneurons. J Neurophysiol 2022; 128:689-695. [PMID: 36043802 DOI: 10.1152/jn.00344.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Integrative functions of spinal interneurons are well recognized but the relative role of different interneuronal populations in this process continues to be investigated. It therefore appeared useful to review the principles of integration of afferent information by the interneurons analyzed so far as these principles should apply also to those remaining to be analyzed. Considering the results of both functional and morphological studies of spinal interneurons and of the morphology and immunochemistry of afferent fibres that provide input to them, the following five basic principles of processing of afferent information by them will be outlined; (i) afferent information of any origin is forwarded to several neuronal populations, (ii) information from any sources of input is distributed unevenly, (iii) input from several sources is integrated by individual neurons as well as by their populations, (iv) specific combinations of input are integrated by different neuronal populations and (v) afferent input to spinal interneurons is only one of the features distinguishing their functional populations. As the spinal neuronal organization and properties of neurons and afferent fibres in the so far investigated species (cat, rodents, primates) have been found to resemble, future studies utilizing molecular techniques in the mouse should allow the new data to integrate with those of the preceding studies and the principles outlined above as well as any new ones should apply also in humans.
Collapse
Affiliation(s)
- Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
27
|
Keifer J. Emergence of In Vitro Preparations and Their Contribution to Understanding the Neural Control of Behavior in Vertebrates. J Neurophysiol 2022; 128:511-526. [PMID: 35946803 DOI: 10.1152/jn.00142.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One of the longstanding goals of the field of neuroscience is to understand the neural control of behavior in both invertebrate and vertebrate species. A series of early discoveries showed that certain motor patterns like locomotion could be generated by neuronal circuits without sensory feedback or descending control systems. These were called fictitious, or "fictive", motor programs because they could be expressed by neurons in the absence of movement. This finding lead investigators to isolate central nervous system tissue and maintain it in a dish in vitro to better study mechanisms of motor pattern generation. A period of rapid development of in vitro preparations from invertebrate species that could generate fictive motor programs from the activity of central pattern generating circuits (CPGs) emerged that was gradually followed by the introduction of such preparations from vertebrates. Here, I will review some of the notable in vitropreparations from both mammalian and non-mammalian vertebrate species developed to study the neural circuits underlying a variety of complex behaviors. This approach has been instrumental in delineating not only the cellular substrates underlying locomotion, respiration, scratching, and other behaviors, but also mechanisms underlying the modifiability of motor pathways through synaptic plasticity. In vitro preparations have had a significant impact on the field of motor systems neuroscience and the expansion of our understanding of how nervous systems control behavior. The field is ready for further advancement of this approach to explore neural substrates for variations in behavior generated by social and seasonal context, and the environment.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| |
Collapse
|
28
|
Picton LD, Björnfors ER, Fontanel P, Pallucchi I, Bertuzzi M, El Manira A. Developmental switch in the function of inhibitory commissural V0d interneurons in zebrafish. Curr Biol 2022; 32:3515-3528.e4. [PMID: 35853456 DOI: 10.1016/j.cub.2022.06.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/11/2022] [Accepted: 06/17/2022] [Indexed: 10/17/2022]
Abstract
During development, all animals undergo major adaptations to accommodate behavioral flexibility and diversity. How these adaptations are reflected in the changes in the motor circuits controlling our behaviors remains poorly understood. Here, we show, using a combination of techniques applied at larval and adult zebrafish stages, that the pattern-generating V0d inhibitory interneurons within the locomotor circuit undergo a developmental switch in their role. In larvae, we show that V0d interneurons have a primary function in high-speed motor behavior yet are redundant for explorative swimming. By contrast, adult V0d interneurons have diversified into speed-dependent subclasses, with an overrepresentation of those active at the slowest speeds. The ablation of V0d interneurons in adults disrupts slow explorative swimming, which is associated with a loss of mid-cycle inhibition onto target motoneurons. Thus, we reveal a developmental switch in V0d interneuron function from a role in high-speed motor behavior to a function in timing and thus coordinating slow explorative locomotion. Our study suggests that early motor circuit composition is not predictive of the adult system but instead undergoes major functional transformations during development.
Collapse
Affiliation(s)
- Laurence D Picton
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Pierre Fontanel
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Irene Pallucchi
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Maria Bertuzzi
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | |
Collapse
|
29
|
Enander JMD, Loeb GE, Jorntell H. A Model for Self-Organization of Sensorimotor Function: Spinal Interneuronal Integration. J Neurophysiol 2022; 127:1478-1495. [PMID: 35475709 PMCID: PMC9293245 DOI: 10.1152/jn.00054.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Control of musculoskeletal systems depends on integration of voluntary commands and somatosensory feedback in the complex neural circuits of the spinal cord. Particular connectivity patterns have been identified experimentally, and it has been suggested that these may result from the wide variety of transcriptional types that have been observed in spinal interneurons. We ask instead whether the details of these connectivity patterns (and perhaps many others) can arise as a consequence of Hebbian adaptation during early development. We constructed an anatomically simplified model plant system with realistic muscles and sensors and connected it to a recurrent, random neuronal network consisting of both excitatory and inhibitory neurons endowed with Hebbian learning rules. We then generated a wide set of randomized muscle twitches typical of those described during fetal development and allowed the network to learn. Multiple simulations consistently resulted in diverse and stable patterns of activity and connectivity that included subsets of the interneurons that were similar to 'archetypical' interneurons described in the literature. We also found that such learning led to an increased degree of cooperativity between interneurons when performing larger limb movements on which it had not been trained. Hebbian learning gives rise to rich sets of diverse interneurons whose connectivity reflects the mechanical properties of the plant. At least some of the transcriptomic diversity may reflect the effects of this process rather than the cause of the connectivity. Such a learning process seems better suited to respond to the musculoskeletal mutations that underlie the evolution of new species.
