1
|
Pagnotta MF, Riddle J, D'Esposito M. Multimodal neuroimaging of hierarchical cognitive control. Biol Psychol 2024; 193:108896. [PMID: 39488242 DOI: 10.1016/j.biopsycho.2024.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Cognitive control enables us to translate our knowledge into actions, allowing us to flexibly adjust our behavior, according to environmental contexts, our internal goals, and future plans. Multimodal neuroimaging and neurostimulation techniques have proven essential for advancing our understanding of how cognitive control emerges from the coordination of distributed neuronal activities in the brain. In this review, we examine the literature on multimodal studies of cognitive control. We explore how these studies provide converging evidence for a novel, multiplexed model of cognitive control, in which neural oscillations support different levels of control processing along a functionally hierarchical organization of distinct frontoparietal networks.
Collapse
Affiliation(s)
- Mattia F Pagnotta
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Justin Riddle
- Department of Psychology, Florida State University, FL, USA; Program in Neuroscience, Florida State University, FL, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Department of Psychology, University of California, Berkeley, CA, USA
| |
Collapse
|
2
|
Bruno V, Castellani N, Garbarini F, Christensen MS. Moving without sensory feedback: online TMS over the dorsal premotor cortex impairs motor performance during ischemic nerve block. Cereb Cortex 2023; 33:2315-2327. [PMID: 35641143 DOI: 10.1093/cercor/bhac210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/14/2022] Open
Abstract
The study investigates the role of dorsal premotor cortex (PMd) in generating predicted sensory consequences of movements, i.e. corollary discharges. In 2 different sessions, we disrupted PMd and parietal hand's multisensory integration site (control area) with transcranial magnetic stimulation (TMS) during a finger-sequence-tapping motor task. In this TMS sham-controlled design, the task was performed with normal sensory feedback and during upper-limb ischemic nerve block (INB), in a time-window where participants moved without somatosensation. Errors and movement timing (objective measures) and ratings about movement perception (subjective measures) were collected. We found that INB overall worsens objective and subjective measures, but crucially in the PMd session, the absence of somatosensation together with TMS disruption induced more errors, less synchronized movements, and increased subjective difficulty ratings as compared with the parietal control session (despite a carryover effect between real and sham stimulation to be addressed in future studies). Contrarily, after parietal area interference session, when sensory information is already missing due to INB, motor performance was not aggravated. Altogether these findings suggest that the loss of actual (through INB) and predicted (through PMd disruption) somatosensory feedback degraded motor performance and perception, highlighting the crucial role of PMd in generating corollary discharge.
Collapse
Affiliation(s)
- Valentina Bruno
- Manibus Lab, Department of Psychology, University of Turin, Via Verdi 10, 10124 Turin, Italy
| | - Nicolò Castellani
- Manibus Lab, Department of Psychology, University of Turin, Via Verdi 10, 10124 Turin, Italy.,Molecular Mind Lab, IMT School for Advanced Studies, Piazza S. Ponziano, 6, 55100 Lucca, Italy
| | - Francesca Garbarini
- Manibus Lab, Department of Psychology, University of Turin, Via Verdi 10, 10124 Turin, Italy
| | - Mark Schram Christensen
- Christensen Lab, Department of Neuroscience, University of Copenhagen, Panum Institute 33-3, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
3
|
Atkinson E, Škarabot J, Ansdell P, Goodall S, Howatson G, Thomas K. Does the reticulospinal tract mediate adaptation to resistance training in humans? J Appl Physiol (1985) 2022; 133:689-696. [PMID: 35834623 PMCID: PMC9467470 DOI: 10.1152/japplphysiol.00264.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Resistance training increases volitional force-producing capacity, and it is widely accepted that such an increase is partly underpinned by adaptations in the central nervous system, particularly in the early phases of training. Despite this, the neural substrate(s) responsible for mediating adaptation remains largely unknown. Most studies have focused on the corticospinal tract, the main descending pathway controlling movement in humans, with equivocal findings. It is possible that neural adaptation to resistance training is mediated by other structures; one such candidate is the reticulospinal tract. The aim of this narrative mini-review is to articulate the potential of the reticulospinal tract to underpin adaptations in muscle strength. Specifically, we 1) discuss why the structure and function of the reticulospinal tract implicate it as a potential site for adaptation; 2) review the animal and human literature that supports the idea of the reticulospinal tract as an important neural substrate underpinning adaptation to resistance training; and 3) examine the potential methodological options to assess the reticulospinal tract in humans.
Collapse
Affiliation(s)
- Elliott Atkinson
- Department of Sport, Exercise and Rehabilitation, grid.42629.3bNorthumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Jakob Škarabot
- School of Sport, Exercise and Health Sciences, grid.6571.5Loughborough University, Loughborough, United Kingdom
| | - Paul Ansdell
- Department of Sport, Exercise and Rehabilitation, grid.42629.3bNorthumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, grid.42629.3bNorthumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, grid.42629.3bNorthumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Kevin Thomas
- Department of Sport, Exercise and Rehabilitation, grid.42629.3bNorthumbria University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
4
|
Matsugi A, Nishishita S, Yoshida N, Tanaka H, Douchi S, Bando K, Tsujimoto K, Honda T, Kikuchi Y, Shimizu Y, Odagaki M, Nakano H, Okada Y, Mori N, Hosomi K, Saitoh Y. Impact of Repetitive Transcranial Magnetic Stimulation to the Cerebellum on Performance of a Ballistic Targeting Movement. CEREBELLUM (LONDON, ENGLAND) 2022:10.1007/s12311-022-01438-9. [PMID: 35781778 DOI: 10.1007/s12311-022-01438-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 12/30/2022]
Abstract
This study aimed to investigate the effects of repetitive transcranial magnetic stimulation (rTMS) of the cerebellum on changes in motor performance during a series of repetitive ballistic-targeting tasks. Twenty-two healthy young adults (n = 12 in the active-rTMS group and n = 10 in the sham rTMS group) participated in this study. The participants sat on a chair in front of a monitor and fixed their right forearms to a manipulandum. They manipulated the handle with the flexion/extension of the wrist to move the bar on the monitor. Immediately after a beep sound was played, the participant moved the bar as quickly as possible to the target line. After the first 10 repetitions of the ballistic-targeting task, active or sham rTMS (1 Hz, 900 pulses) was applied to the right cerebellum. Subsequently, five sets of 100 repetitions of this task were conducted. Participants in the sham rTMS group showed improved reaction time, movement time, maximum velocity of movement, and targeting error after repetition. However, improvements were inhibited in the active-rTMS group. Low-frequency cerebellar rTMS may disrupt motor learning during repetitive ballistic-targeting tasks. This supports the hypothesis that the cerebellum contributes to motor learning and motor-error correction in ballistic-targeting movements.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Hojo 5-11-10, Daitou city, Osaka, 574-0011, Japan.
| | - Satoru Nishishita
- Institute of Rehabilitation Science, Tokuyukai Medical Corporation, 3-11-1 Sakuranocho, Toyonaka City, Osaka, 560-0054, Japan.,Kansai Rehabilitation Hospital, 3-11-1 Sakuranocho, Toyonaka City, Osaka, 560-0054, Japan
| | - Naoki Yoshida
- Okayama Healthcare Professional University, Okayama, Japan
| | - Hiroaki Tanaka
- Department of Physical Medicine and Rehabilitation, Kansai Medical University Hirakata Hospital, Shinmachi 2-3-1, Hirakata City, Osaka, 573-1191, Japan.,Department of Physical Medicine and Rehabilitation, Kansai Medical University, Shinmachi 2-5-1, Hirakata City, Osaka, 573-1010, Japan
| | - Shinya Douchi
- Department of Rehabilitation, National Hospital Organization Kinki-chuo Chest Medical Center, 1180 Nagasone-Town, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Kyota Bando
- National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, 187-0031, Japan
| | - Kengo Tsujimoto
- National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, 187-0031, Japan
| | - Takeru Honda
- Basic Technology Research Center, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Yutaka Kikuchi
- Department of Rehabilitation for Intractable Neurological Disorders, Institute of Brain and Blood Vessels, Mihara Memorial Hospital, Ohtamachi366, Isesaki City, Gunma, 372-0006, Japan
| | - Yuto Shimizu
- Department of Rehabilitation for Intractable Neurological Disorders, Institute of Brain and Blood Vessels, Mihara Memorial Hospital, Ohtamachi366, Isesaki City, Gunma, 372-0006, Japan
| | - Masato Odagaki
- Maebashi Institute of Technology, Maebashi, Gunma Prefecture, Japan
| | - Hideki Nakano
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Yohei Okada
- Neurorehabilitation Research Center of Kio University, Nara, Koryo-cho, Kitakatsuragi-gun, 635-0832, Japan
| | - Nobuhiko Mori
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka, 565-0871, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka, 565-0871, Japan
| | - Youichi Saitoh
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Machikaneyama 1-3, Toyonaka City, Osaka, 560-8531, Japan.,Tokuyukai Rehabilitation Clinic, Shinsenrinishimachi 2-24-18, Toyonaka City, Osaka, 560-0083, Japan
| |
Collapse
|
5
|
Nasr K, Haslacher D, Dayan E, Censor N, Cohen LG, Soekadar SR. Breaking the boundaries of interacting with the human brain using adaptive closed-loop stimulation. Prog Neurobiol 2022; 216:102311. [PMID: 35750290 DOI: 10.1016/j.pneurobio.2022.102311] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022]
Abstract
The human brain is arguably one of the most complex systems in nature. To understand how it operates, it is essential to understand the link between neural activity and behavior. Experimental investigation of that link requires tools to interact with neural activity during behavior. Human neuroscience, however, has been severely bottlenecked by the limitations of these tools. While invasive methods can support highly specific interaction with brain activity during behavior, their applicability in human neuroscience is limited. Despite extensive development in the last decades, noninvasive alternatives have lacked spatial specificity and yielded results that are commonly fraught with variability and replicability issues, along with relatively limited understanding of the neural mechanisms involved. Here we provide a comprehensive review of the state-of-the-art in interacting with human brain activity and highlight current limitations and recent efforts to overcome these limitations. Beyond crucial technical and scientific advancements in electromagnetic brain stimulation, new frontiers in interacting with human brain activity such as task-irrelevant sensory stimulation and focal ultrasound stimulation are introduced. Finally, we argue that, along with technological improvements and breakthroughs in noninvasive methods, a paradigm shift towards adaptive closed-loop stimulation will be a critical step for advancing human neuroscience.
