1
|
Chai Z, Silverman D, Li S, Bina P, Yau KW. Dark continuous noise from visual pigment as a major mechanism underlying rod-cone difference in light sensitivity. Proc Natl Acad Sci U S A 2024; 121:e2418031121. [PMID: 39656211 PMCID: PMC11665912 DOI: 10.1073/pnas.2418031121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 01/15/2025] Open
Abstract
Retinal rods and cones underlie scotopic and photopic vision, respectively. Their pigments exhibit spontaneous isomerizations (quantal noise) in darkness due to intrinsic thermal energy. This quantal noise, albeit exceedingly low in rods, dictates the light threshold for scotopic vision. The same quantal noise in cones, however, is too low to explain the much higher diurnal light threshold. Separately, a dark continuous noise is present in rods, long accepted to originate from an intrinsic random activation of the cyclic guanosine monophosphate (cGMP)-phosphodiesterase enzyme mediating phototransduction downstream of the pigment. Here, we report the surprising finding that most of this rod dark continuous noise actually originates from rhodopsin itself. Importantly, we found the same continuous noise with a much higher magnitude from cone pigments. The rod and cone continuous noises are apparently both associated with a hitherto unrecognized "metastable" pigment conformational state physiologically resembling that in apo-opsin (opsin devoid of chromophore) and is intermittently active for very brief moments. The cone holopigment's high continuous noise is expected to act as an intrinsic equivalent light and adapt the cone dramatically, accounting for a major part of the light-sensitivity difference between rods and cones in darkness.
Collapse
Affiliation(s)
- Zuying Chai
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Daniel Silverman
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Sihan Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Parinaz Bina
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
2
|
Zhu Y, Qi X, Li Y, Ding G, Qian Y, Lou Y, Kong X, Zhang Y, Li J, Li X, Qian X. Correlation between repeated low-level red light-induced afterimage and axial changes in myopia control. Photodiagnosis Photodyn Ther 2024; 50:104400. [PMID: 39547340 DOI: 10.1016/j.pdpdt.2024.104400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE To explore the correlation between afterimages induced by repeated low-level red light (RLRL) and changes in refraction. METHOD Patients who used RLRL for myopia control from 2023.02 to 2024.06 were included in this study. The afterimage appeared on a gray background (RGB 217,217,217; Lab 87,0,0). Afterimage color was recorded with CIELAB nomenclature (R, G, B; L, a, b), and afterimage duration (T) was recorded in seconds. Axial length (AL) and axial length-to-corneal radius ratio (AL/CR) were followed up at 1-, and 3-month. Participants were divided into groups based on a = 0 for GroupR (a>0,red bias in afterimage) and GroupG (a<0,green bias in afterimage); b = 0 for GroupY (b>0,yellow bias in afterimage) and GroupB (b<0,blue bias in afterimage), and T = 50.50 for GroupS (T<50.50,shorter afterimage duration) and GroupL (T>50.50,longer afterimage duration). RESULTS A total of 52 participants were included in this study, with an age of 9.25 (1.75) years, 27 (51.92 %) males. The T median (P25, P75) was 50.50 (31.25,85.50) s. After RLRL treatment, divided by a = 0, GroupG showed significantly more shortening in the AL changes than GroupR at 1month and 3months (both P<0.05) and the AL/CR changes difference was not significant. Divided by T = 50.50, GroupS showed significantly greater shortening in the AL changes than GroupL at only 1month (P<0.05) and the AL/CR changes difference was not significant. Divided by b = 0, the difference between GroupY and GroupB was not statistically significant (P>0.05). CONCLUSION The change of AL after RLRL treatment showed a correlation to the afterimage. Patients with green afterimage and shorter afterimage duration have a better AL shortening after RLRL treatment. Afterimage may serve as a biomarker for more effective myopia control.
Collapse
Affiliation(s)
- Yawen Zhu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, PR China
| | - Xiaoli Qi
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, PR China
| | - Ya Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, PR China
| | - Gang Ding
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, PR China
| | - Yichao Qian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, PR China
| | - Yiyao Lou
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, PR China
| | - Xiangwen Kong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, PR China
| | - Ying Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, PR China
| | - Jing Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, PR China
| | - Xue Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, PR China
| | - Xuehan Qian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, PR China.
| |
Collapse
|
3
|
Saha A, Bucci T, Baudin J, Sinha R. Regional tuning of photoreceptor adaptation in the primate retina. Nat Commun 2024; 15:8821. [PMID: 39394185 PMCID: PMC11470117 DOI: 10.1038/s41467-024-53061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
Adaptation in cone photoreceptors allows our visual system to effectively operate over an enormous range of light intensities. However, little is known about the properties of cone adaptation in the specialized region of the primate central retina called the fovea, which is densely packed with cones and mediates high-acuity central vision. Here we show that macaque foveal cones exhibit weaker and slower luminance adaptation compared to cones in the peripheral retina. We find that this difference in adaptive properties between foveal and peripheral cones is due to differences in the magnitude of a hyperpolarization-activated current, Ih. This Ih current regulates the strength and time course of luminance adaptation in peripheral cones where it is more prominent than in foveal cones. A weaker and slower adaptation in foveal cones helps maintain a higher sensitivity for a longer duration which may be well-suited for maximizing the collection of high-acuity information at the fovea during gaze fixation between rapid eye movements.
Collapse
Affiliation(s)
- Aindrila Saha
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA
| | - Theodore Bucci
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA
| | - Jacob Baudin
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Raunak Sinha
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA.
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
4
|
Abtout A, Reingruber J. Analysis of dim-light responses in rod and cone photoreceptors with altered calcium kinetics. J Math Biol 2023; 87:69. [PMID: 37823947 PMCID: PMC10570263 DOI: 10.1007/s00285-023-02005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Rod and cone photoreceptors in the retina of vertebrates are the primary sensory neurons underlying vision. They convert light into an electrical current using a signal transduction pathway that depends on Ca[Formula: see text] feedback. It is known that manipulating the Ca[Formula: see text] kinetics affects the response shape and the photoreceptor sensitivity, but a precise quantification of these effects remains unclear. We have approached this task in mouse retina by combining numerical simulations with mathematical analysis. We consider a parsimonious phototransduction model that incorporates negative Ca[Formula: see text] feedback onto the synthesis of cyclic GMP, and fast buffering reactions to alter the Ca[Formula: see text] kinetics. We derive analytic results for the photoreceptor functioning in sufficiently dim light conditions depending on the photoreceptor type. We exploit these results to obtain conceptual and quantitative insight into how response waveform and amplitude depend on the underlying biophysical processes and the Ca[Formula: see text] feedback. With a low amount of buffering, the Ca[Formula: see text] concentration changes in proportion to the current, and responses to flashes of light are monophasic. With more buffering, the change in the Ca[Formula: see text] concentration becomes delayed with respect to the current, which gives rise to a damped oscillation and a biphasic waveform. This shows that biphasic responses are not necessarily a manifestation of slow buffering reactions. We obtain analytic approximations for the peak flash amplitude as a function of the light intensity, which shows how the photoreceptor sensitivity depends on the biophysical parameters. Finally, we study how changing the extracellular Ca[Formula: see text] concentration affects the response.
Collapse
Affiliation(s)
- Annia Abtout
- Institute of Biology, Ecole Normale Supérieure, Paris, France
| | - Jürgen Reingruber
- Institute of Biology, Ecole Normale Supérieure, Paris, France.
- INSERM, U1024, Paris, France.
| |
Collapse
|
5
|
Chien SE, Yeh SL, Yamashita W, Tsujimura SI. Enhanced human contrast sensitivity with increased stimulation of melanopsin in intrinsically photosensitive retinal ganglion cells. Vision Res 2023; 209:108271. [PMID: 37331304 DOI: 10.1016/j.visres.2023.108271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
The intrinsically photosensitive retinal ganglion cells (ipRGCs) are known to serve non-image-forming functions, such as photoentrainment of the circadian rhythm and pupillary light reflex. However, how they affect human spatial vision is largely unknown. The spatial contrast sensitivity function (CSF), which measures contrast sensitivity as a function of spatial frequency, was used in the current study to investigate the function of ipRGCs in pattern vision. To compare the effects of different background lights on the CSF, we utilized the silent substitution technique. We manipulated the stimulation level of melanopsin (i.e., the visual pigment of ipRGCs) from the background light while keeping the cone stimulations constant, or vice versa. We conducted four experiments to measure the CSFs at various spatial frequencies, eccentricities, and levels of background luminance. Results showed that melanopsin stimulation from the background light enhances spatial contrast sensitivity across different eccentricities and luminance levels. Our finding that melanopsin contributes to CSF, combined with the receptive field analysis, suggests a role for the magnocellular pathway and challenges the conventional view that ipRGCs are primarily responsible for non-visual functions.
Collapse
Affiliation(s)
- Sung-En Chien
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; Ganzin Technology Inc., New Taipei City 23141, Taiwan
| | - Su-Ling Yeh
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei 10617, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan; Center for Advanced Studies in the Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.
| | - Wakayo Yamashita
- Faculty of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | - Sei-Ichi Tsujimura
- Faculty of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan; Faculty of Design and Architecture, Nagoya City University, Nagoya 467-8501, Japan.
| |
Collapse
|
6
|
Meiser S, Sleeboom JM, Arkhypchuk I, Sandbote K, Kretzberg J. Cell anatomy and network input explain differences within but not between leech touch cells at two different locations. Front Cell Neurosci 2023; 17:1186997. [PMID: 37565030 PMCID: PMC10411907 DOI: 10.3389/fncel.2023.1186997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Mechanosensory cells in the leech share several common features with mechanoreceptors in the human glabrous skin. Previous studies showed that the six T (touch) cells in each body segment of the leech are highly variable in their responses to somatic current injection and change their excitability over time. Here, we investigate three potential reasons for this variability in excitability by comparing the responses of T cells at two soma locations (T2 and T3): (1) Differential effects of time-dependent changes in excitability, (2) divergent synaptic input from the network, and (3) different anatomical structures. These hypotheses were explored with a combination of electrophysiological double recordings, 3D reconstruction of neurobiotin-filled cells, and compartmental model simulations. Current injection triggered significantly more spikes with shorter latency and larger amplitudes in cells at soma location T2 than at T3. During longer recordings, cells at both locations increased their excitability over time in the same way. T2 and T3 cells received the same amount of synaptic input from the unstimulated network, and the polysynaptic connections between both T cells were mutually symmetric. However, we found a striking anatomical difference: While in our data set all T2 cells innervated two roots connecting the ganglion with the skin, 50% of the T3 cells had only one root process. The sub-sample of T3 cells with one root process was significantly less excitable than the T3 cells with two root processes and the T2 cells. To test if the additional root process causes higher excitability, we simulated the responses of 3D reconstructed cells of both anatomies with detailed multi-compartment models. The anatomical subtypes do not differ in excitability when identical biophysical parameters and a homogeneous channel distribution are assumed. Hence, all three hypotheses may contribute to the highly variable T cell responses, but none of them is the only factor accounting for the observed systematic difference in excitability between cells at T2 vs. T3 soma location. Therefore, future patch clamp and modeling studies are needed to analyze how biophysical properties and spatial distribution of ion channels on the cell surface contribute to the variability and systematic differences of electrophysiological phenotypes.