Collapse
Affiliation(s)
- Jonas M D Enander
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Gerald E Loeb
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Henrik Jorntell
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
30
|
Clark DJ, Hawkins KA, Winesett SP, Cox BA, Pesquera S, Miles JW, Fuller DD, Fox EJ. Enhancing Locomotor Learning With Transcutaneous Spinal Electrical Stimulation and Somatosensory Augmentation: A Pilot Randomized Controlled Trial in Older Adults. Front Aging Neurosci 2022; 14:837467. [PMID: 35309891 PMCID: PMC8924500 DOI: 10.3389/fnagi.2022.837467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/10/2022] [Indexed: 11/18/2022] Open
Abstract
This study investigated locomotor learning of a complex terrain walking task in older adults, when combined with two adjuvant interventions: transcutaneous spinal direct current stimulation (tsDCS) to increase lumbar spinal cord excitability, and textured shoe insoles to increase somatosensory feedback to the spinal cord. The spinal cord has a crucial contribution to control of walking, and is a novel therapeutic target for rehabilitation of older adults. The complex terrain task involved walking a 10-meter course consisting of nine obstacles and three sections of compliant (soft) walking surface. Twenty-three participants were randomly assigned to one of the following groups: sham tsDCS and smooth insoles (sham/smooth; control group), sham tsDCS and textured insoles (sham/textured), active tsDCS and smooth insoles (active/smooth), and active tsDCS and textured insoles (active/textured). The first objective was to assess the feasibility, tolerability, and safety of the interventions. The second objective was to assess preliminary efficacy for increasing locomotor learning, as defined by retention of gains in walking speed between a baseline visit of task practice, and a subsequent follow-up visit. Variability of the center of mass while walking over the course was also evaluated. The change in executive control of walking (prefrontal cortical activity) between the baseline and follow-up visits was measured with functional near infrared spectroscopy. The study results demonstrated feasibility based on enrollment and retention of participants, tolerability based on self-report, and safety based on absence of adverse events. Preliminary efficacy was supported based on trends showing larger gains in walking speed and more pronounced reductions in mediolateral center of mass variability at the follow-up visit in the groups randomized to active tsDCS or textured insoles. These data justify future larger studies to further assess dosing and efficacy of these intervention approaches. In conclusion, rehabilitation interventions that target spinal control of walking present a potential opportunity for enhancing walking function in older adults.
Collapse
Affiliation(s)
- David J. Clark
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States
- *Correspondence: David J. Clark,
| | - Kelly A. Hawkins
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Steven P. Winesett
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Brigette A. Cox
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Sarah Pesquera
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Jon W. Miles
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - David D. Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Emily J. Fox
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
- Brooks Rehabilitation, Jacksonville, FL, United States
| |
Collapse
|
31
|
Vargova I, Kriska J, Kwok JCF, Fawcett JW, Jendelova P. Long-Term Cultures of Spinal Cord Interneurons. Front Cell Neurosci 2022; 16:827628. [PMID: 35197829 PMCID: PMC8859857 DOI: 10.3389/fncel.2022.827628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022] Open
Abstract
Spinal cord interneurons (SpINs) are highly diverse population of neurons that play a significant role in circuit reorganization and spontaneous recovery after spinal cord injury. Regeneration of SpIN axons across rodent spinal injuries has been demonstrated after modification of the environment and neurotrophin treatment, but development of methods to enhance the intrinsic regenerative ability of SpINs is needed. There is a lack of described in vitro models of spinal cord neurons in which to develop new regeneration treatments. For this reason, we developed a new model of mouse primary spinal cord neuronal culture in which to analyze maturation, morphology, physiology, connectivity and regeneration of identified interneurons. Isolated from E14 mice, the neurons mature over 15 days in vitro, demonstrated by expression of maturity markers, electrophysiological patch-clamp recordings, and formation of synapses. The neurons express markers of SpINs, including Tlx3, Lmx1b, Lbx1, Chx10, and Pax2. The neurons demonstrate distinct morphologies and some form perineuronal nets in long-term cultivation. Live neurons in various maturation stages were axotomized, using a 900 nm multiphoton laser and their fate was observed overnight. The percentage of axons that regenerated declined with neuronal maturity. This model of SpINs will be a valuable tool in future regenerative, developmental, and functional studies alongside existing models using cortical or hippocampal neurons.