Collapse
Affiliation(s)
- Khaled Nasr
- Clinical Neurotechnology Laboratory & Center for Translational Neuromodulation, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Haslacher
- Clinical Neurotechnology Laboratory & Center for Translational Neuromodulation, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eran Dayan
- Department of Radiology and Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nitzan Censor
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institutes of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Surjo R Soekadar
- Clinical Neurotechnology Laboratory & Center for Translational Neuromodulation, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Bashir S, Uzair M, Abualait T, Arshad M, Khallaf RA, Niaz A, Thani Z, Yoo WK, Túnez I, Demirtas-Tatlidede A, Meo SA. Effects of transcranial magnetic stimulation on neurobiological changes in Alzheimer's disease (Review). Mol Med Rep 2022; 25:109. [PMID: 35119081 PMCID: PMC8845030 DOI: 10.3892/mmr.2022.12625] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and brain neuronal loss. A pioneering field of research in AD is brain stimulation via electromagnetic fields (EMFs), which may produce clinical benefits. Noninvasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS), have been developed to treat neurological and psychiatric disorders. The purpose of the present review is to identify neurobiological changes, including inflammatory, neurodegenerative, apoptotic, neuroprotective and genetic changes, which are associated with repetitive TMS (rTMS) treatment in patients with AD. Furthermore, it aims to evaluate the effect of TMS treatment in patients with AD and to identify the associated mechanisms. The present review highlights the changes in inflammatory and apoptotic mechanisms, mitochondrial enzymatic activities, and modulation of gene expression (microRNA expression profiles) associated with rTMS or sham procedures. At the molecular level, it has been suggested that EMFs generated by TMS may affect the cell redox status and amyloidogenic processes. TMS may also modulate gene expression by acting on both transcriptional and post‑transcriptional regulatory mechanisms. TMS may increase brain cortical excitability, induce specific potentiation phenomena, and promote synaptic plasticity and recovery of impaired functions; thus, it may re‑establish cognitive performance in patients with AD.
Collapse
Affiliation(s)
- Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad 44000, Pakistan
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad 44000, Pakistan
| | - Roaa A. Khallaf
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Asim Niaz
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Ziyad Thani
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Anyang, Gyeonggi-do 24252, Republic of Korea
| | - Isaac Túnez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing/ Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Cordoba, Cordoba 14071, Spain
- Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Ministry for Economy, Industry and Competitiveness, 28046 Madrid, Spain
| | | | - Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Uzair M, Abualait T, Arshad M, Yoo WK, Mir A, Bunyan RF, Bashir S. Transcranial magnetic stimulation in animal models of neurodegeneration. Neural Regen Res 2022; 17:251-265. [PMID: 34269184 PMCID: PMC8464007 DOI: 10.4103/1673-5374.317962] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 11/13/2022] Open
Abstract
Brain stimulation techniques offer powerful means of modulating the physiology of specific neural structures. In recent years, non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation, have emerged as therapeutic tools for neurology and neuroscience. However, the possible repercussions of these techniques remain unclear, and there are few reports on the incisive recovery mechanisms through brain stimulation. Although several studies have recommended the use of non-invasive brain stimulation in clinical neuroscience, with a special emphasis on TMS, the suggested mechanisms of action have not been confirmed directly at the neural level. Insights into the neural mechanisms of non-invasive brain stimulation would unveil the strategies necessary to enhance the safety and efficacy of this progressive approach. Therefore, animal studies investigating the mechanisms of TMS-induced recovery at the neural level are crucial for the elaboration of non-invasive brain stimulation. Translational research done using animal models has several advantages and is able to investigate knowledge gaps by directly targeting neuronal levels. In this review, we have discussed the role of TMS in different animal models, the impact of animal studies on various disease states, and the findings regarding brain function of animal models after TMS in pharmacology research.
Collapse
Affiliation(s)
- Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Anyang, South Korea
- Hallym Institute for Translational Genomics & Bioinformatics, Hallym University College of Medicine, Anyang, South Korea
| | - Ali Mir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Reem Fahd Bunyan
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
8
|
Rolle CE, Pedersen ML, Johnson N, Amemori KI, Ironside M, Graybiel AM, Pizzagalli DA, Etkin A. The Role of the Dorsal-Lateral Prefrontal Cortex in Reward Sensitivity During Approach-Avoidance Conflict. Cereb Cortex 2021; 32:1269-1285. [PMID: 34464445 PMCID: PMC9077265 DOI: 10.1093/cercor/bhab292] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/09/2023] Open
Abstract
Approach-Avoidance conflict (AAC) arises from decisions with embedded positive and negative outcomes, such that approaching leads to reward and punishment and avoiding to neither. Despite its importance, the field lacks a mechanistic understanding of which regions are driving avoidance behavior during conflict. In the current task, we utilized transcranial magnetic stimulation (TMS) and drift-diffusion modeling to investigate the role of one of the most prominent regions relevant to AAC-the dorsolateral prefrontal cortex (dlPFC). The first experiment uses in-task disruption to examine the right dlPFC's (r-dlPFC) causal role in avoidance behavior. The second uses single TMS pulses to probe the excitability of the r-dlPFC, and downstream cortical activations, during avoidance behavior. Disrupting r-dlPFC during conflict decision-making reduced reward sensitivity. Further, r-dlPFC was engaged with a network of regions within the lateral and medial prefrontal, cingulate, and temporal cortices that associate with behavior during conflict. Together, these studies use TMS to demonstrate a role for the dlPFC in reward sensitivity during conflict and elucidate the r-dlPFC's network of cortical regions associated with avoidance behavior. By identifying r-dlPFC's mechanistic role in AAC behavior, contextualized within its conflict-specific downstream neural connectivity, we advance dlPFC as a potential neural target for psychiatric therapeutics.
Collapse
Affiliation(s)
- Camarin E Rolle
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA,Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA,Alto Neuroscience, Inc., Los Altos, CA 94022, USA
| | - Mads L Pedersen
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, RI 02912, USA,Department of Psychology, University of Oslo, NO-0316 Oslo, Norway
| | - Noriah Johnson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA,Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA,Alto Neuroscience, Inc., Los Altos, CA 94022, USA
| | - Ken-ichi Amemori
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, 606-8501 Kyoto, Japan
| | - Maria Ironside
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK 74136, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Amit Etkin
- Address correspondence to Amit Etkin, Alto Neuroscience, Inc., 153 Second street (suite 107), Los Altos, CA 94022, USA.
| |
Collapse
|
9
|
Baliga SP, Mehta UM. A Review of Studies Leveraging Multimodal TMS-fMRI Applications in the Pathophysiology and Treatment of Schizophrenia. Front Hum Neurosci 2021; 15:662976. [PMID: 34421559 PMCID: PMC8372850 DOI: 10.3389/fnhum.2021.662976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
The current review provides an overview of the existing literature on multimodal transcranial magnetic stimulation, and functional magnetic resonance imaging (TMS/fMRI) studies in individuals with schizophrenia and discusses potential future avenues related to the same. Multimodal studies investigating pathophysiology have explored the role of abnormal thalamic reactivity and have provided further evidence supporting the hypothesis of schizophrenia as a disorder of aberrant connectivity and cortical plasticity. Among studies examining treatment, low-frequency rTMS for the management of persistent auditory verbal hallucinations (AVH) was the most studied. While multimodal TMS/fMRI studies have provided evidence of involvement of local speech-related and distal networks on stimulation of the left temporoparietal cortex, current evidence does not suggest the superiority of fMRI based neuronavigation over conventional methods or of active rTMS over sham for treatment of AVH. Apart from these, preliminary findings suggest a role of rTMS in treating deficits in neurocognition, social cognition, and self-agency. However, most of these studies have only examined medication-resistant symptoms and have methodological concerns arising from small sample sizes and short treatment protocols. That being said, combining TMS with fMRI appears to be a promising approach toward elucidating the pathophysiology of schizophrenia and could also open up a possibility toward developing personalized treatment for its persistent and debilitating symptoms.