Collapse
Affiliation(s)
- Sonja Meiser
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Jana Marie Sleeboom
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Institute of Physiology II, Faculty of Medicine, University Clinic Bonn (UKB), University of Bonn, Bonn, Germany
| | - Ihor Arkhypchuk
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Kevin Sandbote
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Jutta Kretzberg
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Department of Neuroscience, Cluster of Excellence Hearing4all, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
7
|
Gupta D, Młynarski W, Sumser A, Symonova O, Svatoň J, Joesch M. Panoramic visual statistics shape retina-wide organization of receptive fields. Nat Neurosci 2023; 26:606-614. [PMID: 36959418 PMCID: PMC10076217 DOI: 10.1038/s41593-023-01280-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023]
Abstract
Statistics of natural scenes are not uniform-their structure varies dramatically from ground to sky. It remains unknown whether these nonuniformities are reflected in the large-scale organization of the early visual system and what benefits such adaptations would confer. Here, by relying on the efficient coding hypothesis, we predict that changes in the structure of receptive fields across visual space increase the efficiency of sensory coding. Using the mouse (Mus musculus) as a model species, we show that receptive fields of retinal ganglion cells change their shape along the dorsoventral retinal axis, with a marked surround asymmetry at the visual horizon, in agreement with our predictions. Our work demonstrates that, according to principles of efficient coding, the panoramic structure of natural scenes is exploited by the retina across space and cell types.
Collapse
Affiliation(s)
- Divyansh Gupta
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Wiktor Młynarski
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Anton Sumser
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Division of Neuroscience, Faculty of Biology, LMU, Munich, Germany
| | - Olga Symonova
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jan Svatoň
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maximilian Joesch
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
8
|
Greene E, Morrison J. Evaluating the Talbot-Plateau law. Front Neurosci 2023; 17:1169162. [PMID: 37179545 PMCID: PMC10172486 DOI: 10.3389/fnins.2023.1169162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
The Talbot-Plateau law asserts that when the flux (light energy) of a flicker-fused stimulus equals the flux of a steady stimulus, they will appear equal in brightness. To be perceived as flicker-fused, the frequency of the flash sequence must be high enough that no flicker is perceived, i.e., it appears to be a steady stimulus. Generally, this law has been accepted as being true across all brightness levels, and across all combinations of flash duration and frequency that generate the matching flux level. Two experiments that were conducted to test the law found significant departures from its predictions, but these were small relative to the large range of flash intensities that were tested.
Collapse
|
9
|
Allen AE. Circadian Regulation of the Rod Contribution to Mesopic Vision in Mice. J Neurosci 2022; 42:8795-8806. [PMID: 36216501 PMCID: PMC9698662 DOI: 10.1523/jneurosci.0486-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
At intermediate (mesopic) light levels, rods and cones are both active and can contribute to vision. This presents a challenge to the retina because the visual responses originating with rods and cones are distinct, yet their visual responses must be seamlessly combined. The current study aimed to establish how the circadian clock regulates rod and/or cone vision in these conditions, given the strong time-of-day change in the reliance on each photoreceptor. Visual responses were recorded in the retina and visual thalamus of anaesthetized male mice at distinct circadian time points, and the method of receptor silent substitution was used to selectively stimulate different photoreceptor types. With stimuli designed to only activate rods, responses in the mesopic range were highly rhythmic and peaked in amplitude in the subjective night. This rhythm was abolished following intravitreal injection of the gap junction blocker meclofenamic acid, consistent with a circadian variation in the strength of electrical coupling of photoreceptors. In contrast, responses to stimuli designed to only activate cones were arrhythmic within the mesopic to photopic range when adapted to the background irradiance. The outcome was that combined rod-plus-cone responses showed a stable contrast-response relationship across mesopic-photopic backgrounds in the circadian day, whereas at night, responses were significantly amplified at lower light levels. These data support the idea that the circadian clock is a key regulator of vision, in this case defining the relative amplitude of rod/cone vision across the mesopic transition according to time of day.SIGNIFICANCE STATEMENT Although the importance of circadian clocks in regulating vision has been long recognized, less is known about how the clock shapes vision in conditions where both rods and cones are active (mesopic conditions). Here, the novel approach of receptor silent substitution has been applied to trace rod and cone visual responses in mice across the circadian cycle and has identified pronounced rhythms in rod, but not cone, vision. This has the effect of boosting responses in dimmer backgrounds at night at the cost of impaired contrast-response stability across the mesopic to photopic range. Thus, the circadian clock drives anticipatory changes in the relative contribution of rods versus cones to vision, which match the prevailing visual environment.
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
10
|
Fitzpatrick MJ, Kerschensteiner D. Homeostatic plasticity in the retina. Prog Retin Eye Res 2022; 94:101131. [PMID: 36244950 DOI: 10.1016/j.preteyeres.2022.101131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
Vision begins in the retina, whose intricate neural circuits extract salient features of the environment from the light entering our eyes. Neurodegenerative diseases of the retina (e.g., inherited retinal degenerations, age-related macular degeneration, and glaucoma) impair vision and cause blindness in a growing number of people worldwide. Increasing evidence indicates that homeostatic plasticity (i.e., the drive of a neural system to stabilize its function) can, in principle, preserve retinal function in the face of major perturbations, including neurodegeneration. Here, we review the circumstances and events that trigger homeostatic plasticity in the retina during development, sensory experience, and disease. We discuss the diverse mechanisms that cooperate to compensate and the set points and outcomes that homeostatic retinal plasticity stabilizes. Finally, we summarize the opportunities and challenges for unlocking the therapeutic potential of homeostatic plasticity. Homeostatic plasticity is fundamental to understanding retinal development and function and could be an important tool in the fight to preserve and restore vision.
Collapse
|
11
|
Stimulus presentation can enhance spiking irregularity across subcortical and cortical regions. PLoS Comput Biol 2022; 18:e1010256. [PMID: 35789328 PMCID: PMC9286274 DOI: 10.1371/journal.pcbi.1010256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 07/15/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Stimulus presentation is believed to quench neural response variability as measured by fano-factor (FF). However, the relative contributions of within-trial spike irregularity and trial-to-trial rate variability to FF fluctuations have remained elusive. Here, we introduce a principled approach for accurate estimation of spiking irregularity and rate variability in time for doubly stochastic point processes. Consistent with previous evidence, analysis showed stimulus-induced reduction in rate variability across multiple cortical and subcortical areas. However, unlike what was previously thought, spiking irregularity, was not constant in time but could be enhanced due to factors such as bursting abating the quench in the post-stimulus FF. Simulations confirmed plausibility of a time varying spiking irregularity arising from within and between pool correlations of excitatory and inhibitory neural inputs. By accurate parsing of neural variability, our approach reveals previously unnoticed changes in neural response variability and constrains candidate mechanisms that give rise to observed rate variability and spiking irregularity within brain regions. Mounting evidence suggest neural response variability to be important for understanding and constraining the underlying neural mechanisms in a given brain area. Here, by analyzing responses across multiple brain areas and by using a principled method for parsing variability components into rate variability and spiking irregularity, we show that unlike what was previously thought, event-related quench of variability is not a brain-wide phenomenon and that point process variability and nonrenewal bursting can enhance post-stimulus spiking irregularity across certain cortical and subcortical regions. We propose possible presynaptic mechanisms that may underlie the observed heterogeneities in spiking variability across the brain.
Collapse
|
12
|
Angueyra JM, Baudin J, Schwartz GW, Rieke F. Predicting and Manipulating Cone Responses to Naturalistic Inputs. J Neurosci 2022; 42:1254-1274. [PMID: 34949692 PMCID: PMC8883858 DOI: 10.1523/jneurosci.0793-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/06/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
Primates explore their visual environment by making frequent saccades, discrete and ballistic eye movements that direct the fovea to specific regions of interest. Saccades produce large and rapid changes in input. The magnitude of these changes and the limited signaling range of visual neurons mean that effective encoding requires rapid adaptation. Here, we explore how macaque cone photoreceptors maintain sensitivity under these conditions. Adaptation makes cone responses to naturalistic stimuli highly nonlinear and dependent on stimulus history. Such responses cannot be explained by linear or linear-nonlinear models but are well explained by a biophysical model of phototransduction based on well-established biochemical interactions. The resulting model can predict cone responses to a broad range of stimuli and enables the design of stimuli that elicit specific (e.g., linear) cone photocurrents. These advances will provide a foundation for investigating the contributions of cone phototransduction and post-transduction processing to visual function.SIGNIFICANCE STATEMENT We know a great deal about adaptational mechanisms that adjust sensitivity to slow changes in visual inputs such as the rising or setting sun. We know much less about the rapid adaptational mechanisms that are essential for maintaining sensitivity as gaze shifts around a single visual scene. We characterize how phototransduction in cone photoreceptors adapts to rapid changes in input similar to those encountered during natural vision. We incorporate these measurements into a quantitative model that can predict cone responses across a broad range of stimuli. This model not only shows how cone phototransduction aids the encoding of natural inputs but also provides a tool to identify the role of the cone responses in shaping those of downstream visual neurons.