Collapse
Affiliation(s)
- Ingrid Vargova
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Jessica C. F. Kwok
- The Center for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - James W. Fawcett
- The Center for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Pavla Jendelova
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
32
|
Chalif JI, de Lourdes Martínez-Silva M, Pagiazitis JG, Murray AJ, Mentis GZ. Control of mammalian locomotion by ventral spinocerebellar tract neurons. Cell 2022; 185:328-344.e26. [PMID: 35063074 PMCID: PMC8852337 DOI: 10.1016/j.cell.2021.12.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 01/22/2023]
Abstract
Locomotion is a complex behavior required for animal survival. Vertebrate locomotion depends on spinal interneurons termed the central pattern generator (CPG), which generates activity responsible for the alternation of flexor and extensor muscles and the left and right side of the body. It is unknown whether multiple or a single neuronal type is responsible for the control of mammalian locomotion. Here, we show that ventral spinocerebellar tract neurons (VSCTs) drive generation and maintenance of locomotor behavior in neonatal and adult mice. Using mouse genetics, physiological, anatomical, and behavioral assays, we demonstrate that VSCTs exhibit rhythmogenic properties and neuronal circuit connectivity consistent with their essential role in the locomotor CPG. Importantly, optogenetic activation and chemogenetic silencing reveals that VSCTs are necessary and sufficient for locomotion. These findings identify VSCTs as critical components for mammalian locomotion and provide a paradigm shift in our understanding of neural control of complex behaviors.
Collapse
Affiliation(s)
- Joshua I. Chalif
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA,Dept. of Neurology, Columbia University, New York, NY 10032, USA
| | - María de Lourdes Martínez-Silva
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA,Dept. of Neurology, Columbia University, New York, NY 10032, USA
| | - John G. Pagiazitis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA,Dept. of Neurology, Columbia University, New York, NY 10032, USA
| | - Andrew J. Murray
- Sainsbury Wellcome Centre, University College London, 25 Howland Street, London W1T 4JG, UK
| | - George Z. Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA,Dept. of Neurology, Columbia University, New York, NY 10032, USA,Dept. of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA,Corresponding author & Lead contact: Tel: +1-212-305-9846,
| |
Collapse
|
33
|
Thirumalai V, Jha U. Recruitment of Motoneurons. ADVANCES IN NEUROBIOLOGY 2022; 28:169-190. [PMID: 36066826 DOI: 10.1007/978-3-031-07167-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Beginning about half a century ago, the rules that determine how motor units are recruited during movement have been deduced. These classical experiments led to the formulation of the 'size principle'. It is now clear that motoneuronal size is not the only indicator of recruitment order. In fact, motoneuronal passive, active and synaptic conductances are carefully tuned to achieve sequential recruitment. More recent studies, over the last decade or so, show that the premotor circuitry is also functionally specialized and differentially recruited. Modular sub networks of interneurons and their post-synaptic motoneurons have been shown to drive movements with varying intensities. In addition, these modular networks are under the influence of neuromodulators, which are capable of acting upon multiple motor and premotor targets, thereby altering behavioral outcomes. We discuss the recruitment patterns of motoneurons in light of these new and exciting studies.
Collapse
Affiliation(s)
| | - Urvashi Jha
- National Centre for Biological Sciences, Bangalore, India
| |
Collapse
|
34
|
Nicola FDC, Hua I, Levine AJ. Intersectional genetic tools to study skilled reaching in mice. Exp Neurol 2021; 347:113879. [PMID: 34597682 DOI: 10.1016/j.expneurol.2021.113879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022]
Abstract
Reaching to grasp is an evolutionarily conserved behavior and a crucial part of the motor repertoire in mammals. As it is studied in the laboratory, reaching has become the prototypical example of dexterous forelimb movements, illuminating key principles of motor control throughout the spinal cord, brain, and peripheral nervous system. Here, we (1) review the motor elements or phases that comprise the reach, grasp, and retract movements of reaching behavior, (2) highlight the role of intersectional genetic tools in linking these movements to their neuronal substrates, (3) describe spinal cord cell types and their roles in skilled reaching, and (4) how descending pathways from the brain and the sensory systems contribute to skilled reaching. We emphasize that genetic perturbation experiments can pin-point the neuronal substrates of specific phases of reaching behavior.
Collapse
Affiliation(s)
- Fabricio do Couto Nicola
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Isabelle Hua
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States of America.
| |
Collapse
|
35
|
Russ DE, Cross RBP, Li L, Koch SC, Matson KJE, Yadav A, Alkaslasi MR, Lee DI, Le Pichon CE, Menon V, Levine AJ. A harmonized atlas of mouse spinal cord cell types and their spatial organization. Nat Commun 2021; 12:5722. [PMID: 34588430 PMCID: PMC8481483 DOI: 10.1038/s41467-021-25125-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Single-cell RNA sequencing data can unveil the molecular diversity of cell types. Cell type atlases of the mouse spinal cord have been published in recent years but have not been integrated together. Here, we generate an atlas of spinal cell types based on single-cell transcriptomic data, unifying the available datasets into a common reference framework. We report a hierarchical structure of postnatal cell type relationships, with location providing the highest level of organization, then neurotransmitter status, family, and finally, dozens of refined populations. We validate a combinatorial marker code for each neuronal cell type and map their spatial distributions in the adult spinal cord. We also show complex lineage relationships among postnatal cell types. Additionally, we develop an open-source cell type classifier, SeqSeek, to facilitate the standardization of cell type identification. This work provides an integrated view of spinal cell types, their gene expression signatures, and their molecular organization.