Collapse
Affiliation(s)
- Sachin Pradeep Baliga
- Department of Psychiatry, TN Medical College and BYL Nair Charitable Hospital, Mumbai, India
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
10
|
Deriu F, Martinez G, Loi N, Ventura L, Ginatempo F, Dvir Z, Manca A. Reporting quality of TMS studies in neurological conditions: A critical appraisal of the main gaps, challenges and clinical implications. J Neurosci Methods 2021; 362:109293. [PMID: 34293408 DOI: 10.1016/j.jneumeth.2021.109293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/22/2021] [Accepted: 07/16/2021] [Indexed: 11/28/2022]
Abstract
Transparent reporting of study methods and findings can dramatically expand the reliability and impact of health research. Evidence-based reporting checklists and guidelines, such as those hosted by the EQUATOR network, provide a framework for summarizing statistics, methods and data presentation. While being increasingly used in several research fields, such trend toward better control seems in its infancy in the field of transcranial magnetic stimulation (TMS). By the present work we aimed at assessing the quality of methodological and statistical reporting of TMS-based investigations in individuals with neurological motor impairments. We completed a methodological survey of all the studies conducted in the last two decades on the application of TMS to evaluate motor impairments in individual with neurological conditions. The pre-planned literature search of three major biomedical databases resulted in 1109 articles retrieved, 571 of which satisfied the eligibility criteria. The survey revealed that most of the studies suffered from relevant methodological and statistical issues, which potentially affect data interpretation and usability. Among these, sample size calculation, indices of change other than p values, reproducibility and clinical relevance/responsiveness emerged as those elements most commonly neglected. To increase research reliability of TMS data, we recommend adhering to international initiatives like the EQUATOR, that can impact clinical research by promoting adequate reporting. In particular, we advocate an update of the submission policies of the journals active in this field in line with adjacent areas, such as neurorehabilitation, that require the uploading of completed checklists that rationalize reporting.
Collapse
Affiliation(s)
- Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| | - Gianluca Martinez
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Nicola Loi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Lucia Ventura
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Zeevi Dvir
- Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
11
|
An Overview of Noninvasive Brain Stimulation: Basic Principles and Clinical Applications. Can J Neurol Sci 2021; 49:479-492. [PMID: 34238393 DOI: 10.1017/cjn.2021.158] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The brain has the innate ability to undergo neuronal plasticity, which refers to changes in its structure and functions in response to continued changes in the environment. Although these concepts are well established in animal slice preparation models, their application to a large number of human subjects could only be achieved using noninvasive brain stimulation (NIBS) techniques. In this review, we discuss the mechanisms of plasticity induction using NIBS techniques including transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), random noise stimulation (RNS), transcranial ultrasound stimulation (TUS), vagus nerve stimulation (VNS), and galvanic vestibular stimulation (GVS). We briefly introduce these techniques, explain the stimulation parameters and potential clinical implications. Although their mechanisms are different, all these NIBS techniques can be used to induce plasticity at the systems level, to examine the neurophysiology of brain circuits and have potential therapeutic use in psychiatric and neurological disorders. TMS is the most established technique for the treatment of brain disorders, and repetitive TMS is an approved treatment for medication-resistant depression. Although the data on the clinical utility of the other modes of stimulation are more limited, the electrical stimulation techniques (tDCS, tACS, RNS, VNS, GVS) have the advantage of lower cost, portability, applicability at home, and can readily be combined with training or rehabilitation. Further research is needed to expand the clinical utility of NIBS and test the combination of different modes of NIBS to optimize neuromodulation induced clinical benefits.
Collapse
|
12
|
Theta-burst transcranial magnetic stimulation induced functional connectivity changes between dorsolateral prefrontal cortex and default-mode-network. Brain Imaging Behav 2021; 14:1955-1963. [PMID: 31197581 DOI: 10.1007/s11682-019-00139-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Functional connectivity (FC) is fundamental to brain function and has been implicated in many neuropsychological and neuropsychiatric disorders. It is then of great scientific and clinical interest to find a non-invasive approach to modulate FC. Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulational tool that can affect the target region and remote brain areas. While the distributed effects of TMS are postulated to be through either structural or functional connectivity, an understudied but of great scientific interest question is whether TMS can change the FC between these regions. The purpose of this study was to address this question in normal healthy brain using TMS with continuous theta burst stimulation (cTBS) pulses, which are known to have long-lasting inhibition function. FC was calculated from resting state fMRI before and after real and control (SHAM) stimulation. Compared to SHAM, the repetitive TMS (rTMS) reduces FC between the cTBS target: the left dorsolateral prefrontal cortex (lDLPFC) and brain regions within the default mode network (DMN), proving the effects of rTMS on FC. The reduction of FC might be the results of the inhibitory effects of cTBS rTMS.
Collapse
|
13
|
Hobot J, Klincewicz M, Sandberg K, Wierzchoń M. Causal Inferences in Repetitive Transcranial Magnetic Stimulation Research: Challenges and Perspectives. Front Hum Neurosci 2021; 14:586448. [PMID: 33584220 PMCID: PMC7873895 DOI: 10.3389/fnhum.2020.586448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/30/2020] [Indexed: 11/29/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is used to make inferences about relationships between brain areas and their functions because, in contrast to neuroimaging tools, it modulates neuronal activity. The central aim of this article is to critically evaluate to what extent it is possible to draw causal inferences from repetitive TMS (rTMS) data. To that end, we describe the logical limitations of inferences based on rTMS experiments. The presented analysis suggests that rTMS alone does not provide the sort of premises that are sufficient to warrant strong inferences about the direct causal properties of targeted brain structures. Overcoming these limitations demands a close look at the designs of rTMS studies, especially the methodological and theoretical conditions which are necessary for the functional decomposition of the relations between brain areas and cognitive functions. The main points of this article are that TMS-based inferences are limited in that stimulation-related causal effects are not equivalent to structure-related causal effects due to TMS side effects, the electric field distribution, and the sensitivity of neuroimaging and behavioral methods in detecting structure-related effects and disentangling them from confounds. Moreover, the postulated causal effects can be based on indirect (network) effects. A few suggestions on how to manage some of these limitations are presented. We discuss the benefits of combining rTMS with neuroimaging in experimental reasoning and we address the restrictions and requirements of rTMS control conditions. The use of neuroimaging and control conditions allows stronger inferences to be gained, but the strength of the inferences that can be drawn depends on the individual experiment's designs. Moreover, in some cases, TMS might not be an appropriate method of answering causality-related questions or the hypotheses have to account for the limitations of this technique. We hope this summary and formalization of the reasoning behind rTMS research can be of use not only for scientists and clinicians who intend to interpret rTMS results causally but also for philosophers interested in causal inferences based on brain stimulation research.