Collapse
Affiliation(s)
- Juan M Angueyra
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jacob Baudin
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Gregory W Schwartz
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60511
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
13
|
Iseri E, Kosta P, Paknahad J, Bouteiller JMC, Lazzi G. A Computational Model Simulates Light-Evoked Responses in the Retinal Cone Pathway. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4482-4486. [PMID: 34892214 PMCID: PMC10578446 DOI: 10.1109/embc46164.2021.9630642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Partial vision restoration on degenerated retina can be achieved by electrically stimulating the surviving retinal ganglion cells via implanted electrodes to elicit a signal corresponding to the natural response of the cells. Realistic computational models of electrical stimulation of the retina can prove useful to test different stimulation strategies and improve the performance of retinal implants. Simulation of healthy retinal networks and their dynamical response to natural light stimulation may also help us understand how retinal processing takes place via a series of electrical signals flowing through different stages of retinal processing, ultimately giving rise to visual percepts. Such models may provide further insights on retinal network processing and thus guide the design of retinal prostheses and their stimulation protocols to generate more natural percepts. This work aims to characterize the photocurrent generated by healthy cone photoreceptors in response to a light flash stimulation and the resulting membrane potential for the photoreceptors and its postsynaptic cone bipolar cells. A simple network of ten cone photoreceptors synapsing with a cone bipolar cell is simulated using the NEURON environment and validated against patch-clamp recordings of cone photoreceptors and ON-type bipolar cells (ON-BC). The results presented will be valuable in modeling light-evoked or electrically stimulated retinal networks that comprise cone pathways. The computational models and methods developed in this work will serve as an integral building block in the development of large and realistic retinal networks.Clinical Relevance- Accurate computational model of a retinal neural network can help in predicting cell responses to electrical stimulation in vision restoration therapies using prostheses. It can be leveraged to optimize the stimulation parameters to match the natural light response of the network as closely as possible.
Collapse
|
14
|
Rhim I, Coello-Reyes G, Nauhaus I. Variations in photoreceptor throughput to mouse visual cortex and the unique effects on tuning. Sci Rep 2021; 11:11937. [PMID: 34099749 PMCID: PMC8184960 DOI: 10.1038/s41598-021-90650-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/12/2021] [Indexed: 11/24/2022] Open
Abstract
Visual input to primary visual cortex (V1) depends on highly adaptive filtering in the retina. In turn, isolation of V1 computations requires experimental control of retinal adaptation to infer its spatio-temporal-chromatic output. Here, we measure the balance of input to mouse V1, in the anesthetized setup, from the three main photoreceptor opsins-M-opsin, S-opsin, and rhodopsin-as a function of two stimulus dimensions. The first dimension is the level of light adaptation within the mesopic range, which governs the balance of rod and cone inputs to cortex. The second stimulus dimension is retinotopic position, which governs the balance of S- and M-cone opsin input due to the opsin expression gradient in the retina. The fitted model predicts opsin input under arbitrary lighting environments, which provides a much-needed handle on in-vivo studies of the mouse visual system. We use it here to reveal that V1 is rod-mediated in common laboratory settings yet cone-mediated in natural daylight. Next, we compare functional properties of V1 under rod and cone-mediated inputs. The results show that cone-mediated V1 responds to 2.5-fold higher temporal frequencies than rod-mediated V1. Furthermore, cone-mediated V1 has smaller receptive fields, yet similar spatial frequency tuning. V1 responses in rod-deficient (Gnat1-/-) mice confirm that the effects are due to differences in photoreceptor opsin contribution.
Collapse
Affiliation(s)
- I Rhim
- Department of Psychology, University of Texas At Austin, 108 E. Dean Keeton, Austin, TX, 78712, USA
- Center for Perceptual Systems, University of Texas At Austin, 108 E. Dean Keeton, Austin, TX, 78712, USA
| | - G Coello-Reyes
- Department of Psychology, University of Texas At Austin, 108 E. Dean Keeton, Austin, TX, 78712, USA
- Center for Perceptual Systems, University of Texas At Austin, 108 E. Dean Keeton, Austin, TX, 78712, USA
| | - I Nauhaus
- Department of Psychology, University of Texas At Austin, 108 E. Dean Keeton, Austin, TX, 78712, USA.
- Department of Neuroscience, University of Texas At Austin, 1 University Station, Stop C7000, Austin, TX, 78712, USA.
- Center for Perceptual Systems, University of Texas At Austin, 108 E. Dean Keeton, Austin, TX, 78712, USA.
| |
Collapse
|
15
|
Risau-Gusman S. Color discrimination properties arising from optimal decoding in the early stages of visual systems. J Theor Biol 2021; 526:110773. [PMID: 34033813 DOI: 10.1016/j.jtbi.2021.110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 11/28/2022]
Abstract
In order to interpret animal behavior we need to understand how they see the world. As directly testing color discrimination in animals is difficult and time consuming, it is important to develop theoretical models based in the properties of visual systems. One of the most successful for the prediction of color discrimination behavior is the receptor noise-limited (RNL) model, which depends only on the level of noise in photoreceptors and opponent mechanisms. Here a complementary approach to model construction is used, and optimal color discrimination properties are obtained using information theoretical tools, for the early stages of visual systems. It is shown here that, for most biologically relevant conditions the optimal discrimination function of an ideal observer coincides with the one obtained with the RNL model. Furthermore, within this framework the influence of opponency can be studied by considering models with and without that mechanism but with exactly the same parameters at the level of photoreceptors. As an example, it is shown here that opponency is necessary to explain the discrimination of monochromatic stimuli in honeybees, but not in budgerigars. Since this is a consequence of the narrowing of absorption spectra of photoreceptors, produced by the presence of oil droplets, this could also be true for most other species of birds. This suggests that in order to study opponency in birds, stimuli should have a relatively wide spectrum.
Collapse
Affiliation(s)
- Sebastián Risau-Gusman
- Consejo Nacional de Investigaciones Científicas y Técnicas and Department of Medical Physics, Centro Atómico Bariloche, San Carlos de Bariloche, 8400 Río Negro, Argentina.
| |
Collapse
|
16
|
Cangiano L, Asteriti S. Interphotoreceptor coupling: an evolutionary perspective. Pflugers Arch 2021; 473:1539-1554. [PMID: 33988778 PMCID: PMC8370920 DOI: 10.1007/s00424-021-02572-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022]
Abstract
In the vertebrate retina, signals generated by cones of different spectral preference and by highly sensitive rod photoreceptors interact at various levels to extract salient visual information. The first opportunity for such interaction is offered by electrical coupling of the photoreceptors themselves, which is mediated by gap junctions located at the contact points of specialised cellular processes: synaptic terminals, telodendria and radial fins. Here, we examine the evolutionary pressures for and against interphotoreceptor coupling, which are likely to have shaped how coupling is deployed in different species. The impact of coupling on signal to noise ratio, spatial acuity, contrast sensitivity, absolute and increment threshold, retinal signal flow and colour discrimination is discussed while emphasising available data from a variety of vertebrate models spanning from lampreys to primates. We highlight the many gaps in our knowledge, persisting discrepancies in the literature, as well as some major unanswered questions on the actual extent and physiological role of cone-cone, rod-cone and rod-rod communication. Lastly, we point toward limited but intriguing evidence suggestive of the ancestral form of coupling among ciliary photoreceptors.
Collapse
Affiliation(s)
- Lorenzo Cangiano
- Dept. of Translational Research, University of Pisa, Via San Zeno 31, 56123, Pisa, Italy.
| | - Sabrina Asteriti
- Dept. of Translational Research, University of Pisa, Via San Zeno 31, 56123, Pisa, Italy
| |
Collapse
|
17
|
Röth K, Shao S, Gjorgjieva J. Efficient population coding depends on stimulus convergence and source of noise. PLoS Comput Biol 2021; 17:e1008897. [PMID: 33901195 PMCID: PMC8075262 DOI: 10.1371/journal.pcbi.1008897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/19/2021] [Indexed: 11/30/2022] Open
Abstract
Sensory organs transmit information to downstream brain circuits using a neural code comprised of spikes from multiple neurons. According to the prominent efficient coding framework, the properties of sensory populations have evolved to encode maximum information about stimuli given biophysical constraints. How information coding depends on the way sensory signals from multiple channels converge downstream is still unknown, especially in the presence of noise which corrupts the signal at different points along the pathway. Here, we calculated the optimal information transfer of a population of nonlinear neurons under two scenarios. First, a lumped-coding channel where the information from different inputs converges to a single channel, thus reducing the number of neurons. Second, an independent-coding channel when different inputs contribute independent information without convergence. In each case, we investigated information loss when the sensory signal was corrupted by two sources of noise. We determined critical noise levels at which the optimal number of distinct thresholds of individual neurons in the population changes. Comparing our system to classical physical systems, these changes correspond to first- or second-order phase transitions for the lumped- or the independent-coding channel, respectively. We relate our theoretical predictions to coding in a population of auditory nerve fibers recorded experimentally, and find signatures of efficient coding. Our results yield important insights into the diverse coding strategies used by neural populations to optimally integrate sensory stimuli in the presence of distinct sources of noise.
Collapse
Affiliation(s)
- Kai Röth
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Shuai Shao
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
- Donders Institute and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Julijana Gjorgjieva
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
- School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
18
|
Light responses of mammalian cones. Pflugers Arch 2021; 473:1555-1568. [PMID: 33742309 DOI: 10.1007/s00424-021-02551-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022]
Abstract
Cone photoreceptors provide the foundation of most of human visual experience, but because they are smaller and less numerous than rods in most mammalian retinas, much less is known about their physiology. We describe new techniques and approaches which are helping to provide a better understanding of cone function. We focus on several outstanding issues, including the identification of the features of the phototransduction cascade that are responsible for the more rapid kinetics and decreased sensitivity of the cone response, the roles of inner-segment voltage-gated and Ca2+-activated channels, the means by which cones remain responsive even in the brightest illumination, mechanisms of cone visual pigment regeneration in constant light, and energy consumption of cones in comparison to that of rods.
