1
|
Buneeva OA, Kapitsa IG, Kazieva LS, Vavilov NE, Zgoda VG, Medvedev AE. The neuroprotective effect of isatin in the rotenone-induced model of parkinonism in rats: the study of delayed effects. BIOMEDITSINSKAIA KHIMIIA 2024; 70:231-239. [PMID: 39239897 DOI: 10.18097/pbmc20247004231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Parkinsonism in rats induced by the pesticide rotenone is one of the most adequate models of Parkinson's disease (PD). Isatin (indole-2,3-dione) is an endogenous regulator found in mammals and humans and exhibiting a wide range of biological activities mediated by numerous isatin-binding proteins, including those associated with neurodegenerative pathology. A course of rotenone administration to rats caused behavioral impairments and changes in the profile and relative content of isatin-binding proteins in the brain. In this study, we have investigated the delayed neuroprotective effect of isatin (5 days after completion of the course of rotenone administration) on behavioral reactions and the relative content of isatin-binding proteins in the brain of rats with rotenone-induced experimental parkinsonism. Although during this period the rats retained locomotor dysfunction, the proteomic analysis data (profile of isatin-binding proteins in the brain and changes in their relative content) differed from the results obtained immediately after completion of the course of rotenone administration. Moreover, all isatin-binding proteins with altered relative content changed during this period are associated to varying degrees with neurodegeneration (many with Parkinson's and Alzheimer's diseases).
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - I G Kapitsa
- Institute of Biomedical Chemistry, Moscow, Russia; Zakusov Institute of Pharmacology, Moscow, Russia
| | - L Sh Kazieva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - N E Vavilov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
2
|
Anastasiadi AT, Arvaniti VZ, Hudson KE, Kriebardis AG, Stathopoulos C, D’Alessandro A, Spitalnik SL, Tzounakas VL. Exploring unconventional attributes of red blood cells and their potential applications in biomedicine. Protein Cell 2024; 15:315-330. [PMID: 38270470 PMCID: PMC11074998 DOI: 10.1093/procel/pwae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Affiliation(s)
- Alkmini T Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Vasiliki-Zoi Arvaniti
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece
| | | | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 13001 Aurora, CO, USA
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Vassilis L Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
3
|
Imomnazarov K, Lopez-Scarim J, Bagheri I, Joers V, Tansey MG, Martín-Peña A. Biochemical Fractionation of Human α-Synuclein in a Drosophila Model of Synucleinopathies. Int J Mol Sci 2024; 25:3643. [PMID: 38612454 PMCID: PMC11011978 DOI: 10.3390/ijms25073643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Synucleinopathies are a group of central nervous system pathologies that are characterized by the intracellular accumulation of misfolded and aggregated α-synuclein in proteinaceous depositions known as Lewy Bodies (LBs). The transition of α-synuclein from its physiological to pathological form has been associated with several post-translational modifications such as phosphorylation and an increasing degree of insolubility, which also correlate with disease progression in post-mortem specimens from human patients. Neuronal expression of α-synuclein in model organisms, including Drosophila melanogaster, has been a typical approach employed to study its physiological effects. Biochemical analysis of α-synuclein solubility via high-speed ultracentrifugation with buffers of increasing detergent strength offers a potent method for identification of α-synuclein biochemical properties and the associated pathology stage. Unfortunately, the development of a robust and reproducible method for the evaluation of human α-synuclein solubility isolated from Drosophila tissues has remained elusive. Here, we tested different detergents for their ability to solubilize human α-synuclein carrying the pathological mutation A53T from the brains of aged flies. We also assessed the effect of sonication on the solubility of human α-synuclein and optimized a protocol to discriminate the relative amounts of soluble/insoluble human α-synuclein from dopaminergic neurons of the Drosophila brain. Our data established that, using a 5% SDS buffer, the three-step protocol separates cytosolic soluble, detergent-soluble and insoluble proteins in three sequential fractions according to their chemical properties. This protocol shows that sonication breaks down α-synuclein insoluble complexes from the fly brain, making them soluble in the SDS buffer and thus enriching the detergent-soluble fraction of the protocol.
Collapse
Affiliation(s)
- Khondamir Imomnazarov
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (K.I.); (J.L.-S.); (I.B.); (V.J.); (M.G.T.)
| | - Joshua Lopez-Scarim
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (K.I.); (J.L.-S.); (I.B.); (V.J.); (M.G.T.)
| | - Ila Bagheri
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (K.I.); (J.L.-S.); (I.B.); (V.J.); (M.G.T.)
| | - Valerie Joers
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (K.I.); (J.L.-S.); (I.B.); (V.J.); (M.G.T.)
| | - Malú Gámez Tansey
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (K.I.); (J.L.-S.); (I.B.); (V.J.); (M.G.T.)