Collapse
Affiliation(s)
- Justyna Hobot
- Consciousness Lab, Psychology Institute, Jagiellonian University, Krakow, Poland
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Michał Klincewicz
- Cognitive Science, Institute of Philosophy, Jagiellonian University, Krakow, Poland
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, Netherlands
| | - Kristian Sandberg
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Michał Wierzchoń
- Consciousness Lab, Psychology Institute, Jagiellonian University, Krakow, Poland
| |
Collapse
|
14
|
Xie YJ, Chen Y, Tan HX, Guo QF, Lau BWM, Gao Q. Repetitive transcranial magnetic stimulation for lower extremity motor function in patients with stroke: a systematic review and network meta-analysis. Neural Regen Res 2021; 16:1168-1176. [PMID: 33269766 PMCID: PMC8224108 DOI: 10.4103/1673-5374.300341] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcranial magnetic stimulation, a type of noninvasive brain stimulation, has become an ancillary therapy for motor function rehabilitation. Most previous studies have focused on the effects of repetitive transcranial magnetic stimulation (rTMS) on motor function in stroke patients. There have been relatively few studies on the effects of different modalities of rTMS on lower extremity motor function and corticospinal excitability in patients with stroke. The MEDLINE, Embase, Cochrane Library, ISI Science Citation Index, Physiotherapy Evidence Database, China National Knowledge Infrastructure Library, and ClinicalTrials.gov databases were searched. Parallel or crossover randomized controlled trials that addressed the effectiveness of rTMS in patients with stroke, published from inception to November 28, 2019, were included. Standard pairwise meta-analysis was conducted using R version 3.6.1 with the “meta” package. Bayesian network analysis using the Markov chain Monte Carlo algorithm was conducted to investigate the effectiveness of different rTMS protocol interventions. Network meta-analysis results of 18 randomized controlled trials regarding lower extremity motor function recovery revealed that low-frequency rTMS had better efficacy in promoting lower extremity motor function recovery than sham stimulation. Network meta-analysis results of five randomized controlled trials demonstrated that high-frequency rTMS led to higher amplitudes of motor evoked potentials than low-frequency rTMS or sham stimulation. These findings suggest that rTMS can improve motor function in patients with stroke, and that low-frequency rTMS mainly affects motor function, whereas high-frequency rTMS increases the amplitudes of motor evoked potentials. More high-quality randomized controlled trials are needed to validate this conclusion. The work was registered in PROSPERO (registration No. CRD42020147055) on April 28, 2020.
Collapse
Affiliation(s)
- Yun-Juan Xie
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Chen
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hui-Xin Tan
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qi-Fan Guo
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Qiang Gao
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
15
|
Cross-modal involvement of the primary somatosensory cortex in visual working memory: A repetitive TMS study. Neurobiol Learn Mem 2020; 175:107325. [PMID: 33059033 DOI: 10.1016/j.nlm.2020.107325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/01/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Recent literature suggests that the primary somatosensory cortex (S1), once thought to be a low-level area only modality-specific, is also involved in higher-level, cross-modal, cognitive functions. In particular, electrophysiological studies have highlighted that the cross-modal activation of this area may also extend to visual Working Memory (WM), being part of a mnemonic network specific for the temporary storage and manipulation of visual information concerning bodies and body-related actions. However, the causal recruitment of S1 in the WM network remains speculation. In the present study, by taking advantage of repetitive Transcranial Magnetic Stimulation (rTMS), we look for causal evidence that S1 is implicated in the retention of visual stimuli that are salient for this cortical area. To this purpose, in a first experiment, high-frequency (10 Hz) rTMS was delivered over S1 of the right hemisphere, and over two control sites, the right lateral occipital cortex (LOC) and the right dorsolateral prefrontal cortex (dlPFC), during the maintenance phase of a high-load delayed match-to-sample task in which body-related visual stimuli (non-symbolic hand gestures) have to be retained. In a second experiment, the specificity of S1 recruitment was deepened by using a version of the delayed match-to-sample task in which visual stimuli depict geometrical shapes (non-body related stimuli). Results show that rTMS perturbation of S1 activity leads to an enhancement of participants' performance that is selective for body-related visual stimuli; instead, the stimulation of the right LOC and dlPFC does not affect the temporary storage of body-related visual stimuli. These findings suggest that S1 may be recruited in visual WM when information to store (and recall) is salient for this area, corroborating models which suggest the existence of a dedicated mnemonic system for body-related information in which also somatosensory cortices play a key role, likely thanks to their cross-modal (visuo-tactile) properties.
Collapse
|
16
|
Ngetich R, Zhou J, Zhang J, Jin Z, Li L. Assessing the Effects of Continuous Theta Burst Stimulation Over the Dorsolateral Prefrontal Cortex on Human Cognition: A Systematic Review. Front Integr Neurosci 2020; 14:35. [PMID: 32848648 PMCID: PMC7417340 DOI: 10.3389/fnint.2020.00035] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/03/2020] [Indexed: 01/11/2023] Open
Abstract
Theta burst stimulation is increasingly growing in popularity as a non-invasive method of moderating corticospinal networks. Theta burst stimulation uses gamma frequency trains applied at the rhythm of theta, thus, mimicking theta–gamma coupling involved in cognitive processes. The dorsolateral prefrontal cortex has been found to play a crucial role in numerous cognitive processes. Here, we include 25 studies for review to determine the cognitive effects of continuous theta burst stimulation over the dorsolateral prefrontal cortex; 20 of these studies are healthy participant and five are patient (pharmacotherapy-resistant depression) studies. Due to the heterogeneous nature of the included studies, only a descriptive approach is used and meta-analytics ruled out. The cognitive effect is measured on various cognitive domains: attention, working memory, planning, language, decision making, executive function, and inhibitory and cognitive control. We conclude that continuous theta burst stimulation over the dorsolateral prefrontal cortex mainly inhibits cognitive performance. However, in some instances, it can lead to improved performance by inhibiting the effect of distractors or other competing irrelevant cognitive processes. To be precise, continuous theta burst stimulation over the right dorsolateral prefrontal cortex impaired attention, inhibitory control, planning, and goal-directed behavior in decision making but also improved decision making by reducing impulsivity. Conversely, continuous theta burst stimulation over the left dorsolateral prefrontal cortex impaired executive function, working, auditory feedback regulation, and cognitive control but accelerated the planning, decision-making process. These findings constitute a useful contribution to the literature on the cognitive effects of continuous theta burst stimulation over the dorsolateral prefrontal cortex.
Collapse
Affiliation(s)
- Ronald Ngetich
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Zhou
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjun Zhang
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenlan Jin
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Li
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Baek H, Sariev A, Lee S, Dong SY, Royer S, Kim H. Deep Cerebellar Low-Intensity Focused Ultrasound Stimulation Restores Interhemispheric Balance after Ischemic Stroke in Mice. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2073-2079. [PMID: 32746292 DOI: 10.1109/tnsre.2020.3002207] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ischemic damage after stroke disrupts the complex balance of inhibitory and excitatory activity within cortical network causing brain functional asymmetry. Cerebellar deep nuclei with its extensive projections to cortical regions could be a prospective target for stimulation to restore inter-hemispheric balance and enhance neural plasticity after stroke. In our study, we repeatedly stimulated the lateral cerebellar nucleus (LCN) by low-intensity focused ultrasound (LIFU) for 3 days to enhance rehabilitation after middle cerebral artery occlusion (MCAO) in a mouse stroke model. The neural activity of the mice sensorimotor cortex was measured using epidural electrodes and analyzed with quantified electroencephalography (qEEG). Pairwise derived Brain Symmetry Index (pdBSI) and delta power were used to assess the neurorehabilitative effect of LIFU stimulation. Compared to the Stroke (non-treated) group, the LIFU group exhibited a decrease in cortical pathological delta activity, significant recovery in pdBSI and enhanced performance on the balance beam walking test. These results suggest that cerebellar LIFU stimulation could be a non-invasive method for stroke rehabilitation through the restoration of interhemispheric balance.
Collapse
|
18
|
Duran KA, O'Halloran H, Soder H, Yasin S, Kramer R, Rosen S, Brenya J, Chavarria K, Savitska L, Keenan JP. The medial prefrontal cortex: a potential link between self-deception and affect. Int J Neurosci 2020; 131:701-707. [PMID: 32253949 DOI: 10.1080/00207454.2020.1753729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Medial Prefrontal Cortex (MPFC) is crucial for normal social functioning in humans. Because of its involvement in social monitoring, self-awareness, and self-enhancement, the MPFC may be critical to buffering negative affect and establishing a positive self-esteem. For example, we have previously found that disruption of the MPFC leads to more honest responses, which implies that the MPFC may be critically involved in self-deception. We therefore hypothesized that disrupting the MPFC would lead to a decrease in affect. Employing a virtual lesion TMS (Transcranial Magnetic Stimulation) technique, we disrupted the MPFC while participants rated their mood based on two anchor affect terms. During TMS, the participants rated their current emotional mental state. Compared to sham TMS, it was found that mood was reduced immediately following single-pulse MPFC stimulation. The results supported the hypothesis the MPFC mood reduction occurs when the MPFC is disrupted. Because this study replicated the conditions employed in previous self-deception studies, we suggest that the results may indicate that lack of self-enhancement may lead to a decrease in mood. Further studies should examine this possibility.