Collapse
|
19
|
Mihaylova MS, Bocheva NB, Totev TT, Staykova SN. Visual Noise Effect on Contour Integration and Gaze Allocation in Autism Spectrum Disorder. Front Neurosci 2021; 15:623663. [PMID: 33633537 PMCID: PMC7900628 DOI: 10.3389/fnins.2021.623663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Contradictory results have been obtained in the studies that compare contour integration abilities in Autism Spectrum Disorders (ASDs) and typically developing individuals. The present study aimed to explore the limiting factors of contour integration ability in ASD and verify the role of the external visual noise by a combination of psychophysical and eye-tracking approaches. To this aim, 24 children and adolescents with ASD and 32 age-matched participants with typical development had to detect the presence of contour embedded among similar Gabor elements in a Yes/No procedure. The results obtained showed that the responses in the group with ASD were not only less accurate but also were significantly slower compared to the control group at all noise levels. The detection performance depended on the group differences in addition to the effect of the intellectual functioning of the participants from both groups. The comparison of the agreement and accuracy of the responses in the double-pass experiment showed that the results of the participants with ASD are more affected by the increase of the external noise. It turned out that the internal noise depends on the level of the added external noise: the difference between the two groups was non-significant at the low external noise and significant at the high external noise. In accordance with the psychophysical results, the eye-tracking data indicated a larger gaze allocation area in the group with autism. These findings may imply higher positional uncertainty in ASD due to the inability to maintain the information of the contour location from previous presentations and interference from noise elements in the contour vicinity. Psychophysical and eye-tracking data suggest lower efficiency in using stimulus information in the ASD group that could be caused by fixation instability and noisy and unstable perceptual template that affects noise filtering.
Collapse
Affiliation(s)
- Milena Slavcheva Mihaylova
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nadejda Bogdanova Bocheva
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tsvetalin Totev Totev
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | |
Collapse
|
20
|
Luo DG, Silverman D, Frederiksen R, Adhikari R, Cao LH, Oatis JE, Kono M, Cornwall MC, Yau KW. Apo-Opsin and Its Dark Constitutive Activity across Retinal Cone Subtypes. Curr Biol 2020; 30:4921-4931.e5. [PMID: 33065015 PMCID: PMC8561704 DOI: 10.1016/j.cub.2020.09.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/08/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Retinal rod and cone photoreceptors mediate vision in dim and bright light, respectively, by transducing absorbed photons into neural electrical signals. Their phototransduction mechanisms are essentially identical. However, one difference is that, whereas a rod visual pigment remains stable in darkness, a cone pigment has some tendency to dissociate spontaneously into apo-opsin and retinal (the chromophore) without isomerization. This cone-pigment property is long known but has mostly been overlooked. Importantly, because apo-opsin has weak constitutive activity, it triggers transduction to produce electrical noise even in darkness. Currently, the precise dark apo-opsin contents across cone subtypes are mostly unknown, as are their dark activities. We report here a study of goldfish red (L), green (M), and blue (S) cones, finding with microspectrophotometry widely different apo-opsin percentages in darkness, being ∼30% in L cones, ∼3% in M cones, and negligible in S cones. L and M cones also had higher dark apo-opsin noise than holo-pigment thermal isomerization activity. As such, given the most likely low signal amplification at the pigment-to-transducin/phosphodiesterase phototransduction step, especially in L cones, apo-opsin noise may not be easily distinguishable from light responses and thus may affect cone vision near threshold.
Collapse
Affiliation(s)
- Dong-Gen Luo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Daniel Silverman
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rikard Frederiksen
- Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rajan Adhikari
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Li-Hui Cao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John E Oatis
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Masahiro Kono
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - M Carter Cornwall
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Inagaki K, Imanaka S. Realistic Mathematical Model of Retinal Outer Plexiform Layer for Edge Detection. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:365-368. [PMID: 33018004 DOI: 10.1109/embc44109.2020.9176222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Edge information is essential for object recognition and motion detection. It is reported that photoreceptors, horizontal cells and bipolar cells in the outer retina involved for edge detection. Moreover, it is known that the center and the surround receptive field structure found in the bipolar cell layer is thought to be related to an initial process of edge detection. In the present study, we constructed retinal network models including photoreceptors, horizontal cells, and bipolar cells using single-compartment neurons to investigate those contributions for edge detection. We simulate fixation of a natural image with changing the size of the horizontal cell receptive field and confirmed that the constructed model successfully extracts edges in the image. Furthermore, most of the edge in the scene is extracted when the size of the horizontal cell receptive field matched with that reported in anatomical evidence. To evaluate the performance of edge detection, we compare the result of edge detection with the Canny algorithm. As a result, we conformed that the model well detects fine edges similar to the Canny edge detection.
Collapse
|
22
|
Bryman GS, Liu A, Do MTH. Optimized Signal Flow through Photoreceptors Supports the High-Acuity Vision of Primates. Neuron 2020; 108:335-348.e7. [PMID: 32846139 DOI: 10.1016/j.neuron.2020.07.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/24/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
The fovea is a neural specialization that endows humans and other primates with the sharpest vision among mammals. This performance originates in the foveal cones, which are extremely narrow and long to form a high-resolution pixel array. Puzzlingly, this form is predicted to impede electrical conduction to an extent that appears incompatible with vision. We observe the opposite: signal flow through even the longest cones (0.4-mm axons) is essentially lossless. Unlike in most neurons, amplification and impulse generation by voltage-gated channels are dispensable. Rather, sparse channel activity preserves intracellular current, which flows as if unobstructed by organelles. Despite these optimizations, signaling would degrade if cones were lengthier. Because cellular packing requires that cone elongation accompanies foveal expansion, this degradation helps explain why the fovea is a constant, miniscule size despite multiplicative changes in eye size through evolution. These observations reveal how biophysical mechanisms tailor form-function relationships for primate behavioral performance.
Collapse
Affiliation(s)
- Gregory S Bryman
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA.
| | - Andreas Liu
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Jin N, Zhang Z, Keung J, Youn SB, Ishibashi M, Tian LM, Marshak DW, Solessio E, Umino Y, Fahrenfort I, Kiyama T, Mao CA, You Y, Wei H, Wu J, Postma F, Paul DL, Massey SC, Ribelayga CP. Molecular and functional architecture of the mouse photoreceptor network. SCIENCE ADVANCES 2020; 6:eaba7232. [PMID: 32832605 PMCID: PMC7439306 DOI: 10.1126/sciadv.aba7232] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Mouse photoreceptors are electrically coupled via gap junctions, but the relative importance of rod/rod, cone/cone, or rod/cone coupling is unknown. Furthermore, while connexin36 (Cx36) is expressed by cones, the identity of the rod connexin has been controversial. We report that FACS-sorted rods and cones both express Cx36 but no other connexins. We created rod- and cone-specific Cx36 knockout mice to dissect the photoreceptor network. In the wild type, Cx36 plaques at rod/cone contacts accounted for more than 95% of photoreceptor labeling and paired recordings showed the transjunctional conductance between rods and cones was ~300 pS. When Cx36 was eliminated on one side of the gap junction, in either conditional knockout, Cx36 labeling and rod/cone coupling were almost abolished. We could not detect direct rod/rod coupling, and cone/cone coupling was minor. Rod/cone coupling is so prevalent that indirect rod/cone/rod coupling via the network may account for previous reports of rod coupling.
Collapse
Affiliation(s)
- Nange Jin
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhijing Zhang
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joyce Keung
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sean B. Youn
- Summer Research Program, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Undergraduate Program, William Marsh Rice University, Houston, TX, USA
| | - Munenori Ishibashi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lian-Ming Tian
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David W. Marshak
- Department of Neurobiology and Anatomy, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Neuroscience Research Center, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eduardo Solessio
- Center for Vision Research and SUNY Eye Institute, Department of Ophthalmology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yumiko Umino
- Center for Vision Research and SUNY Eye Institute, Department of Ophthalmology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Iris Fahrenfort
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Takae Kiyama
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chai-An Mao
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Neuroscience Research Center, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yanan You
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, The University of Texas Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, The University of Texas Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Jiaqian Wu
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, The University of Texas Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Friso Postma
- Department of Neurobiology, Medical School, Harvard University, Boston, MA, USA
| | - David L. Paul
- Department of Neurobiology, Medical School, Harvard University, Boston, MA, USA
| | - Stephen C. Massey
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Summer Research Program, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Neuroscience Research Center, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Elizabeth Morford Distinguished Chair in Ophthalmology and Research Director, Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christophe P. Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Summer Research Program, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Neuroscience Research Center, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Biochemistry and Cellular Biology, Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Bernice Weingarten Chair in Ophthalmology, Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
24
|
Kamar S, Howlett MHC, Klooster J, de Graaff W, Csikós T, Rabelink MJWE, Hoeben RC, Kamermans M. Degenerated Cones in Cultured Human Retinas Can Successfully Be Optogenetically Reactivated. Int J Mol Sci 2020; 21:ijms21020522. [PMID: 31947650 PMCID: PMC7014344 DOI: 10.3390/ijms21020522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Biblical references aside, restoring vision to the blind has proven to be a major technical challenge. In recent years, considerable advances have been made towards this end, especially when retinal degeneration underlies the vision loss such as occurs with retinitis pigmentosa. Under these conditions, optogenetic therapies are a particularly promising line of inquiry where remaining retinal cells are made into "artificial photoreceptors". However, this strategy is not without its challenges and a model system using human retinal explants would aid its continued development and refinement. Here, we cultured post-mortem human retinas and show that explants remain viable for around 7 days. Within this period, the cones lose their outer segments and thus their light sensitivity but remain electrophysiologically intact, displaying all the major ionic conductances one would expect for a vertebrate cone. We optogenetically restored light responses to these quiescent cones using a lentivirus vector constructed to express enhanced halorhodopsin under the control of the human arrestin promotor. In these 'reactivated' retinas, we show a light-induced horizontal cell to cone feedback signal in cones, indicating that transduced cones were able to transmit their light response across the synapse to horizontal cells, which generated a large enough response to send a signal back to the cones. Furthermore, we show ganglion cell light responses, suggesting the cultured explant's condition is still good enough to support transmission of the transduced cone signal over the intermediate retinal layers to the final retinal output level. Together, these results show that cultured human retinas are an appropriate model system to test optogenetic vision restoration approaches and that cones which have lost their outer segment, a condition occurring during the early stages of retinitis pigmentosa, are appropriate targets for optogenetic vision restoration therapies.