Collapse
Affiliation(s)
- Daniel E Russ
- Division of Cancer Epidemiology and Genetics, Data Science Research Group, National Cancer Institute, NIH, Rockville, MD, USA
| | - Ryan B Patterson Cross
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Li Li
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Stephanie C Koch
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London, UK
| | - Kaya J E Matson
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Archana Yadav
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Mor R Alkaslasi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Dylan I Lee
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| |
Collapse
|
36
|
Lemieux M, Thiry L, Laflamme OD, Bretzner F. Role of DSCAM in the Development of Neural Control of Movement and Locomotion. Int J Mol Sci 2021; 22:ijms22168511. [PMID: 34445216 PMCID: PMC8395195 DOI: 10.3390/ijms22168511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022] Open
Abstract
Locomotion results in an alternance of flexor and extensor muscles between left and right limbs generated by motoneurons that are controlled by the spinal interneuronal circuit. This spinal locomotor circuit is modulated by sensory afferents, which relay proprioceptive and cutaneous inputs that inform the spatial position of limbs in space and potential contacts with our environment respectively, but also by supraspinal descending commands of the brain that allow us to navigate in complex environments, avoid obstacles, chase prey, or flee predators. Although signaling pathways are important in the establishment and maintenance of motor circuits, the role of DSCAM, a cell adherence molecule associated with Down syndrome, has only recently been investigated in the context of motor control and locomotion in the rodent. DSCAM is known to be involved in lamination and delamination, synaptic targeting, axonal guidance, dendritic and cell tiling, axonal fasciculation and branching, programmed cell death, and synaptogenesis, all of which can impact the establishment of motor circuits during development, but also their maintenance through adulthood. We discuss herein how DSCAM is important for proper motor coordination, especially for breathing and locomotion.
Collapse
Affiliation(s)
- Maxime Lemieux
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
| | - Louise Thiry
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
| | - Olivier D. Laflamme
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
| | - Frédéric Bretzner
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC G1V 4G2, Canada
- Correspondence:
| |
Collapse
|
37
|
The Temporal Mechanisms Guiding Interneuron Differentiation in the Spinal Cord. Int J Mol Sci 2021; 22:ijms22158025. [PMID: 34360788 PMCID: PMC8347920 DOI: 10.3390/ijms22158025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022] Open
Abstract
Neurogenesis timing is an essential developmental mechanism for neuronal diversity and organization throughout the central nervous system. In the mouse spinal cord, growing evidence is beginning to reveal that neurogenesis timing acts in tandem with spatial molecular controls to diversify molecularly and functionally distinct post-mitotic interneuron subpopulations. Particularly, in some cases, this temporal ordering of interneuron differentiation has been shown to instruct specific sensorimotor circuit wirings. In zebrafish, in vivo preparations have revealed that sequential neurogenesis waves of interneurons and motor neurons form speed-dependent locomotor circuits throughout the spinal cord and brainstem. In the present review, we discuss temporal principals of interneuron diversity taken from both mouse and zebrafish systems highlighting how each can lend illuminating insights to the other. Moving forward, it is important to combine the collective knowledge from different systems to eventually understand how temporally regulated subpopulation function differentially across speed- and/or state-dependent sensorimotor movement tasks.
Collapse
|
38
|
The CPGs for Limbed Locomotion-Facts and Fiction. Int J Mol Sci 2021; 22:ijms22115882. [PMID: 34070932 PMCID: PMC8198624 DOI: 10.3390/ijms22115882] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/23/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022] Open
Abstract
The neuronal networks that generate locomotion are well understood in swimming animals such as the lamprey, zebrafish and tadpole. The networks controlling locomotion in tetrapods remain, however, still enigmatic with an intricate motor pattern required for the control of the entire limb during the support, lift off, and flexion phase, and most demandingly when the limb makes contact with ground again. It is clear that the inhibition that occurs between bursts in each step cycle is produced by V2b and V1 interneurons, and that a deletion of these interneurons leads to synchronous flexor–extensor bursting. The ability to generate rhythmic bursting is distributed over all segments comprising part of the central pattern generator network (CPG). It is unclear how the rhythmic bursting is generated; however, Shox2, V2a and HB9 interneurons do contribute. To deduce a possible organization of the locomotor CPG, simulations have been elaborated. The motor pattern has been simulated in considerable detail with a network composed of unit burst generators; one for each group of close synergistic muscle groups at each joint. This unit burst generator model can reproduce the complex burst pattern with a constant flexion phase and a shortened extensor phase as the speed increases. Moreover, the unit burst generator model is versatile and can generate both forward and backward locomotion.