Collapse
Affiliation(s)
- Kelly A Duran
- School of Public Policy and Administration, University of Delaware, Newark, New Jersey, USA
| | - Hannah O'Halloran
- Department of Psychology, Wesleyan University, Middletown, Connecticut, USA
| | - Heather Soder
- McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Saeed Yasin
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, New Jersey, USA
| | - Rachel Kramer
- Department of Psychology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Sydney Rosen
- McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Janet Brenya
- McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Katherine Chavarria
- McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Liliia Savitska
- McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Julian Paul Keenan
- McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| |
Collapse
|
19
|
Neuromuscular Mechanisms Underlying Changes in Force Production during an Attentional Focus Task. Brain Sci 2020; 10:brainsci10010033. [PMID: 31936030 PMCID: PMC7016702 DOI: 10.3390/brainsci10010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 11/18/2022] Open
Abstract
We examined the effects of attentional focus cues on maximal voluntary force output of the elbow flexors and the underlying physiological mechanisms. Eleven males participated in two randomized experimental sessions. In each session, four randomized blocks of three maximal voluntary contractions (MVC) were performed. The blocks consisted of two externally and two internally attentional focus cued blocks. In one of the sessions, corticospinal excitability (CSE) was measured. During the stimulation session transcranial magnetic, transmastoid and Erb’s point stimulations were used to induce motor evoked potentials (MEPs), cervicomedullary MEP (CMEPs) and maximal muscle action potential (Mmax), respectively in the biceps brachii. Across both sessions forces were lower (p = 0.024) under the internal (282.4 ± 60.3 N) compared to the external condition (310.7 ± 11.3 N). Muscle co-activation was greater (p = 0.016) under the internal (26.3 ± 11.5%) compared with the external condition (21.5 ± 9.4%). There was no change in CSE. Across both sessions, force measurements were lower (p = 0.033) during the stimulation (279.0 ± 47.1 N) compared with the no-stimulation session (314.1 ± 57.5 N). In conclusion, external focus increased force, likely due to reduced co-activation. Stimulating the corticospinal pathway may confound attentional focus. The stimulations may distract participants from the cues and/or disrupt areas of the cortex responsible for attention and focus.
Collapse
|
20
|
Keeping order in the brain: The supramarginal gyrus and serial order in short-term memory. Cortex 2019; 119:89-99. [DOI: 10.1016/j.cortex.2019.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/22/2019] [Accepted: 04/10/2019] [Indexed: 11/23/2022]
|
21
|
Song D, Chang D, Zhang J, Peng W, Shang Y, Gao X, Wang Z. Reduced brain entropy by repetitive transcranial magnetic stimulation on the left dorsolateral prefrontal cortex in healthy young adults. Brain Imaging Behav 2019; 13:421-429. [PMID: 29629499 DOI: 10.1007/s11682-018-9866-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Entropy indicates system irregularity and the capacity for information processing. Recent research has identified interesting voxel-wise entropy distribution patterns in normal brain and its changes due to aging and brain disorders. A question of great scientific and clinical importance is whether brain entropy (BEN) can be modulated using non-invasive neuromodulations. The purpose of this study was to address this open question using high-frequency repetitive transcranial magnetic stimulation (rTMS). BEN was calculated from resting state fMRI at each voxel acquired before and after applying 20 Hz rTMS or SHAM (control) stimulation. As compared to SHAM, 20 Hz rTMS reduced BEN in medial orbito-frontal cortex and subgenial anterior cingulate cortex (MOFC/sgACC), suggesting a reduced information processing therein, probably as a result of the enhanced top-down regulation by the left DLPFC rTMS. No significant changes were observed to the functional connectivity (FC) between the left DLPFC (the target site) to the rest of the brain, suggesting that rTMS may not affect FC though it might use FC to transfer its effects or the ad hoc information. Our data proved that rTMS can modulate BEN and BEN can be used to monitor rTMS effects.
Collapse
Affiliation(s)
- Donghui Song
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, 126 Wenzhou Road, Building 7, Zhejiang, Province, 310005, Hangzhou, China
| | - Da Chang
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, 126 Wenzhou Road, Building 7, Zhejiang, Province, 310005, Hangzhou, China
| | - Jian Zhang
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, 126 Wenzhou Road, Building 7, Zhejiang, Province, 310005, Hangzhou, China
| | - Wei Peng
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, 126 Wenzhou Road, Building 7, Zhejiang, Province, 310005, Hangzhou, China
| | - Yuanqi Shang
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, 126 Wenzhou Road, Building 7, Zhejiang, Province, 310005, Hangzhou, China
| | - Xin Gao
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, 126 Wenzhou Road, Building 7, Zhejiang, Province, 310005, Hangzhou, China
| | - Ze Wang
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, 126 Wenzhou Road, Building 7, Zhejiang, Province, 310005, Hangzhou, China. .,Department of Radiology, Lewis Katz School of Medicine, Temple University, 3401 N Broad Street, 1st Floor, Radiology, Philadelphia, PA, 19140, USA.
| |
Collapse
|
22
|
Strong SL, Silson EH, Gouws AD, Morland AB, McKeefry DJ. An enhanced role for right hV5/MT+ in the analysis of motion in the contra- and ipsi-lateral visual hemi-fields. Behav Brain Res 2019; 372:112060. [PMID: 31251957 PMCID: PMC6682608 DOI: 10.1016/j.bbr.2019.112060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 11/11/2022]
Abstract
TMS applied to MT/TO-1 and MST/TO-2 disrupts translational motion. In the right hemisphere, disruption affects contra-and ipsi-lateral hemi-fields. In the left hemisphere, disruption is restricted to the contra-lateral hemi-field. Suggests enhanced role for right hemisphere in full-field motion perception.
Previous experiments have demonstrated that transcranial magnetic stimulation (TMS) of human V5/MT+, in either the left or right cerebral hemisphere, can induce deficits in visual motion perception in their respective contra- and ipsi-lateral visual hemi-fields. However, motion deficits in the ipsi-lateral hemi-field are greater when TMS is applied to V5/MT + in the right hemisphere relative to the left hemisphere. One possible explanation for this asymmetry might lie in differential stimulation of sub-divisions within V5/MT + across the two hemispheres. V5/MT + has two major sub-divisions; MT/TO-1 and MST/TO-2, the latter area contains neurons with large receptive fields (RFs) that extend up to 15° further into the ipsi-lateral hemi-field than the former. We wanted to examine whether applying TMS to MT/TO-1 and MST/TO-2 separately could explain the previously reported functional asymmetries for ipsi-lateral motion processing in V5/MT + across right and left cerebral hemispheres. MT/TO-1 and MST/TO-2 were identified in seven subjects using fMRI localisers. In psychophysical experiments subjects identified the translational direction (up/down) of coherently moving dots presented in either the left or right visual field whilst repetitive TMS (25 Hz; 70%) was applied synchronously with stimulus presentation. Application of TMS to MT/TO-1 and MST/TO-2 in the right hemisphere affected translational direction discrimination in both contra-lateral and ipsi-lateral visual fields. In contrast, deficits of motion perception following application of TMS to MT/TO-1 and MST/TO-2 in the left hemisphere were restricted to the contra-lateral visual field. This result suggests an enhanced role for the right hemisphere in processing translational motion across the full visual field.
Collapse
Affiliation(s)
- Samantha L Strong
- Aston Optometry School, Aston University, Birmingham, B4 7ET, UK; School of Optometry and Vision Science, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK.
| | - Edward H Silson
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, USA
| | - André D Gouws
- York Neuroimaging Centre, Department of Psychology, University of York, York, YO10 5DD, UK
| | - Antony B Morland
- York Neuroimaging Centre, Department of Psychology, University of York, York, YO10 5DD, UK; Centre for Neuroscience, Hull-York Medical School, University of York, York, YO10 5DD, UK
| | - Declan J McKeefry
- School of Optometry and Vision Science, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| |
Collapse
|
23
|
Martín-Arévalo E, Lupiáñez J, Narganes-Pineda C, Marino G, Colás I, Chica AB. The causal role of the left parietal lobe in facilitation and inhibition of return. Cortex 2019; 117:311-322. [PMID: 31185374 DOI: 10.1016/j.cortex.2019.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 11/26/2022]
Abstract
Following non-informative peripheral cues, responses are facilitated at the cued compared to the uncued location at short cue-target intervals. This effect reverses at longer intervals, giving rise to Inhibition of Return (IOR). The integration-segregation hypothesis (Lupiáñez, 2010) suggests that peripheral cues always produce an onset-detection cost regardless the behavioral cueing effect that is measured - either facilitation or IOR. In the present study, we used transcranial magnetic stimulation (TMS) to investigate the causal contribution of this detection cost to performance. We used a cueing paradigm with a target discrimination task that was preceded by a non-informative peripheral cue. The presence-absence of a central intervening event was manipulated. Online TMS to the left superior parietal lobe (compared to an active vertex stimulation) lead to an overall more positive effect (faster responses for cued as compared to uncued trials), by putatively impairing the detection cost contribution to performance. The data revealed a strong association between overall RT and the TMS effect, and also between overall RT and the integrity of the first branch of the left superior longitudinal fascicule. These results have critical implications not only for the open debate about the mechanism/s underlying spatial orienting effects, but also for the growing literature demonstrating that white matter connectivity is crucial for explaining inter-individual behavioral variability.