Collapse
Affiliation(s)
- Sizar Kamar
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam-Zuidoost, The Netherlands; (S.K.); (M.H.C.H.); (J.K.); (W.d.G.); (T.C.)
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Marcus H. C. Howlett
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam-Zuidoost, The Netherlands; (S.K.); (M.H.C.H.); (J.K.); (W.d.G.); (T.C.)
| | - Jan Klooster
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam-Zuidoost, The Netherlands; (S.K.); (M.H.C.H.); (J.K.); (W.d.G.); (T.C.)
| | - Wim de Graaff
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam-Zuidoost, The Netherlands; (S.K.); (M.H.C.H.); (J.K.); (W.d.G.); (T.C.)
| | - Tamás Csikós
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam-Zuidoost, The Netherlands; (S.K.); (M.H.C.H.); (J.K.); (W.d.G.); (T.C.)
| | - Martijn J. W. E. Rabelink
- Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.J.W.E.R.); (R.C.H.)
| | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.J.W.E.R.); (R.C.H.)
| | - Maarten Kamermans
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam-Zuidoost, The Netherlands; (S.K.); (M.H.C.H.); (J.K.); (W.d.G.); (T.C.)
- Department of Biomedical Engineering & Physics, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
25
|
Horwitz GD. Temporal information loss in the macaque early visual system. PLoS Biol 2020; 18:e3000570. [PMID: 31971946 PMCID: PMC6977937 DOI: 10.1371/journal.pbio.3000570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/05/2019] [Indexed: 01/09/2023] Open
Abstract
Stimuli that modulate neuronal activity are not always detectable, indicating a loss of information between the modulated neurons and perception. To identify where in the macaque visual system information about periodic light modulations is lost, signal-to-noise ratios were compared across simulated cone photoreceptors, lateral geniculate nucleus (LGN) neurons, and perceptual judgements. Stimuli were drifting, threshold-contrast Gabor patterns on a photopic background. The sensitivity of LGN neurons, extrapolated to populations, was similar to the monkeys' at low temporal frequencies. At high temporal frequencies, LGN sensitivity exceeded the monkeys' and approached the upper bound set by cone photocurrents. These results confirm a loss of high-frequency information downstream of the LGN. However, this loss accounted for only about 5% of the total. Phototransduction accounted for essentially all of the rest. Together, these results show that low temporal frequency information is lost primarily between the cones and the LGN, whereas high-frequency information is lost primarily within the cones, with a small additional loss downstream of the LGN.
Collapse
Affiliation(s)
- Gregory D. Horwitz
- Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
26
|
Ingram NT, Sampath AP, Fain GL. Voltage-clamp recordings of light responses from wild-type and mutant mouse cone photoreceptors. J Gen Physiol 2019; 151:1287-1299. [PMID: 31562185 PMCID: PMC6829558 DOI: 10.1085/jgp.201912419] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 01/16/2023] Open
Abstract
We describe the first extensive study of voltage-clamp current responses of cone photoreceptors in unlabeled, dark-adapted mouse retina using only the position and appearance of cone somata as a guide. Identification was confirmed from morphology after dye filling. Photocurrents recorded from wild-type mouse cones were biphasic with a fast cone component and a slower rod component. The rod component could be eliminated with dim background light and was not present in mouse lines lacking the rod transducin-α subunit (Gnat1-/- ) or connexin 36 (Cx36-/- ). Cones from Gnat1-/- or Cx36-/- mice had resting membrane potentials between -45 and -55 mV, peak photocurrents of 20-25 picoamps (pA) at a membrane potential Vm = -50 mV, sensitivities 60-70 times smaller than rods, and a total membrane capacitance two to four times greater than rods. The rate of activation (amplification constant) was largely independent of the brightness of the flash and was 1-2 s-2, less than half that of rods. The role of Ca2+-dependent transduction modulation was investigated by recording from cones in mice lacking rod transducin (Gnat1), recoverin, and/or the guanylyl-cyclase-activating proteins (GCAPs). In confirmation of previous results, responses of Gnat1-/- ;Gcaps-/- cones and triple-mutant Gnat1-/- ;Gcaps-/- ;Rv-/- cones recovered more slowly both to light flashes and steps and were more sensitive than cones expressing the GCAPs. Cones from all four mouse lines showed significant recovery and escaped saturation even in bright background light. This recovery occurred too rapidly to be caused by pigment bleaching or metaII decay and appears to reflect some modulation of response inactivation in addition to those produced by recoverin and the GCAPs. Our experiments now make possible a more detailed understanding of the cellular physiology of mammalian cone photoreceptors and the role of conductances in the inner and outer segment in producing cone light responses.
Collapse
Affiliation(s)
- Norianne T Ingram
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA
| | - Alapakkam P Sampath
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA
| | - Gordon L Fain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
27
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
28
|
Ribelayga C, Mangel SC. Circadian clock regulation of cone to horizontal cell synaptic transfer in the goldfish retina. PLoS One 2019; 14:e0218818. [PMID: 31461464 PMCID: PMC6713326 DOI: 10.1371/journal.pone.0218818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/10/2019] [Indexed: 11/19/2022] Open
Abstract
Although it is well established that the vertebrate retina contains endogenous circadian clocks that regulate retinal physiology and function during day and night, the processes that the clocks affect and the means by which the clocks control these processes remain unresolved. We previously demonstrated that a circadian clock in the goldfish retina regulates rod-cone electrical coupling so that coupling is weak during the day and robust at night. The increase in rod-cone coupling at night introduces rod signals into cones so that the light responses of both cones and cone horizontal cells, which are post-synaptic to cones, become dominated by rod input. By comparing the light responses of cones, cone horizontal cells and rod horizontal cells, which are post-synaptic to rods, under dark-adapted conditions during day and night, we determined whether the daily changes in the strength of rod-cone coupling could account entirely for rhythmic changes in the light response properties of cones and cone horizontal cells. We report that although some aspects of the day/night changes in cone and cone horizontal cell light responses, such as response threshold and spectral tuning, are consistent with modulation of rod-cone coupling, other properties cannot be solely explained by this phenomenon. Specifically, we found that at night compared to the day the time course of spectrally-isolated cone photoresponses was slower, cone-to-cone horizontal cell synaptic transfer was highly non-linear and of lower gain, and the delay in cone-to-cone horizontal cell synaptic transmission was longer. However, under bright light-adapted conditions in both day and night, cone-to-cone horizontal cell synaptic transfer was linear and of high gain, and no additional delay was observed at the cone-to-cone horizontal cell synapse. These findings suggest that in addition to controlling rod-cone coupling, retinal clocks shape the light responses of cone horizontal cells by modulating cone-to-cone horizontal cell synaptic transmission.
Collapse
Affiliation(s)
- Christophe Ribelayga
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- MD Anderson/UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Stuart C. Mangel
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
29
|
Kling A, Field GD, Brainard DH, Chichilnisky EJ. Probing Computation in the Primate Visual System at Single-Cone Resolution. Annu Rev Neurosci 2019; 42:169-186. [PMID: 30857477 DOI: 10.1146/annurev-neuro-070918-050233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Daylight vision begins when light activates cone photoreceptors in the retina, creating spatial patterns of neural activity. These cone signals are then combined and processed in downstream neural circuits, ultimately producing visual perception. Recent technical advances have made it possible to deliver visual stimuli to the retina that probe this processing by the visual system at its elementary resolution of individual cones. Physiological recordings from nonhuman primate retinas reveal the spatial organization of cone signals in retinal ganglion cells, including how signals from cones of different types are combined to support both spatial and color vision. Psychophysical experiments with human subjects characterize the visual sensations evoked by stimulating a single cone, including the perception of color. Future combined physiological and psychophysical experiments focusing on probing the elementary visual inputs are likely to clarify how neural processing generates our perception of the visual world.
Collapse
Affiliation(s)
- A Kling
- Departments of Neurosurgery and Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - G D Field
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - D H Brainard
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - E J Chichilnisky
- Departments of Neurosurgery and Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, USA;
| |
Collapse
|
30
|
Baudin J, Angueyra JM, Sinha R, Rieke F. S-cone photoreceptors in the primate retina are functionally distinct from L and M cones. eLife 2019; 8:39166. [PMID: 30672735 PMCID: PMC6344076 DOI: 10.7554/elife.39166] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Daylight vision starts with signals in three classes of cone photoreceptors sensitive to short (S), middle (M), and long (L) wavelengths. Psychophysical studies show that perceptual sensitivity to rapidly varying inputs differs for signals originating in S cones versus L and M cones; notably, S-cone signals appear perceptually delayed relative to L- and M-cone signals. These differences could originate in the cones themselves or in the post-cone circuitry. To determine if the cones could contribute to these and related perceptual phenomena, we compared the light responses of primate S, M, and L cones. We found that S cones generate slower light responses than L and M cones, show much smaller changes in response kinetics as background-light levels increase, and are noisier than L and M cones. It will be important to incorporate these differences into descriptions of how cone signaling shapes human visual perception.