Collapse
|
39
|
Skarlatou S, Hérent C, Toscano E, Mendes CS, Bouvier J, Zampieri N. Afadin Signaling at the Spinal Neuroepithelium Regulates Central Canal Formation and Gait Selection. Cell Rep 2021; 31:107741. [PMID: 32521266 DOI: 10.1016/j.celrep.2020.107741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 04/03/2020] [Accepted: 05/15/2020] [Indexed: 11/28/2022] Open
Abstract
Afadin, a scaffold protein controlling the activity of the nectin family of cell adhesion molecules, regulates important morphogenetic processes during development. In the central nervous system, afadin has critical roles in neuronal migration, axonal elongation, and synapse formation. Here we examine the role of afadin in development of spinal motor circuits. Afadin elimination in motor neuron progenitors results in striking locomotor behavior: left-right limb alternation is substituted by synchronous activation, characteristic of bound gait. We find that afadin function at the neuroepithelium is required for structural organization of the spinal midline and central canal morphogenesis. Perturbation of afadin results in formation of two central canals, aberrant contralateral wiring of different classes of spinal premotor interneurons, and loss of left-right limb alternation, highlighting important developmental principles controlling the assembly of spinal motor circuits.
Collapse
Affiliation(s)
- Sophie Skarlatou
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Coralie Hérent
- Paris-Saclay Institute of Neuroscience, UMR 9197 CNRS & Université Paris-Saclay, Avenue de La Terrasse, 91190 Gif sur Yvette, France
| | - Elisa Toscano
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - César S Mendes
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Julien Bouvier
- Paris-Saclay Institute of Neuroscience, UMR 9197 CNRS & Université Paris-Saclay, Avenue de La Terrasse, 91190 Gif sur Yvette, France
| | - Niccolò Zampieri
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
40
|
Spinal Inhibitory Interneurons: Gatekeepers of Sensorimotor Pathways. Int J Mol Sci 2021; 22:ijms22052667. [PMID: 33800863 PMCID: PMC7961554 DOI: 10.3390/ijms22052667] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
The ability to sense and move within an environment are complex functions necessary for the survival of nearly all species. The spinal cord is both the initial entry site for peripheral information and the final output site for motor response, placing spinal circuits as paramount in mediating sensory responses and coordinating movement. This is partly accomplished through the activation of complex spinal microcircuits that gate afferent signals to filter extraneous stimuli from various sensory modalities and determine which signals are transmitted to higher order structures in the CNS and to spinal motor pathways. A mechanistic understanding of how inhibitory interneurons are organized and employed within the spinal cord will provide potential access points for therapeutics targeting inhibitory deficits underlying various pathologies including sensory and movement disorders. Recent studies using transgenic manipulations, neurochemical profiling, and single-cell transcriptomics have identified distinct populations of inhibitory interneurons which express an array of genetic and/or neurochemical markers that constitute functional microcircuits. In this review, we provide an overview of identified neural components that make up inhibitory microcircuits within the dorsal and ventral spinal cord and highlight the importance of inhibitory control of sensorimotor pathways at the spinal level.
Collapse
|
41
|
Recent Insights into the Rhythmogenic Core of the Locomotor CPG. Int J Mol Sci 2021; 22:ijms22031394. [PMID: 33573259 PMCID: PMC7866530 DOI: 10.3390/ijms22031394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 01/10/2023] Open
Abstract
In order for locomotion to occur, a complex pattern of muscle activation is required. For more than a century, it has been known that the timing and pattern of stepping movements in mammals are generated by neural networks known as central pattern generators (CPGs), which comprise multiple interneuron cell types located entirely within the spinal cord. A genetic approach has recently been successful in identifying several populations of spinal neurons that make up this neural network, as well as the specific role they play during stepping. In spite of this progress, the identity of the neurons responsible for generating the locomotor rhythm and the manner in which they are interconnected have yet to be deciphered. In this review, we summarize key features considered to be expressed by locomotor rhythm-generating neurons and describe the different genetically defined classes of interneurons which have been proposed to be involved.
Collapse
|
42
|
Ramalingasetty ST, Danner SM, Arreguit J, Markin SN, Rodarie D, Kathe C, Courtine G, Rybak IA, Ijspeert AJ. A Whole-Body Musculoskeletal Model of the Mouse. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:163861-163881. [PMID: 35211364 PMCID: PMC8865483 DOI: 10.1109/access.2021.3133078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Neural control of movement cannot be fully understood without careful consideration of interactions between the neural and biomechanical components. Recent advancements in mouse molecular genetics allow for the identification and manipulation of constituent elements underlying the neural control of movement. To complement experimental studies and investigate the mechanisms by which the neural circuitry interacts with the body and the environment, computational studies modeling motor behaviors in mice need to incorporate a model of the mouse musculoskeletal system. Here, we present the first fully articulated musculoskeletal model of the mouse. The mouse skeletal system has been developed from anatomical references and includes the sets of bones in all body compartments, including four limbs, spine, head and tail. Joints between all bones allow for simulation of full 3D mouse kinematics and kinetics. Hindlimb and forelimb musculature has been implemented using Hill-type muscle models. We analyzed the mouse whole-body model and described the moment-arms for different hindlimb and forelimb muscles, the moments applied by these muscles on the joints, and their involvement in limb movements at different limb/body configurations. The model represents a necessary step for the subsequent development of a comprehensive neuro-biomechanical model of freely behaving mice; this will close the loop between the neural control and the physical interactions between the body and the environment.