Collapse
Affiliation(s)
- E Martín-Arévalo
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain.
| | - J Lupiáñez
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - C Narganes-Pineda
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - G Marino
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - I Colás
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - Ana B Chica
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| |
Collapse
|
24
|
Koenig L, Ro T. Dissociations of conscious and unconscious perception in TMS-induced blindsight. Neuropsychologia 2019; 128:215-222. [DOI: 10.1016/j.neuropsychologia.2018.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 03/18/2018] [Accepted: 03/22/2018] [Indexed: 01/26/2023]
|
25
|
Li YT, Chen SC, Yang LY, Hsieh TH, Peng CW. Designing and Implementing a Novel Transcranial Electrostimulation System for Neuroplastic Applications: A Preliminary Study. IEEE Trans Neural Syst Rehabil Eng 2019; 27:805-813. [PMID: 30951469 DOI: 10.1109/tnsre.2019.2908674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recently, a specific repetitive transcranial magnetic stimulation (rTMS) waveform, namely, the theta burst stimulation (TBS) protocol, has been proposed for more efficiently inducing neuroplasticity for various clinic rehabilitation purposes. However, few studies have explored the feasibility of using the TBS combined with direct current (dc) waveform for brain neuromodulation; this waveform is transcranially delivered using electrical current power rather than magnetic power. This study implemented a prototype of a novel transcranial electrostimulation device that can flexibly output a waveform that combined dc and the TBS-like protocol and assessed the effects of the novel combinational waveform on neuroplasticity. An in vivo experiment was conducted first to validate the accuracy of the stimulator's current output at various impedance loads. Using this transcranial stimulator, a series of transcranial stimulation experiments was conducted on the brain cortex of rats, in which electrode-tissue impedance and motor evoked potentials (MEPs) were measured. These experiments were designed to assess the feasibility and efficacy of the new combinational waveforms for brain neuroplasticity. Our results indicated that the transcranial electrostimulation system exhibited satisfactory performance, as evidenced by the error percentage of less than 5% for current output. In the animal experiment, the dc combined with intermittent TBS-like protocol exerted a stronger neuroplastic effect than the conventional dc protocol. These results demonstrated that the combination of electrical dc and TBS-like protocols in our system can produce a new feasible therapeutic waveform for transcranially inducing a promising neuromodulatory effect on various diseases of the central nervous system.
Collapse
|
26
|
Tulay EE, Metin B, Tarhan N, Arıkan MK. Multimodal Neuroimaging: Basic Concepts and Classification of Neuropsychiatric Diseases. Clin EEG Neurosci 2019; 50:20-33. [PMID: 29925268 DOI: 10.1177/1550059418782093] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuroimaging techniques are widely used in neuroscience to visualize neural activity, to improve our understanding of brain mechanisms, and to identify biomarkers-especially for psychiatric diseases; however, each neuroimaging technique has several limitations. These limitations led to the development of multimodal neuroimaging (MN), which combines data obtained from multiple neuroimaging techniques, such as electroencephalography, functional magnetic resonance imaging, and yields more detailed information about brain dynamics. There are several types of MN, including visual inspection, data integration, and data fusion. This literature review aimed to provide a brief summary and basic information about MN techniques (data fusion approaches in particular) and classification approaches. Data fusion approaches are generally categorized as asymmetric and symmetric. The present review focused exclusively on studies based on symmetric data fusion methods (data-driven methods), such as independent component analysis and principal component analysis. Machine learning techniques have recently been introduced for use in identifying diseases and biomarkers of disease. The machine learning technique most widely used by neuroscientists is classification-especially support vector machine classification. Several studies differentiated patients with psychiatric diseases and healthy controls with using combined datasets. The common conclusion among these studies is that the prediction of diseases increases when combining data via MN techniques; however, there remain a few challenges associated with MN, such as sample size. Perhaps in the future N-way fusion can be used to combine multiple neuroimaging techniques or nonimaging predictors (eg, cognitive ability) to overcome the limitations of MN.
Collapse
Affiliation(s)
| | | | - Nevzat Tarhan
- 1 Uskudar University, Istanbul, Turkey.,2 NPIstanbul Hospital, Istanbul, Turkey
| | | |
Collapse
|
27
|
Fossataro C, Bruno V, Giurgola S, Bolognini N, Garbarini F. Losing my hand. Body ownership attenuation after virtual lesion of the primary motor cortex. Eur J Neurosci 2018; 48:2272-2287. [PMID: 30117217 DOI: 10.1111/ejn.14116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/12/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022]
Abstract
A fundamental component of the self-awareness is the sensation that we are acting with our own body. Thus, a coherent sense of self implies the existence of a tight link between the sense of body ownership and the motor system. Here, we investigated this issue by taking advantage of a well-known experimental manipulation of body ownership, i.e., the rubber hand illusion (RHI), during which the subjects perceive a fake hand as part of their own body. To test the effect of the motor system down-regulation on the RHI susceptibility, we designed a sham-controlled study, where the primary motor cortex (M1) excitability was modulated by off-line low-frequency repetitive transcranial magnetic stimulation (rTMS). After rTMS (real or sham), subjects underwent the RHI either on the right hand, contralateral to the inhibited hemisphere (Experiment 1), or on the left hand, ipsilateral to the inhibited hemisphere (Experiment 2). Only in Experiment 1, the procedure strengthened the illusory experience, as proved by a significant increase, in rTMS compared to Sham, of both subjective (Embodiment/Disembodiment Questionnaires) and objective (Proprioceptive Drift) RHI measures. This evidence demonstrates that, when the M1 activity is down-regulated, the sense of body ownership is attenuated and the subjects become more prone to incorporate an alien body part. This, in turn, supports the existence of a mutual interaction between the sense of body ownership and the motor system, shedding new light on the construction of a coherent sense of self as an acting body.
Collapse
Affiliation(s)
- Carlotta Fossataro
- Department of Psychology, SAMBA - SpAtial, Motor & Bodily Awareness - Research Group, University of Turin, Turin, Italy
| | - Valentina Bruno
- Department of Psychology, SAMBA - SpAtial, Motor & Bodily Awareness - Research Group, University of Turin, Turin, Italy
| | - Serena Giurgola
- Department of Psychology & PhD School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology & NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy.,Neuropsychological Laboratory, IRCCS, Istituto Auxologico Italiano, Milano, Italy
| | - Francesca Garbarini
- Department of Psychology, SAMBA - SpAtial, Motor & Bodily Awareness - Research Group, University of Turin, Turin, Italy
| |
Collapse
|
28
|
Functional brain mapping: overview of techniques and their application to neurosurgery. Neurosurg Rev 2018; 42:639-647. [DOI: 10.1007/s10143-018-1007-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
|
29
|
Lin CHJ, Yang HC, Knowlton BJ, Wu AD, Iacoboni M, Ye YL, Huang SL, Chiang MC. Contextual interference enhances motor learning through increased resting brain connectivity during memory consolidation. Neuroimage 2018; 181:1-15. [PMID: 29966717 DOI: 10.1016/j.neuroimage.2018.06.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/11/2018] [Accepted: 06/28/2018] [Indexed: 01/12/2023] Open
Abstract
Increasing contextual interference (CI) during practice benefits learning, making it a desirable difficulty. For example, interleaved practice (IP) of motor sequences is generally more difficult than repetitive practice (RP) during practice but leads to better learning. Here we investigated whether CI in practice modulated resting-state functional connectivity during consolidation. 26 healthy adults (11 men/15 women, age = 23.3 ± 1.3 years) practiced two sets of three sequences in an IP or RP condition over 2 days, followed by a retention test on Day 5 to evaluate learning. On each practice day, functional magnetic resonance imaging (fMRI) data were acquired during practice and also in a resting state immediately after practice. The resting-state fMRI data were processed using independent component analysis (ICA) followed by functional connectivity analysis, showing that IP on Day 1 led to greater resting connectivity than RP between the left premotor cortex and left dorsolateral prefrontal cortex (DLPFC), bilateral posterior cingulate cortices, and bilateral inferior parietal lobules. Moreover, greater resting connectivity after IP than RP on Day 1, between the left premotor cortex and the hippocampus, amygdala, putamen, and thalamus on the right, and the cerebellum, was associated with better learning following IP. Mediation analysis further showed that the association between enhanced resting premotor-hippocampal connectivity on Day 1 and better retention performance following IP was mediated by greater task-related functional activation during IP on Day 2. Our findings suggest that the benefit of CI to motor learning is likely through enhanced resting premotor connectivity during the early phase of consolidation.