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| | - Alfonso Martín-Peña
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (K.I.); (J.L.-S.); (I.B.); (V.J.); (M.G.T.)
| |
Collapse
|
4
|
Imomnazarov K, Lopez-Scarim J, Bagheri I, Joers V, Tansey MG, Martín-Peña A. Biochemical fractionation of human α-Synuclein in a Drosophila model of synucleinopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579034. [PMID: 38370694 PMCID: PMC10871193 DOI: 10.1101/2024.02.05.579034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Synucleinopathies are a group of central nervous system pathologies that are characterized by neuronal accumulation of misfolded and aggregated α-synuclein in proteinaceous depositions known as Lewy Bodies (LBs). The transition of α-synuclein from its physiological to pathological form has been associated with several post-translational modifications such as phosphorylation and an increasing degree of insolubility, which also correlate with disease progression in postmortem specimens from human patients. Neuronal expression of α-synuclein in model organisms, including Drosophila melanogaster, has been a typical approach employed to study its physiological effects. Biochemical analysis of α-synuclein solubility via high-speed ultracentrifugation with buffers of increasing detergent strength offers a potent method for identification of α-synuclein biochemical properties and the associated pathology stage. Unfortunately, the development of a robust and reproducible method for evaluation of human α-synuclein solubility isolated from Drosophila tissues has remained elusive. Here, we tested different detergents for their ability to solubilize human α-synuclein carrying the pathological mutation A53T from brains of aged flies. We also assessed the effect of sonication on solubility of human α-synuclein and optimized a protocol to discriminate relative amounts of soluble/insoluble human α-synuclein from dopaminergic neurons of the Drosophila brain. Our data established that, using a 5% SDS buffer, the 3-step protocol distinguishes between cytosolic soluble proteins in fraction 1, detergent-soluble proteins in fraction 2 and insoluble proteins in fraction 3. This protocol shows that sonication breaks down α-synuclein insoluble complexes from the fly brain, making them soluble in the SDS buffer and enriching fraction 2 of the protocol.
Collapse
Affiliation(s)
- Khondamir Imomnazarov
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute
| | - Joshua Lopez-Scarim
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute
| | - Ila Bagheri
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute
| | - Valerie Joers
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute
| | - Malú Gámez Tansey
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute
- Fixel Institute for Neurological Diseases, University of Florida
| | - Alfonso Martín-Peña
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute
| |
Collapse
|
5
|
Ratan Y, Rajput A, Pareek A, Pareek A, Jain V, Sonia S, Farooqui Z, Kaur R, Singh G. Advancements in Genetic and Biochemical Insights: Unraveling the Etiopathogenesis of Neurodegeneration in Parkinson's Disease. Biomolecules 2024; 14:73. [PMID: 38254673 PMCID: PMC10813470 DOI: 10.3390/biom14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative movement disorder worldwide, which is primarily characterized by motor impairments. Even though multiple hypotheses have been proposed over the decades that explain the pathogenesis of PD, presently, there are no cures or promising preventive therapies for PD. This could be attributed to the intricate pathophysiology of PD and the poorly understood molecular mechanism. To address these challenges comprehensively, a thorough disease model is imperative for a nuanced understanding of PD's underlying pathogenic mechanisms. This review offers a detailed analysis of the current state of knowledge regarding the molecular mechanisms underlying the pathogenesis of PD, with a particular emphasis on the roles played by gene-based factors in the disease's development and progression. This study includes an extensive discussion of the proteins and mutations of primary genes that are linked to PD, including α-synuclein, GBA1, LRRK2, VPS35, PINK1, DJ-1, and Parkin. Further, this review explores plausible mechanisms for DAergic neural loss, non-motor and non-dopaminergic pathologies, and the risk factors associated with PD. The present study will encourage the related research fields to understand better and analyze the current status of the biochemical mechanisms of PD, which might contribute to the design and development of efficacious and safe treatment strategies for PD in future endeavors.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Zeba Farooqui
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
6
|
Parra-Rivas LA, Madhivanan K, Aulston BD, Wang L, Prakashchand DD, Boyer NP, Saia-Cereda VM, Branes-Guerrero K, Pizzo DP, Bagchi P, Sundar VS, Tang Y, Das U, Scott DA, Rangamani P, Ogawa Y, Subhojit Roy. Serine-129 phosphorylation of α-synuclein is an activity-dependent trigger for physiologic protein-protein interactions and synaptic function. Neuron 2023; 111:4006-4023.e10. [PMID: 38128479 PMCID: PMC10766085 DOI: 10.1016/j.neuron.2023.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/08/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023]
Abstract
Phosphorylation of α-synuclein at the serine-129 site (α-syn Ser129P) is an established pathologic hallmark of synucleinopathies and a therapeutic target. In physiologic states, only a fraction of α-syn is phosphorylated at this site, and most studies have focused on the pathologic roles of this post-translational modification. We found that unlike wild-type (WT) α-syn, which is widely expressed throughout the brain, the overall pattern of α-syn Ser129P is restricted, suggesting intrinsic regulation. Surprisingly, preventing Ser129P blocked activity-dependent synaptic attenuation by α-syn-thought to reflect its normal function. Exploring mechanisms, we found that neuronal activity augments Ser129P, which is a trigger for protein-protein interactions that are necessary for mediating α-syn function at the synapse. AlphaFold2-driven modeling and membrane-binding simulations suggest a scenario where Ser129P induces conformational changes that facilitate interactions with binding partners. Our experiments offer a new conceptual platform for investigating the role of Ser129 in synucleinopathies, with implications for drug development.