Collapse
Affiliation(s)
- Shravan Tata Ramalingasetty
- Biorobotic Laboratory (BioRob), School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Simon M. Danner
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA 19104, USA
| | - Jonathan Arreguit
- Biorobotic Laboratory (BioRob), School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sergey N. Markin
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA 19104, USA
| | - Dimitri Rodarie
- BBP-CORE, Campus Biotech, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Claudia Kathe
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA 19104, USA
| | - Auke Jan Ijspeert
- Biorobotic Laboratory (BioRob), School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Kishore S, Cadoff EB, Agha MA, McLean DL. Orderly compartmental mapping of premotor inhibition in the developing zebrafish spinal cord. Science 2020; 370:431-436. [PMID: 33093104 DOI: 10.1126/science.abb4608] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
In vertebrates, faster movements involve the orderly recruitment of different types of spinal motor neurons. However, it is not known how premotor inhibitory circuits are organized to ensure alternating motor output at different movement speeds. We found that different types of commissural inhibitory interneurons in zebrafish form compartmental microcircuits during development that align inhibitory strength and recruitment order. Axonal microcircuits develop first and provide the most potent premotor inhibition during the fastest movements, followed by perisomatic microcircuits, and then dendritic microcircuits that provide the weakest inhibition during the slowest movements. The conversion of a temporal sequence of neuronal development into a spatial pattern of inhibitory connections provides an "ontogenotopic" solution to the problem of shaping spinal motor output at different speeds of movement.
Collapse
Affiliation(s)
- Sandeep Kishore
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Eli B Cadoff
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Moneeza A Agha
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
44
|
Domínguez-Rodríguez LE, Stecina K, García-Ramírez DL, Mena-Avila E, Milla-Cruz JJ, Martínez-Silva L, Zhang M, Hultborn H, Quevedo JN. Candidate Interneurons Mediating the Resetting of the Locomotor Rhythm by Extensor Group I Afferents in the Cat. Neuroscience 2020; 450:96-112. [PMID: 32946952 DOI: 10.1016/j.neuroscience.2020.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/07/2020] [Accepted: 09/04/2020] [Indexed: 10/23/2022]
Abstract
Sensory information arising from limb movements controls the spinal locomotor circuitry to adapt the motor pattern to demands of the environment. Stimulation of extensor group (gr) I afferents during fictive locomotion in decerebrate cats prolongs the ongoing extension, and terminates ongoing flexion with an initiation of the subsequent extension, i. e. "resetting to extension". Moreover, instead of the classical Ib non-reciprocal inhibition, stimulation of extensor gr I afferents produces a polysynaptic excitation in extensor motoneurons with latencies (∼3.5-4.0 ms) compatible with 3 interposed interneurons. We assume that some interneurons in this pathway actually belong to the rhythm-generating layer of the locomotor Central Pattern Generator (CPG), since their activity was correlated to a resetting of the rhythm. In the present work fictive locomotion was (mostly) induced by i.v. injection of nialamide followed by l-DOPA in paralyzed cats following decerebration and spinalization at C1 level. In some experiments, we extended previous observations during fictive locomotion on the emergence and locomotor state-dependence of polysynaptic excitatory postsynaptic potentials from extensor gr I afferents to ankle extensor motoneurons. However, the main focus was to record location and properties of interneurons (n = 62) that (i) were active during the extensor phase of fictive locomotion and (ii) received short-latency excitation (mono-, di- or polysynaptic) from extensor gr I afferents. We conclude that the interneurons recorded fulfill the characteristics to belong to the neuronal pathway activated by extensor gr I afferents during locomotion, and may contribute to the 'resetting to extension' as part of the locomotor CPG.
Collapse
Affiliation(s)
| | - K Stecina
- Spinal Cord Research Centre, University of Manitoba, Winnipeg, Canada; Dept. of Neuroscience, University of Copenhagen, Denmark
| | - D L García-Ramírez
- Dept. of Physiology, Biophysics and Neuroscience, CINVESTAV del IPN, Mexico City, Mexico; Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - E Mena-Avila
- Dept. of Physiology, Biophysics and Neuroscience, CINVESTAV del IPN, Mexico City, Mexico
| | - J J Milla-Cruz
- Dept. of Physiology, Biophysics and Neuroscience, CINVESTAV del IPN, Mexico City, Mexico
| | - L Martínez-Silva
- Dept. of Physiology, Biophysics and Neuroscience, CINVESTAV del IPN, Mexico City, Mexico; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - M Zhang
- Dept. of Neuroscience, University of Copenhagen, Denmark; Inst. of Molecular Medicine, Medical Faculty, University of Southern Denmark, Odense, Denmark
| | - H Hultborn
- Dept. of Neuroscience, University of Copenhagen, Denmark.
| | - J N Quevedo
- Dept. of Physiology, Biophysics and Neuroscience, CINVESTAV del IPN, Mexico City, Mexico.