Collapse
Affiliation(s)
- Chien-Ho Janice Lin
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, 112, Taiwan; Yeong-An Orthopedic and Physical Therapy Clinic, Taipei, 112, Taiwan.
| | - Ho-Ching Yang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan.
| | - Barbara J Knowlton
- Department of Psychology, University of California, Los Angeles, CA, 90095, USA.
| | - Allan D Wu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, CA, 90095, USA.
| | - Marco Iacoboni
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, CA, 90095, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, 90095, USA.
| | - Yu-Ling Ye
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan; Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, 613, Taiwan.
| | - Shin-Leh Huang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan.
| | - Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
30
|
Neurofeedback Control of the Human GABAergic System Using Non-invasive Brain Stimulation. Neuroscience 2018; 380:38-48. [DOI: 10.1016/j.neuroscience.2018.03.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/27/2018] [Accepted: 03/31/2018] [Indexed: 11/22/2022]
|
31
|
|
32
|
Abdullahi A. Neurophysiological effects of constraint-induced movement therapy and motor function: A systematic review. INTERNATIONAL JOURNAL OF THERAPY AND REHABILITATION 2018. [DOI: 10.12968/ijtr.2018.25.4.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background/Aims: There is a claim that improvements in motor function in people with stroke following constraint-induced movement therapy (CIMT) is due to compensation but not actually neurorestoration. However, few studies have demonstrated improvements in neurophysiological outcomes such as increased motor map size and activation of primary cortex, or their positive correlations with motor function, following CIMT. The aim of this study was to carry out a systematic review of CIMT trials using neurophysiological outcomes, and a meta-analysis of the relationship between the neurophysiological outcomes and motor function. Methods: The PubMed, PEDro and CENTRAL databases, as well as the reference lists of the included studies, were searched. The included studies were randomised controlled trials comparing the effect of CIMT on neurophysiological outcomes compared with other rehabilitation techniques, conventional therapy, or another variant of CIMT. Methodological quality was assessed using the PEDro scale. The data extracted from the studies were sample size, eligibility criteria, dose of intervention and control, outcome measurements, and time since stroke. Findings: A total of 10 articles (n=219) fulfilled the study inclusion criteria, all of which were used for narrative synthesis, and four studies were used in the meta-analysis. The methodological quality of the studies ranged from low to high. Strong, positive, and significant correlations were found between the neurophysiological and motor function outcomes in fixed effects (z=3.268, p=0.001; r=0.52, 95% confidence interval (CI) 0.227–0.994) and random-effects (z=2.106, p=0.035; r=0.54, 95% CI 0.0424–0.827) models. Conclusions: Randomised controlled trials evaluating the effects of CIMT on neurophysiological outcomes are few in number. Additionally, these studies used diverse outcomes, which makes it difficult to draw any meaningful conclusion. However, there is a strong positive correlation between neurophysiological and motor function outcomes in these studies.
Collapse
Affiliation(s)
- Auwal Abdullahi
- Lecturer, Department of Physiotherapy, Bayero University Kano, Nigeria
| |
Collapse
|
33
|
Calderon CB, Van Opstal F, Peigneux P, Verguts T, Gevers W. Task-Relevant Information Modulates Primary Motor Cortex Activity Before Movement Onset. Front Hum Neurosci 2018; 12:93. [PMID: 29593518 PMCID: PMC5861186 DOI: 10.3389/fnhum.2018.00093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/26/2018] [Indexed: 11/13/2022] Open
Abstract
Monkey neurophysiology research supports the affordance competition hypothesis (ACH) proposing that cognitive information useful for action selection is integrated in sensorimotor areas. In this view, action selection would emerge from the simultaneous representation of competing action plans, in parallel biased by relevant task factors. This biased competition would take place up to primary motor cortex (M1). Although ACH is plausible in environments affording choices between actions, its relevance for human decision making is less clear. To address this issue, we designed an functional magnetic resonance imaging (fMRI) experiment modeled after monkey neurophysiology studies in which human participants processed cues conveying predictive information about upcoming button presses. Our results demonstrate that, as predicted by the ACH, predictive information (i.e., the relevant task factor) biases activity of primary motor regions. Specifically, first, activity before movement onset in contralateral M1 increases as the competition is biased in favor of a specific button press relative to activity in ipsilateral M1. Second, motor regions were more tightly coupled with fronto-parietal regions when competition between potential actions was high, again suggesting that motor regions are also part of the biased competition network. Our findings support the idea that action planning dynamics as proposed in the ACH are valid both in human and non-human primates.
Collapse
Affiliation(s)
- Cristian B Calderon
- Centre for Research in Cognition and Neurosciences (CRCN), ULB Neuroscience Institute, Faculté de Psychologie et Sciences de l'Éducation, Université Libre de Bruxelles, Brussels, Belgium.,Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Filip Van Opstal
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Philippe Peigneux
- Centre for Research in Cognition and Neurosciences (CRCN), ULB Neuroscience Institute, Faculté de Psychologie et Sciences de l'Éducation, Université Libre de Bruxelles, Brussels, Belgium.,UR2NF-Neuropsychology and Functional Neuroimaging Research Unit at CRCN, Brussels, Belgium
| | - Tom Verguts
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Wim Gevers
- Centre for Research in Cognition and Neurosciences (CRCN), ULB Neuroscience Institute, Faculté de Psychologie et Sciences de l'Éducation, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
34
|
Meteyard L, Holmes NP. TMS SMART - Scalp mapping of annoyance ratings and twitches caused by Transcranial Magnetic Stimulation. J Neurosci Methods 2018; 299:34-44. [PMID: 29471064 DOI: 10.1016/j.jneumeth.2018.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/30/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The magnetic pulse generated during transcranial magnetic stimulation (TMS) also stimulates cutaneous nerves and muscle fibres, with the most commonly reported side effect being muscle twitches and sometimes painful sensations. These sensations affect behaviour during experimental tasks, presenting a potential confound for 'online' TMS studies. NEW METHOD Our objective was to systematically map the degree of disturbance (ratings of annoyance, pain, and muscle twitches) caused by TMS at 43 locations across the scalp. Ten participants provided ratings whilst completing a choice reaction time task, and ten different participants provided ratings whilst completing a 'flanker' reaction time task. RESULTS TMS over frontal and inferior regions resulted in the highest ratings of annoyance, pain, and muscle twitches caused by TMS. We predicted the difference in reaction times (RT) under TMS by scalp location and subjective ratings. Frontal and inferior scalp locations showed the greatest cost to RTs under TMS (i.e., slowing), with midline sites showing no or minimal slowing. Increases in subjective ratings of disturbance predicted longer RTs under TMS. Critically, ratings were a better predictor of the cost of TMS than scalp location or scalp-to-cortex distance. The more difficult 'flanker' task showed a greater effect of subjective disturbance. COMPARISON WITH EXISTING METHODS We provide the data as an online resource (www.tms-smart.info) so that researchers can select control sites that account for the level of general interference in task performance caused by online single-pulse TMS. CONCLUSIONS The peripheral sensations and discomfort caused by TMS pulses significantly and systematically influence RTs during single-pulse, online TMS experiments.
Collapse
Affiliation(s)
- Lotte Meteyard
- School of Psychology and Clinical Language Sciences, University of Reading, Whiteknights, RG6 6AL, United Kingdom.
| | - Nicholas P Holmes
- School of Psychology, University Park, University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
| |
Collapse
|
35
|
Stimulating the Healthy Brain to Investigate Neural Correlates of Motor Preparation: A Systematic Review. Neural Plast 2018; 2018:5846096. [PMID: 29670648 PMCID: PMC5835236 DOI: 10.1155/2018/5846096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 12/30/2022] Open
Abstract
Objective Noninvasive brain stimulation techniques can be used to selectively increase or decrease the excitability of a cortical region, providing a unique opportunity to assess the causal contribution of that region to the process being assessed. The objective of this paper is to systematically examine studies investigating changes in reaction time induced by noninvasive brain stimulation in healthy participants during movement preparation. Methods A systematic review of the literature was performed in the PubMed, MEDLINE, EMBASE, PsycINFO, and Web of science databases. A combination of keywords related to motor preparation, associated behavioral outcomes, and noninvasive brain stimulation methods was used. Results Twenty-seven studies were included, and systematic data extraction and quality assessment were performed. Reaction time results were transformed in standardised mean difference and graphically pooled in forest plots depending on the targeted cortical area and the type of stimulation. Conclusions Despite methodological heterogeneity among studies, results support a functional implication of five cortical regions (dorsolateral prefrontal cortex, posterior parietal cortex, supplementary motor area, dorsal premotor cortex, and primary motor cortex), integrated into a frontoparietal network, in various components of motor preparation ranging from attentional to motor aspects.