Collapse
Affiliation(s)
- Jacob Baudin
- Department of Physiology and Biophysics, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States.,Google Inc., Seattle, United States
| | - Juan M Angueyra
- Department of Physiology and Biophysics, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Raunak Sinha
- Department of Physiology and Biophysics, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States.,Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| |
Collapse
|
31
|
Zang J, Neuhauss SCF. The Binding Properties and Physiological Functions of Recoverin. Front Mol Neurosci 2018; 11:473. [PMID: 30618620 PMCID: PMC6306944 DOI: 10.3389/fnmol.2018.00473] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022] Open
Abstract
Recoverin (Rcv) is a low molecular-weight, neuronal calcium sensor (NCS) primarily located in photoreceptor outer segments of the vertebrate retina. Calcium ions (Ca2+)-bound Rcv has been proposed to inhibit G-protein-coupled receptor kinase (GRKs) in darkness. During the light response, the Ca2+-free Rcv releases GRK, which in turn phosphorylates visual pigment, ultimately leading to the cessation of the visual transduction cascade. Technological advances over the last decade have contributed significantly to a deeper understanding of Rcv function. These include both biophysical and biochemical approaches that will be discussed in this review article. Furthermore, electrophysiological experiments uncovered additional functions of Rcv, such as regulation of the lifetime of Phosphodiesterase-Transducin complex. Recently, attention has been drawn to different roles in rod and cone photoreceptors.This review article focuses on Rcv binding properties to Ca2+, disc membrane and GRK, and its physiological functions in phototransduction and signal transmission.
Collapse
Affiliation(s)
- Jingjing Zang
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
32
|
Nadal M, Chatterjee A. Neuroaesthetics and art's diversity and universality. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2018; 10:e1487. [DOI: 10.1002/wcs.1487] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/19/2018] [Accepted: 10/23/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Marcos Nadal
- Department of Psychology University of the Balearic Islands Palma de Mallorca Spain
| | - Anjan Chatterjee
- Department of Neurology University of Pennsylvania Philadelphia Pennsylvania
| |
Collapse
|
33
|
Grimes WN, Songco-Aguas A, Rieke F. Parallel Processing of Rod and Cone Signals: Retinal Function and Human Perception. Annu Rev Vis Sci 2018; 4:123-141. [PMID: 29883274 PMCID: PMC6153147 DOI: 10.1146/annurev-vision-091517-034055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We know a good deal about the operation of the retina when either rod or cone photoreceptors provide the dominant input (i.e., under very dim or very bright conditions). However, we know much less about how the retina operates when rods and cones are coactive (i.e., under intermediate lighting conditions, such as dusk). Such mesopic conditions span 20-30% of the light levels over which vision operates and encompass many situations in which vision is essential (e.g., driving at night). These lighting conditions are challenging because rod and cone signals differ substantially: Rod responses are nearing saturation, while cone responses are weak and noisy. A rich history of perceptual studies guides our investigation of how the retina operates under mesopic conditions and in doing so provides a powerful opportunity to link general issues about parallel processing in neural circuits with computation and perception. We review some of the successes and challenges in understanding the retinal basis of perceptual rod-cone interactions.
Collapse
Affiliation(s)
- William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA;
| | - Adree Songco-Aguas
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA;
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
34
|
Qureshi BM, Behrmann E, Schöneberg J, Loerke J, Bürger J, Mielke T, Giesebrecht J, Noé F, Lamb TD, Hofmann KP, Spahn CMT, Heck M. It takes two transducins to activate the cGMP-phosphodiesterase 6 in retinal rods. Open Biol 2018; 8:180075. [PMID: 30068566 PMCID: PMC6119865 DOI: 10.1098/rsob.180075] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022] Open
Abstract
Among cyclic nucleotide phosphodiesterases (PDEs), PDE6 is unique in serving as an effector enzyme in G protein-coupled signal transduction. In retinal rods and cones, PDE6 is membrane-bound and activated to hydrolyse its substrate, cGMP, by binding of two active G protein α-subunits (Gα*). To investigate the activation mechanism of mammalian rod PDE6, we have collected functional and structural data, and analysed them by reaction-diffusion simulations. Gα* titration of membrane-bound PDE6 reveals a strong functional asymmetry of the enzyme with respect to the affinity of Gα* for its two binding sites on membrane-bound PDE6 and the enzymatic activity of the intermediary 1 : 1 Gα* · PDE6 complex. Employing cGMP and its 8-bromo analogue as substrates, we find that Gα* · PDE6 forms with high affinity but has virtually no cGMP hydrolytic activity. To fully activate PDE6, it takes a second copy of Gα* which binds with lower affinity, forming Gα* · PDE6 · Gα*. Reaction-diffusion simulations show that the functional asymmetry of membrane-bound PDE6 constitutes a coincidence switch and explains the lack of G protein-related noise in visual signal transduction. The high local concentration of Gα* generated by a light-activated rhodopsin molecule efficiently activates PDE6, whereas the low density of spontaneously activated Gα* fails to activate the effector enzyme.
Collapse
Affiliation(s)
- Bilal M Qureshi
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elmar Behrmann
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Schöneberg
- Department of Mathematics, Computer Science and Bioinformatics, Freie Universität Berlin, Berlin, Germany
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jörg Bürger
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thorsten Mielke
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Microscopy and Cryo Electron Microscopy Group, Max-Planck Institut für Molekulare Genetik, Berlin, Germany
| | - Jan Giesebrecht
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frank Noé
- Department of Mathematics, Computer Science and Bioinformatics, Freie Universität Berlin, Berlin, Germany
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Zentrum für Biophysik und Bioinformatik, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martin Heck
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
35
|
Vinberg F, Chen J, Kefalov VJ. Regulation of calcium homeostasis in the outer segments of rod and cone photoreceptors. Prog Retin Eye Res 2018; 67:87-101. [PMID: 29883715 DOI: 10.1016/j.preteyeres.2018.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
Calcium plays important roles in the function and survival of rod and cone photoreceptor cells. Rapid regulation of calcium in the outer segments of photoreceptors is required for the modulation of phototransduction that drives the termination of the flash response as well as light adaptation in rods and cones. On a slower time scale, maintaining proper calcium homeostasis is critical for the health and survival of photoreceptors. Decades of work have established that the level of calcium in the outer segments of rods and cones is regulated by a dynamic equilibrium between influx via the transduction cGMP-gated channels and extrusion via rod- and cone-specific Na+/Ca2+, K+ exchangers (NCKXs). It had been widely accepted that the only mechanism for extrusion of calcium from rod outer segments is via the rod-specific NCKX1, while extrusion from cone outer segments is driven exclusively by the cone-specific NCKX2. However, recent evidence from mice lacking NCKX1 and NCKX2 have challenged that notion and have revealed a more complex picture, including a NCKX-independent mechanism in rods and two separate NCKX-dependent mechanisms in cones. This review will focus on recent findings on the molecular mechanisms of extrusion of calcium from the outer segments of rod and cone photoreceptors, and the functional and structural changes in photoreceptors when normal extrusion is disrupted.
Collapse
Affiliation(s)
- Frans Vinberg
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA; John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Vladimir J Kefalov
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
36
|
Abstract
We have long known that rod and cone signals interact within the retina and can even contribute to color vision, but the extent of these influences has remained unclear. New results with more powerful methods of RNA expression profiling, specific cell labeling, and single-cell recording have provided greater clarity and are showing that rod and cone signals can mix at virtually every level of signal processing. These interactions influence the integration of retinal signals and make an important contribution to visual perception.
Collapse
Affiliation(s)
- Gordon Fain
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, 100 Stein Plaza, Los Angeles, CA 90095-7000, USA.,Department of Integrative Biology and Physiology, University of California Los Angeles, Terasaki Life Sciences, 610 Charles E. Young Drive South, Los Angeles, CA 90095-7239, USA
| | - Alapakkam P Sampath
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, 100 Stein Plaza, Los Angeles, CA 90095-7000, USA
| |
Collapse
|
37
|
Vilidaite G, Yu M, Baker DH. Internal noise estimates correlate with autistic traits. Autism Res 2017; 10:1384-1391. [PMID: 28419785 DOI: 10.1002/aur.1781] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/23/2017] [Accepted: 02/24/2017] [Indexed: 01/04/2023]
Abstract
Previous neuroimaging research has reported increased internal (neural) noise in sensory systems of autistic individuals. However, it is unclear if this difference has behavioural or perceptual consequences, as previous attempts at measuring internal noise in ASD psychophysically have been indirect. Here, we use a "gold standard" psychophysical double-pass paradigm to investigate the relationship between internal noise and autistic traits in the neurotypical population (n = 43). We measured internal noise in three tasks (contrast perception, facial expression intensity perception, and number summation) to estimate a global internal noise factor using principal components analysis. This global internal noise was positively correlated with autistic traits (rs = 0.32, P = 0.035). This suggests that increased internal noise is associated with the ASD phenotype even in subclinical populations. The finding is discussed in relation to the neural and genetic basis of internal noise in ASD. Autism Res 2017, 10: 1384-1391. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Greta Vilidaite
- Department of Psychology, University of York, York, North Yorkshire, YO10 5DD, United Kingdom
| | - Miaomiao Yu
- Department of Psychology, University of York, York, North Yorkshire, YO10 5DD, United Kingdom
| | - Daniel H Baker
- Department of Psychology, University of York, York, North Yorkshire, YO10 5DD, United Kingdom
| |
Collapse
|
38
|
Abstract
An animal’s ability to survive depends on its sensory systems being able to adapt to a wide range of environmental conditions, by maximizing the information extracted and reducing the noise transmitted. The visual system does this by adapting to luminance and contrast. While luminance adaptation can begin at the retinal photoreceptors, contrast adaptation has been shown to start at later stages in the retina. Photoreceptors adapt to changes in luminance over multiple time scales ranging from tens of milliseconds to minutes, with the adaptive changes arising from processes within the phototransduction cascade. Here we show a new form of adaptation in cones that is independent of the phototransduction process. Rather, it is mediated by voltage-gated ion channels in the cone membrane and acts by changing the frequency response of cones such that their responses speed up as the membrane potential modulation depth increases and slow down as the membrane potential modulation depth decreases. This mechanism is effectively activated by high-contrast stimuli dominated by low frequencies such as natural stimuli. However, the more generally used Gaussian white noise stimuli were not effective since they did not modulate the cone membrane potential to the same extent. This new adaptive process had a time constant of less than a second. A critical component of the underlying mechanism is the hyperpolarization-activated current, Ih, as pharmacologically blocking it prevented the long- and mid- wavelength sensitive cone photoreceptors (L- and M-cones) from adapting. Consistent with this, short- wavelength sensitive cone photoreceptors (S-cones) did not show the adaptive response, and we found they also lacked a prominent Ih. The adaptive filtering mechanism identified here improves the information flow by removing higher-frequency noise during lower signal-to-noise ratio conditions, as occurs when contrast levels are low. Although this new adaptive mechanism can be driven by contrast, it is not a contrast adaptation mechanism in its strictest sense, as will be argued in the Discussion. An animal’s ability to survive depends on its ability to adapt to a wide range of light conditions, by maximizing the information flow through the retina. Here, we show a new form of adaptation in cone photoreceptors that helps them optimize the information they transmit by adjusting their response kinetics to better match the visual conditions. The adaptive mechanism we describe is independent of the cone phototransduction process and is instead mediated by membrane processes in which the hyperpolarization-activated current, Ih, plays a critical role. Consistent with the critical role of this current, we also found that cones sensitive to short wavelengths lacked a prominent Ih current and did not show this new form of adaptation. As voltage-dependent processes underlie the adaptational mechanism, it is only apparent when the stimuli are able to sufficiently modulate the membrane potential of cones. This happens with natural stimuli, which are able to deliver high levels of “effective” contrast. However, even though this new adaptive mechanism can be driven by contrast, we argue in the Discussion that in its strictest sense it is not a contrast adaptation mechanism per se.