| |
Collapse
|
45
|
Differential Loss of Spinal Interneurons in a Mouse Model of ALS. Neuroscience 2020; 450:81-95. [PMID: 32858144 DOI: 10.1016/j.neuroscience.2020.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) leads to a loss of specific motor neuron populations in the spinal cord and cortex. Emerging evidence suggests that interneurons may also be affected, but a detailed characterization of interneuron loss and its potential impacts on motor neuron loss and disease progression is lacking. To examine this issue, the fate of V1 inhibitory neurons during ALS was assessed in the ventral spinal cord using the SODG93A mouse model. The V1 population makes up ∼30% of all ventral inhibitory neurons, ∼50% of direct inhibitory synaptic contacts onto motor neuron cell bodies, and is thought to play a key role in modulating motor output, in part through recurrent and reciprocal inhibitory circuits. We find that approximately half of V1 inhibitory neurons are lost in SODG93A mice at late disease stages, but that this loss is delayed relative to the loss of motor neurons and V2a excitatory neurons. We further identify V1 subpopulations based on transcription factor expression that are differentially susceptible to degeneration in SODG93A mice. At an early disease stage, we show that V1 synaptic contacts with motor neuron cell bodies increase, suggesting an upregulation of inhibition before V1 neurons are lost in substantial numbers. These data support a model in which progressive changes in V1 synaptic contacts early in disease, and in select V1 subpopulations at later stages, represent a compensatory upregulation and then deleterious breakdown of specific interneuron circuits within the spinal cord.
Collapse
|
46
|
Bouçanova F, Pollmeier G, Sandor K, Morado Urbina C, Nijssen J, Médard JJ, Bartesaghi L, Pellerin L, Svensson CI, Hedlund E, Chrast R. Disrupted function of lactate transporter MCT1, but not MCT4, in Schwann cells affects the maintenance of motor end-plate innervation. Glia 2020; 69:124-136. [PMID: 32686211 DOI: 10.1002/glia.23889] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022]
Abstract
Recent studies in neuron-glial metabolic coupling have shown that, in the CNS, astrocytes and oligodendrocytes support neurons with energy-rich lactate/pyruvate via monocarboxylate transporters (MCTs). The presence of such transporters in the PNS, in both Schwann cells and neurons, has prompted us to question if a similar interaction may be present. Here we describe the generation and characterization of conditional knockout mouse models where MCT1 or MCT4 is specifically deleted in Schwann cells (named MCT1 and MCT4 cKO). We show that MCT1 cKO and MCT4 cKO mice develop normally and that myelin in the PNS is preserved. However, MCT1 expressed by Schwann cells is necessary for long-term maintenance of motor end-plate integrity as revealed by disrupted neuromuscular innervation in mutant mice, while MCT4 appears largely dispensable for the support of motor neurons. Concomitant to detected structural alterations, lumbar motor neurons from MCT1 cKO mice show transcriptional changes affecting cytoskeletal components, transcriptional regulators, and mitochondria related transcripts, among others. Together, our data indicate that MCT1 plays a role in Schwann cell-mediated maintenance of motor end-plate innervation thus providing further insight into the emerging picture of the biology of the axon-glia metabolic crosstalk.
Collapse
Affiliation(s)
- Filipa Bouçanova
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gill Pollmeier
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Morado Urbina
- Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jik Nijssen
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jean-Jacques Médard
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Luca Bartesaghi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex, France.,Inserm U1082, Université de Poitiers, Poitiers Cedex, France
| | - Camilla I Svensson
- Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Roman Chrast
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
McCann MM, Fisher KM, Ahloy-Dallaire J, Darian-Smith C. Somatosensory corticospinal tract axons sprout within the cervical cord following a dorsal root/dorsal column spinal injury in the rat. J Comp Neurol 2020; 528:1293-1306. [PMID: 31769033 PMCID: PMC7102935 DOI: 10.1002/cne.24826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022]
Abstract
The corticospinal tract (CST) is the major descending pathway controlling voluntary hand function in primates, and though less dominant, it mediates voluntary paw movements in rats. As with primates, the CST in rats originates from multiple (albeit fewer) cortical sites, and functionally different motor and somatosensory subcomponents terminate in different regions of the spinal gray matter. We recently reported in monkeys that following a combined cervical dorsal root/dorsal column lesion (DRL/DCL), both motor and S1 CSTs sprout well beyond their normal terminal range. The S1 CST sprouting response is particularly dramatic, indicating an important, if poorly understood, somatosensory role in the recovery process. As rats are used extensively to model spinal cord injury, we asked if the S1 CST response is conserved in rodents. Rats were divided into sham controls, and two groups surviving post-lesion for ~6 and 10 weeks. A DRL/DCL was made to partially deafferent one paw. Behavioral testing showed a post-lesion deficit and recovery over several weeks. Three weeks prior to ending the experiment, S1 cortex was mapped electrophysiologically, for tracer injection placement to determine S1 CST termination patterns within the cord. Synaptogenesis was also assessed for labeled S1 CST terminals within the dorsal horn. Our findings show that the affected S1 CST sprouts well beyond its normal range in response to a DRL/DCL, much as it does in macaque monkeys. This, along with evidence for increased synaptogenesis post-lesion, indicates that CST terminal sprouting following a central sensory lesion, is a robust and conserved response.