Collapse
Affiliation(s)
- Leonardo A Parra-Rivas
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Kayalvizhi Madhivanan
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Brent D Aulston
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Lina Wang
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Dube Dheeraj Prakashchand
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Nicholas P Boyer
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Veronica M Saia-Cereda
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Kristen Branes-Guerrero
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Donald P Pizzo
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, Atlanta, GA, USA
| | - V S Sundar
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Yong Tang
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Utpal Das
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA; Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - David A Scott
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Subhojit Roy
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| |
Collapse
|
7
|
da Cruz Guedes E, Erustes AG, Leão AHFF, Carneiro CA, Abílio VC, Zuardi AW, Hallak JEC, Crippa JA, Bincoletto C, Smaili SS, Reckziegel P, Pereira GJS. Cannabidiol Recovers Dopaminergic Neuronal Damage Induced by Reserpine or α-synuclein in Caenorhabditis elegans. Neurochem Res 2023:10.1007/s11064-023-03905-z. [PMID: 36964823 DOI: 10.1007/s11064-023-03905-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
Progressive neurodegenerative disorders such as Parkinson Disease (PD) lack curative or long-term treatments. At the same time, the increase of the worldwide elderly population and, consequently, the extension in the prevalence of age-related diseases have promoted research interest in neurodegenerative disorders. Caenorhabditis elegans is a free-living nematode widely used as an animal model in studies of human diseases. Here we evaluated cannabidiol (CBD) as a possible neuroprotective compound in PD using the C. elegans models exposed to reserpine. Our results demonstrated that CBD reversed the reserpine-induced locomotor alterations and this response was independent of the NPR-19 receptors, an orthologous receptor for central cannabinoid receptor type 1. Morphological alterations of cephalic sensilla (CEP) dopaminergic neurons indicated that CBD also protects neurons from reserpine-induced degeneration. That is, CBD attenuates the reserpine-induced increase of worms with shrunken soma and dendrites loss, increasing the number of worms with intact CEP neurons. Finally, we found that CBD also reduced ROS formation and α-syn protein accumulation in mutant worms. Our findings collectively provide new evidence that CBD acts as neuroprotector in dopaminergic neurons, reducing neurotoxicity and α-syn accumulation highlighting its potential in the treatment of PD.
Collapse
Affiliation(s)
- Erika da Cruz Guedes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Adolfo Garcia Erustes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Anderson H F F Leão
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - César Alves Carneiro
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Antonio W Zuardi
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - Jaime Eduardo C Hallak
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - José Alexandre Crippa
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - Claudia Bincoletto
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Soraya S Smaili
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Patrícia Reckziegel
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gustavo J S Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil.
| |
Collapse
|
8
|
Forloni G. Alpha Synuclein: Neurodegeneration and Inflammation. Int J Mol Sci 2023; 24:ijms24065914. [PMID: 36982988 PMCID: PMC10059798 DOI: 10.3390/ijms24065914] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Alpha-Synuclein (α-Syn) is one of the most important molecules involved in the pathogenesis of Parkinson's disease and related disorders, synucleinopathies, but also in several other neurodegenerative disorders with a more elusive role. This review analyzes the activities of α-Syn, in different conformational states, monomeric, oligomeric and fibrils, in relation to neuronal dysfunction. The neuronal damage induced by α-Syn in various conformers will be analyzed in relation to its capacity to spread the intracellular aggregation seeds with a prion-like mechanism. In view of the prominent role of inflammation in virtually all neurodegenerative disorders, the activity of α-Syn will also be illustrated considering its influence on glial reactivity. We and others have described the interaction between general inflammation and cerebral dysfunctional activity of α-Syn. Differences in microglia and astrocyte activation have also been observed when in vivo the presence of α-Syn oligomers has been combined with a lasting peripheral inflammatory effect. The reactivity of microglia was amplified, while astrocytes were damaged by the double stimulus, opening new perspectives for the control of inflammation in synucleinopathies. Starting from our studies in experimental models, we extended the perspective to find useful pointers to orient future research and potential therapeutic strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|