Collapse
|
39
|
Chervyakov AV, Sinitsyn DO, Piradov MA. Variability of Neuronal Responses: Types and Functional Significance in Neuroplasticity and Neural Darwinism. Front Hum Neurosci 2016; 10:603. [PMID: 27932969 PMCID: PMC5122744 DOI: 10.3389/fnhum.2016.00603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022] Open
Abstract
HIGHLIGHTS We suggest classifying variability of neuronal responses as follows: false (associated with a lack of knowledge about the influential factors), "genuine harmful" (noise), "genuine neutral" (synonyms, repeats), and "genuine useful" (the basis of neuroplasticity and learning).The genuine neutral variability is considered in terms of the phenomenon of degeneracy.Of particular importance is the genuine useful variability that is considered as a potential basis for neuroplasticity and learning. This type of variability is considered in terms of the neural Darwinism theory. In many cases, neural signals detected under the same external experimental conditions significantly change from trial to trial. The variability phenomenon, which complicates extraction of reproducible results and is ignored in many studies by averaging, has attracted attention of researchers in recent years. In this paper, we classify possible types of variability based on its functional significance and describe features of each type. We describe the key adaptive significance of variability at the neural network level and the degeneracy phenomenon that may be important for learning processes in connection with the principle of neuronal group selection.
Collapse
Affiliation(s)
| | - Dmitry O Sinitsyn
- Research Center of NeurologyMoscow, Russia; Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscow, Russia
| | | |
Collapse
|
40
|
Information persistence evaluated with low-density dot patterns. Acta Psychol (Amst) 2016; 170:215-25. [PMID: 27614198 DOI: 10.1016/j.actpsy.2016.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 01/04/2023] Open
Abstract
After more than a century of study, we do not yet fully understand how shapes and patterns are encoded and identified. Greater progress might result from quantifying stimulus information, thus allowing manipulation of the degree to which a shape or pattern can elicit recognition. The present work used discrete dot patterns that are seen as letters of the alphabet. By adjusting the density of the dots in each pattern, one can determine the probability that it will be recognized. The experiments displayed low-density dot patterns to human respondents, assessing the interval across which non-redundant information provided by two compatible subsets would combine to elicit recognition. This provided a measure of the time required for decay of information persistence. Viewed in the context of prior work, the evidence indicates that the retina mediates initial visibility of the stimulus trace, but the longer-duration persistence required for memory retrieval is mediated by visual cortex.
Collapse
|
41
|
Wang Y, Wang Y. Neurons in primary visual cortex represent distribution of luminance. Physiol Rep 2016; 4:4/18/e12966. [PMID: 27655797 PMCID: PMC5037916 DOI: 10.14814/phy2.12966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/21/2016] [Indexed: 11/24/2022] Open
Abstract
To efficiently detect a wide range of light-intensity changes, visual neurons must adapt to ambient luminance. However, how neurons in the primary visual cortex (V1) code the distribution of luminance remains unknown. We designed stimuli that represent rapid changes in luminance under different luminance distributions and investigated V1 neuron responses to these novel stimuli. We demonstrate that V1 neurons represent luminance changes by dynamically adjusting their responses when the luminance distribution changes. Many cells (35%) detected luminance changes by responding to dark stimuli when the distribution was dominated by bright stimuli, bright stimuli when dominated by dark stimuli, and both dark and bright stimuli when dominated by intermediate luminance stimuli; 13% of cells signaled the mean luminance that was varied with different distributions; the remaining 52% of cells gradually shifted the responses that were most sensitive to luminance changes when the luminance distribution varied. The remarkable response changes of the former two cell groups suggest their crucial roles in detecting luminance changes. These response characteristics demonstrate that V1 neurons are not only sensitive to luminance change, but also luminance distribution change. They encode luminance changes according to the luminance distribution. Mean cells represent the prevailing luminance and reversal cells represent the salient stimuli in the environment.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Kántor O, Benkő Z, Énzsöly A, Dávid C, Naumann A, Nitschke R, Szabó A, Pálfi E, Orbán J, Nyitrai M, Németh J, Szél Á, Lukáts Á, Völgyi B. Characterization of connexin36 gap junctions in the human outer retina. Brain Struct Funct 2016; 221:2963-84. [PMID: 26173976 DOI: 10.1007/s00429-015-1082-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
Retinal connexins (Cx) form gap junctions (GJ) in key circuits that transmit average or synchronize signals. Expression of Cx36, -45, -50 and -57 have been described in many species but there is still a disconcerting paucity of information regarding the Cx makeup of human retinal GJs. We used well-preserved human postmortem samples to characterize Cx36 GJ constituent circuits of the outer plexiform layer (OPL). Based on their location, morphometric characteristics and co-localizations with outer retinal neuronal markers, we distinguished four populations of Cx36 plaques in the human OPL. Three of these were comprised of loosely scattered Cx36 plaques; the distalmost population 1 formed cone-to-rod GJs, population 2 in the mid-OPL formed cone-to-cone GJs, whereas the proximalmost population 4 likely connected bipolar cell dendrites. The fourth population (population 3) of Cx36 plaques conglomerated beneath cone pedicles and connected dendritic tips of bipolar cells that shared a common presynaptic cone. Overall, we show that the human outer retina displays a diverse cohort of Cx36 GJ that follows the general mammalian scheme and display a great functional diversity.
Collapse
Affiliation(s)
- Orsolya Kántor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Zsigmond Benkő
- Department of Theory, Wigner Research Center for Physics of the Hungarian Academy of Sciences, Budapest, 1121, Hungary
- Semmelweis University School of Ph.D. Studies, Budapest, 1085, Hungary
| | - Anna Énzsöly
- Department of Ophthalmology, Semmelweis University, Budapest, 1085, Hungary
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, 1094, Hungary
| | - Csaba Dávid
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, 1094, Hungary
| | - Angela Naumann
- Life Imaging Center, Center for Biological Systems Analysis, Albert-Ludwigs University, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Roland Nitschke
- Life Imaging Center, Center for Biological Systems Analysis, Albert-Ludwigs University, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Arnold Szabó
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, 1094, Hungary
| | - Emese Pálfi
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - József Orbán
- Department of Biophysics, University of Pécs, Pécs, 7624, Hungary
- János Szentágothai Research Center, University of Pécs, Ifjúság str. 6, 7624, Pécs, Hungary
| | - Miklós Nyitrai
- Department of Biophysics, University of Pécs, Pécs, 7624, Hungary
- János Szentágothai Research Center, University of Pécs, Ifjúság str. 6, 7624, Pécs, Hungary
| | - János Németh
- Department of Ophthalmology, Semmelweis University, Budapest, 1085, Hungary
| | - Ágoston Szél
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, 1094, Hungary
| | - Ákos Lukáts
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, 1094, Hungary
| | - Béla Völgyi
- János Szentágothai Research Center, University of Pécs, Ifjúság str. 6, 7624, Pécs, Hungary.
- MTA-PTE NAP B Retinal Electrical Synapses Research Group, Pécs, 7624, Hungary.
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, 7624, Hungary.
- Department of Ophthalmology, New York University Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
43
|
The impact of inhibitory mechanisms in the inner retina on spatial tuning of RGCs. Sci Rep 2016; 6:21966. [PMID: 26905860 PMCID: PMC4764933 DOI: 10.1038/srep21966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/03/2016] [Indexed: 02/05/2023] Open
Abstract
Spatial tuning properties of retinal ganglion cells (RGCs) are sharpened by lateral inhibition originating at both the outer and inner plexiform layers. Lateral inhibition in the retina contributes to local contrast enhancement and sharpens edges. In this study, we used dynamic clamp recordings to examine the contribution of inner plexiform inhibition, originating from spiking amacrine cells, to the spatial tuning of RGCs. This was achieved by injecting currents generated from physiologically recorded excitatory and inhibitory stimulus-evoked conductances, into different types of primate and mouse RGCs. We determined the effects of injections of size-dependent conductances in which presynaptic inhibition and/or direct inhibition onto RGCs were partly removed by blocking the activity of spiking amacrine cells. We found that inhibition originating from spiking amacrine cells onto bipolar cell terminals and onto RGCs, work together to sharpen the spatial tuning of RGCs. Furthermore, direct inhibition is crucial for preventing spike generation at stimulus offset. These results reveal how inhibitory mechanisms in the inner plexiform layer contribute to determining size tuning and provide specificity to stimulus polarity.