Collapse
Affiliation(s)
- Margaret M. McCann
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
- Margaret M. McCann, Creighton University, Department of Biomedical Sciences, 2500 California Plaza, Criss II, Omaha NE 68178
| | - Karen M. Fisher
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
| | - Jamie Ahloy-Dallaire
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
- Département des sciences animales, Université Laval, 2425 rue de l’Agriculture, Québec, Québec, Canada G1V 0A6
| | - Corinna Darian-Smith
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
| |
Collapse
|
48
|
Zavvarian MM, Hong J, Fehlings MG. The Functional Role of Spinal Interneurons Following Traumatic Spinal Cord Injury. Front Cell Neurosci 2020; 14:127. [PMID: 32528250 PMCID: PMC7247430 DOI: 10.3389/fncel.2020.00127] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic spinal cord injury (SCI) impedes signal transmission by disrupting both the local neurons and their surrounding synaptic connections. Although the majority of SCI patients retain spared neural tissue at the injury site, they predominantly suffer from complete autonomic and sensorimotor dysfunction. While there have been significant advances in the characterization of the spared neural tissue following SCI, the functional role of injury-induced interneuronal plasticity remains elusive. In healthy individuals, spinal interneurons are responsible for relaying signals to coordinate both sympathetic and parasympathetic functions. However, the spontaneous synaptic loss following injury alters these intricate interneuronal networks in the spinal cord. Here, we propose the synaptopathy hypothesis of SCI based on recent findings regarding the maladaptive role of synaptic changes amongst the interneurons. These maladaptive consequences include circuit inactivation, neuropathic pain, spasticity, and autonomic dysreflexia. Recent preclinical advances have uncovered the therapeutic potential of spinal interneurons in activating the dormant relay circuits to restore sensorimotor function. This review will survey the diverse role of spinal interneurons in SCI pathogenesis as well as treatment strategies to target spinal interneurons.
Collapse
Affiliation(s)
- Mohammad-Masoud Zavvarian
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - James Hong
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
49
|
Nascimento F, Broadhead MJ, Tetringa E, Tsape E, Zagoraiou L, Miles GB. Synaptic mechanisms underlying modulation of locomotor-related motoneuron output by premotor cholinergic interneurons. eLife 2020; 9:e54170. [PMID: 32081133 PMCID: PMC7062467 DOI: 10.7554/elife.54170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/20/2020] [Indexed: 01/15/2023] Open
Abstract
Spinal motor networks are formed by diverse populations of interneurons that set the strength and rhythmicity of behaviors such as locomotion. A small cluster of cholinergic interneurons, expressing the transcription factor Pitx2, modulates the intensity of muscle activation via 'C-bouton' inputs to motoneurons. However, the synaptic mechanisms underlying this neuromodulation remain unclear. Here, we confirm in mice that Pitx2+ interneurons are active during fictive locomotion and that their chemogenetic inhibition reduces the amplitude of motor output. Furthermore, after genetic ablation of cholinergic Pitx2+ interneurons, M2 receptor-dependent regulation of the intensity of locomotor output is lost. Conversely, chemogenetic stimulation of Pitx2+ interneurons leads to activation of M2 receptors on motoneurons, regulation of Kv2.1 channels and greater motoneuron output due to an increase in the inter-spike afterhyperpolarization and a reduction in spike half-width. Our findings elucidate synaptic mechanisms by which cholinergic spinal interneurons modulate the final common pathway for motor output.
Collapse
Affiliation(s)
- Filipe Nascimento
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
| | | | - Efstathia Tetringa
- Center of Basic Research, Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Eirini Tsape
- Center of Basic Research, Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Laskaro Zagoraiou
- Center of Basic Research, Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Gareth Brian Miles
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
| |
Collapse
|
50
|
Jensen VN, Alilain WJ, Crone SA. Role of Propriospinal Neurons in Control of Respiratory Muscles and Recovery of Breathing Following Injury. Front Syst Neurosci 2020; 13:84. [PMID: 32009911 PMCID: PMC6978673 DOI: 10.3389/fnsys.2019.00084] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
Respiratory motor failure is the leading cause of death in spinal cord injury (SCI). Cervical injuries disrupt connections between brainstem neurons that are the primary source of excitatory drive to respiratory motor neurons in the spinal cord and their targets. In addition to direct connections from bulbospinal neurons, respiratory motor neurons also receive excitatory and inhibitory inputs from propriospinal neurons, yet their role in the control of breathing is often overlooked. In this review, we will present evidence that propriospinal neurons play important roles in patterning muscle activity for breathing. These roles likely include shaping the pattern of respiratory motor output, processing and transmitting sensory afferent information, coordinating ventilation with motor activity, and regulating accessory and respiratory muscle activity. In addition, we discuss recent studies that have highlighted the importance of propriospinal neurons for recovery of respiratory muscle function following SCI. We propose that molecular genetic approaches to target specific developmental neuron classes in the spinal cord would help investigators resolve the many roles of propriospinal neurons in the control of breathing. A better understanding of how spinal circuits pattern breathing could lead to new treatments to improve breathing following injury or disease.
Collapse
Affiliation(s)
- Victoria N. Jensen
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Warren J. Alilain
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, United States,Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Steven A. Crone
- Division of Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States,*Correspondence: Steven A. Crone
| |
Collapse
|