Collapse
|
44
|
Ichinose T, Hellmer CB. Differential signalling and glutamate receptor compositions in the OFF bipolar cell types in the mouse retina. J Physiol 2015; 594:883-94. [PMID: 26553530 DOI: 10.1113/jp271458] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Using whole-cell clamp methods, we characterized the temporal coding in each type of OFF bipolar cell. We found that type 2 and 3a cells are transient, type 1 and 4 cells are sustained, and type 3b cells are intermediate. The light-evoked excitatory postsynaptic potentials in some types were rectified, suggesting that they provide inputs to the non-linear ganglion cells. Visual signalling from the photoreceptors was mediated exclusively through the kainate receptors in the transient OFF bipolar cells, whereas both kainate and AMPA receptors contributed in the other cells. This study demonstrates, for the first time, that parallel visual encoding starts at the OFF bipolar cells in a type-specific manner. ABSTRACT The retina is the entrance to the visual system, which receives various kinds of image signals and forms multiple encoding pathways. The second-order retinal neurons, the bipolar cells, are thought to initiate multiple neural streams by encoding various visual signals in different types of cells. However, the functions of each bipolar cell type have not been fully understood. We investigated whether OFF bipolar cells encode visual signals in a type-dependent manner. We recorded the changes in the bipolar cell voltage in response to two input functions: step and sinusoidal light stimuli. Type 1 and 4 OFF bipolar cells were sustained cells and responded to sinusoidal stimuli over a broad range of frequencies. Type 2 and 3a cells were transient and exhibited band-pass filtering. Type 3b cells were in the middle of these two groups. The distinct temporal responses might be attributed to different types of glutamate receptors. We examined the AMPA and kainate glutamate receptor composition in each bipolar cell type. The light responses in the transient OFF bipolar cells were exclusively mediated by kainate receptors. Although the kainate receptors mediated the light responses in the sustained cells, the AMPA receptors also mediated a portion of the responses in sustained cells. Furthermore, we found that some types of cells were rectified more than other types. Taken together, we found that the OFF bipolar cells encode diverse temporal image signals in a type-dependent manner, confirming that each type of OFF bipolar cell initiates diverse temporal visual processing in parallel.
Collapse
Affiliation(s)
- Tomomi Ichinose
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.,Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Chase B Hellmer
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
45
|
Abstract
The mammalian retina is an important model system for studying neural circuitry: Its role in sensation is clear, its cell types are relatively well defined, and its responses to natural stimuli-light patterns-can be studied in vitro. To solve the retina, we need to understand how the circuits presynaptic to its output neurons, ganglion cells, divide the visual scene into parallel representations to be assembled and interpreted by the brain. This requires identifying the component interneurons and understanding how their intrinsic properties and synapses generate circuit behaviors. Because the cellular composition and fundamental properties of the retina are shared across species, basic mechanisms studied in the genetically modifiable mouse retina apply to primate vision. We propose that the apparent complexity of retinal computation derives from a straightforward mechanism-a dynamic balance of synaptic excitation and inhibition regulated by use-dependent synaptic depression-applied differentially to the parallel pathways that feed ganglion cells.
Collapse
Affiliation(s)
- Jonathan B Demb
- Department of Ophthalmology and Visual Science and Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06511;
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, Maryland 20742;
| |
Collapse
|
46
|
Valtcheva TM, Passaglia CL. Contrast adaptation in the Limulus lateral eye. J Neurophysiol 2015; 114:3234-41. [PMID: 26445869 DOI: 10.1152/jn.00593.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022] Open
Abstract
Luminance and contrast adaptation are neuronal mechanisms employed by the visual system to adjust our sensitivity to light. They are mediated by an assortment of cellular and network processes distributed across the retina and visual cortex. Both have been demonstrated in the eyes of many vertebrates, but only luminance adaptation has been shown in invertebrate eyes to date. Since the computational benefits of contrast adaptation should apply to all visual systems, we investigated whether this mechanism operates in horseshoe crab eyes, one of the best-understood neural networks in the animal kingdom. The spike trains of optic nerve fibers were recorded in response to light stimuli modulated randomly in time and delivered to single ommatidia or the whole eye. We found that the retina adapts to both the mean luminance and contrast of a white-noise stimulus, that luminance- and contrast-adaptive processes are largely independent, and that they originate within an ommatidium. Network interactions are not involved. A published computer model that simulates existing knowledge of the horseshoe crab eye did not show contrast adaptation, suggesting that a heretofore unknown mechanism may underlie the phenomenon. This mechanism does not appear to reside in photoreceptors because white-noise analysis of electroretinogram recordings did not show contrast adaptation. The likely site of origin is therefore the spike discharge mechanism of optic nerve fibers. The finding of contrast adaption in a retinal network as simple as the horseshoe crab eye underscores the broader importance of this image processing strategy to vision.
Collapse
Affiliation(s)
- Tchoudomira M Valtcheva
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida; and
| | - Christopher L Passaglia
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida; and Department of Ophthalmology, University of South Florida, Tampa, Florida
| |
Collapse
|
47
|
Bolte P, Herrling R, Dorgau B, Schultz K, Feigenspan A, Weiler R, Dedek K, Janssen-Bienhold U. Expression and Localization of Connexins in the Outer Retina of the Mouse. J Mol Neurosci 2015; 58:178-92. [PMID: 26453550 DOI: 10.1007/s12031-015-0654-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/08/2015] [Indexed: 01/30/2023]
Abstract
The identification of the proteins that make up the gap junction channels between rods and cones is of crucial importance to understand the functional role of photoreceptor coupling within the retinal network. In vertebrates, connexin proteins constitute the structural components of gap junction channels. Connexin36 is known to be expressed in cones whereas extensive investigations have failed to identify the corresponding connexin expressed in rods. Using immunoelectron microscopy, we demonstrate that connexin36 (Cx36) is present in gap junctions of cone but not rod photoreceptors in the mouse retina. To identify the rod connexin, we used nested reverse transcriptase polymerase chain reaction and tested retina and photoreceptor samples for messenger RNA (mRNA) expression of all known connexin genes. In addition to connexin36, we detected transcripts for connexin32, connexin43, connexin45, connexin50, and connexin57 in photoreceptor samples. Immunohistochemistry showed that connexin43, connexin45, connexin50, and connexin57 proteins are expressed in the outer plexiform layer. However, none of these connexins was detected at gap junctions between rods and cones as a counterpart of connexin36. Therefore, the sought-after rod protein must be either an unknown connexin sequence, a connexin36 splice product not detected by our antibodies, or a protein from a further gap junction protein family.
Collapse
Affiliation(s)
- Petra Bolte
- Neurobiology Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111, Oldenburg, Germany.,Animal Navigation, University of Oldenburg, 26111, Oldenburg, Germany
| | - Regina Herrling
- Neurobiology Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111, Oldenburg, Germany
| | - Birthe Dorgau
- Neurobiology Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111, Oldenburg, Germany.,Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Konrad Schultz
- Neurobiology Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111, Oldenburg, Germany
| | - Andreas Feigenspan
- Neurobiology Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111, Oldenburg, Germany.,Animal Physiology, FAU Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Reto Weiler
- Neurobiology Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, 26111, Oldenburg, Germany
| | - Karin Dedek
- Neurobiology Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111, Oldenburg, Germany. .,Research Center Neurosensory Science, University of Oldenburg, 26111, Oldenburg, Germany.
| | - Ulrike Janssen-Bienhold
- Neurobiology Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111, Oldenburg, Germany. .,Research Center Neurosensory Science, University of Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
48
|
Argüello E, Silva R, Huerta M, Castillo C. New trends in computational modeling: a Neuroid-based retina model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:4561-4. [PMID: 24110749 DOI: 10.1109/embc.2013.6610562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It is thought that using detailed neuron-models could lead to a better understanding of how the nervous system works. However, neural networks preserve their collective computational properties, regardless of the level of description used for modeling the main building block. In this paper, we built a Neuroid-based retina model. As a result of the implementation, the Neuroid was able to reproduce the essential features of the photoreceptor response to light. Likewise, the retina model responded to specific visual effects such as simultaneous contrast, Mach bands and Hermann grid. All of these suggest that the Neuroid comprises enough functional characteristics, such that we could focus not only on the most relevant computational aspects of nerve cells, but also in the collective capabilities of large-scale neural networks.
Collapse
|
49
|
Neural variability: friend or foe? Trends Cogn Sci 2015; 19:322-8. [PMID: 25979849 DOI: 10.1016/j.tics.2015.04.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/31/2015] [Accepted: 04/09/2015] [Indexed: 12/17/2022]
|
50
|
Greene E. Evaluating letter recognition, flicker fusion, and the Talbot-Plateau law using microsecond-duration flashes. PLoS One 2015; 10:e0123458. [PMID: 25875652 PMCID: PMC4395448 DOI: 10.1371/journal.pone.0123458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 03/03/2015] [Indexed: 11/18/2022] Open
Abstract
Four experiments examined the ability of respondents to identify letters that were displayed on an LED array with flashes lasting little more than a microsecond. The first experiment displayed each letter with a single, simultaneous flash of all the dots forming the letter and established the relation of flash intensity to the probability of letter identification. The second experiment displayed the letters with multiple flashes at different frequencies to determine the probability that the sequence of flashes would be perceived as fused. The third experiment displayed the letters at a frequency that was above the flicker-fusion frequency, varying flash intensity to establish the amount needed to elicit a given probability of letter identification. The fourth experiment displayed each letter twice, once at a frequency where no flicker was perceived and also with steady light emission. The intensity of each flash was fixed and the steady intensity was varied; respondents were asked to judge whether the fused-flicker display and the steady display appeared to be the same brightness. Steady intensity was about double the average flash intensity where the two conditions were perceived as being equal in brightness. This is at odds with Talbot-Plateau law, which predicts that these two values should be equal. The law was formulated relative to a flash lasting half of each period, so it is surprising that it comes this close to being correct where the flash occupies only a millionth of the total period.
Collapse
Affiliation(s)
- Ernest Greene
- Laboratory for Neurometric Research, Department of Psychology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|