Collapse
|
36
|
Zhao X, Berent I. The Basis of the Syllable Hierarchy: Articulatory Pressures or Universal Phonological Constraints? JOURNAL OF PSYCHOLINGUISTIC RESEARCH 2018; 47:29-64. [PMID: 28710697 DOI: 10.1007/s10936-017-9510-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Across languages, certain syllable types are systematically preferred to others (e.g., [Formula: see text] lbif, where [Formula: see text] indicates a preference). Previous research has shown that these preferences are active in the brains of individual speakers, they are evident even when none of these syllable types exists in participants' language, and even when the stimuli are presented in print. These results suggest that the syllable hierarchy cannot be reduced to either lexical or auditory/phonetic pressures. Here, we examine whether the syllable hierarchy is due to articulatory pressures. According to the motor embodiment view, the perception of a linguistic stimulus requires simulating its production; dispreferred syllables (e.g., lbif) are universally disliked because their production is harder to simulate. To address this possibility, we assessed syllable preferences while articulation was mechanically suppressed. Our four experiments each found significant effects of suppression. Remarkably, people remained sensitive to the syllable hierarchy regardless of suppression. Specifically, results with auditory materials (Experiments 1-2) showed strong effects of syllable structure irrespective of suppression. Moreover, syllable structure uniquely accounted for listeners' behavior even when controlling for several phonetic characteristics of our auditory materials. Results with printed stimuli (Experiments 3-4) were more complex, as participants in these experiments relied on both phonological and graphemic information. Nonetheless, readers were sensitive to most of the syllable hierarchy (e.g., [Formula: see text]), and these preferences emerged when articulation was suppressed, and even when the statistical properties of our materials were controlled via a regression analysis. Together, these findings indicate that speakers possess broad grammatical preferences that are irreducible to either sensory or motor factors.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Psychology, Northeastern University, 125 Nightingale, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Iris Berent
- Department of Psychology, Northeastern University, 125 Nightingale, 360 Huntington Ave, Boston, MA, 02115, USA.
| |
Collapse
|
37
|
Lee MS, Lee MJ, Conte A, Berardelli A. Abnormal somatosensory temporal discrimination in Parkinson’s disease: Pathophysiological correlates and role in motor control deficits. Clin Neurophysiol 2018; 129:442-447. [DOI: 10.1016/j.clinph.2017.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022]
|
38
|
Xue SW, Guo Y, Peng W, Zhang J, Chang D, Zang YF, Wang Z. Increased Low-Frequency Resting-State Brain Activity by High-Frequency Repetitive TMS on the Left Dorsolateral Prefrontal Cortex. Front Psychol 2017; 8:2266. [PMID: 29312097 PMCID: PMC5744634 DOI: 10.3389/fpsyg.2017.02266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/13/2017] [Indexed: 01/28/2023] Open
Abstract
Beneficial effects of repetitive transcranial magnetic stimulation (rTMS) on left dorsolateral prefrontal cortex (DLPFC) have been consistently shown for treating various neuropsychiatrical or neuropsychological disorders, but relatively little is known about its neural mechanisms. Here we conducted a randomized, double-blind, SHAM-controlled study to assess the effects of high-frequency left DLPFC rTMS on resting-state activity. Thirty-eight young healthy subjects received two sessions of either real rTMS (N = 18, 90% motor-threshold; left DLPFC at 20 Hz) or SHAM TMS (N = 20) and functional magnetic resonance imaging scan during rest in 2 days separated by 48 h. Resting-state bran activity was measured with the fractional amplitude of low-frequency fluctuation (fALFF) and functional connectivity (FC). Increased fALFF was found in rostral anterior cingulate cortex (rACC) after 20 Hz rTMS, while no changes were observed after SHAM stimulation. Using the suprathreshold rACC cluster as the seed, increased FC was found in left temporal cortex (stimulation vs. group interaction). These data suggest that high-frequency rTMS on left DLPFC enhances low-frequency resting-state brain activity in the target site and remote sites as reflected by fALFF and FC.
Collapse
Affiliation(s)
- Shao-Wei Xue
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yonghu Guo
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Wei Peng
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Jian Zhang
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Da Chang
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yu-Feng Zang
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Ze Wang
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Department of Radiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
39
|
Lei Y, Bao S, Perez MA, Wang J. Enhancing Generalization of Visuomotor Adaptation by Inducing Use-dependent Learning. Neuroscience 2017; 366:184-195. [PMID: 29031601 DOI: 10.1016/j.neuroscience.2017.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 11/26/2022]
Abstract
Learning a motor task in one condition typically generalizes to another, although it is unclear why it generalizes substantially in certain situations, but only partially in other situations (e.g., across movement directions and motor effectors). Here, we demonstrate that generalization of motor learning across directions and effectors can be enhanced substantially by inducing use-dependent learning, that is, by having subjects experience motor actions associated with a desired trajectory repeatedly during reaching movements. In Experiments 1 and 2, healthy human adults adapted to a visuomotor rotation while concurrently experiencing repetitive passive movements guided by a robot. This manipulation increased the extent of generalization across movement directions (Expt. 1) and across the arms (Expt. 2) by up to 50% and 42%, respectively, indicating crucial contribution of use-dependent learning to motor generalization. In Experiment 3, we applied repetitive transcranial magnetic stimulation (rTMS) to the left primary motor cortex (M1) of the human subjects prior to passive training with the right arm to increase cortical excitability. This intervention resulted in increased motor-evoked potentials (MEPs) and decreased short-interval intracortical inhibition (SICI) in the rTMS group, but not in the sham group. These changes observed in the rTMS group were accompanied by enhanced generalization of visuomotor adaptation across the arms, which was not the case in the sham group. Collectively, these findings confirm the involvement of M1 in use-dependent learning, and suggest that use-dependent learning can contribute not only to motor learning, but also to motor generalization.
Collapse
Affiliation(s)
- Yuming Lei
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL 33136, United States; University of Wisconsin - Milwaukee, Department of Kinesiology, Milwaukee, WI 53201, United States.
| | - Shancheng Bao
- University of Wisconsin - Milwaukee, Department of Kinesiology, Milwaukee, WI 53201, United States
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL 33136, United States
| | - Jinsung Wang
- University of Wisconsin - Milwaukee, Department of Kinesiology, Milwaukee, WI 53201, United States
| |
Collapse
|
40
|
All-in-one low-intensity pulsed ultrasound stimulation system using piezoelectric micromachined ultrasonic transducer (pMUT) arrays for targeted cell stimulation. Biomed Microdevices 2017; 19:86. [PMID: 28929363 DOI: 10.1007/s10544-017-0228-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel cell-stimulation system was fabricated using 10 × 29 piezoelectric micromachined ultrasonic transducer (pMUT) arrays for targeted ultrasonic cell stimulation. Both the diameter of a single pMUT element and the edge-to-edge gap were 120 μm, and the size of a pMUT array was 2.27 × 6.84 mm, to be placed at the bottom of a Transwell. The measured resonance frequency of a single pMUT element was 1.48 ± 0.13 MHz and the measured acoustic intensity of the pMUT array was 0.15 ± 0.03 MPa at 1 mm away from the transducer. A pMUT array was mounted on a print circuit board (PCB), which was designed in accordance with the size of a 12-well Transwell. The Transwell was placed on the PCB and wire bonding was performed to electrically connect the PCB and pMUT arrays. After wiring, the PCB and pMUT arrays were coated with 2.6-μm thick parylene-C to ensure biocompatibility and waterproofing. PC12 cells were used for ultrasonic cell stimulation tests to examine the proposed all-in-one low-intensity pulsed ultrasound stimulation system. Various stimulation times and duty cycles were used simultaneously for cell proliferation in a confined cell culture environment. All stimulation groups showed increased cell proliferation rates, in the range 138-166%, versus the proliferation rate of the control group.
Collapse
|
41
|
Derosiere G, Vassiliadis P, Demaret S, Zénon A, Duque J. Learning stage-dependent effect of M1 disruption on value-based motor decisions. Neuroimage 2017; 162:173-185. [PMID: 28882634 DOI: 10.1016/j.neuroimage.2017.08.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/10/2017] [Accepted: 08/25/2017] [Indexed: 10/18/2022] Open
Abstract
The present study aimed at characterizing the impact of M1 disruption on the implementation of implicit value information in motor decisions, at both early stages (during reinforcement learning) and late stages (after consolidation) of action value encoding. Fifty subjects performed, over three consecutive days, a task that required them to select between two finger responses according to the color (instruction) and to the shape (implicit, undisclosed rule) of an imperative signal: considering the implicit rule in addition to the instruction allowed subjects to earn more money. We investigated the functional contribution of M1 to the implementation of the implicit rule in subjects' motor decisions. Continuous theta burst stimulation (cTBS) was applied over M1 either on Day 1 or on Day 3, producing a temporary lesion either during reinforcement learning (cTBSLearning group) or after consolidation of the implicit rule, during decision-making (cTBSDecision group), respectively. Interestingly, disrupting M1 activity on Day 1 improved the reliance on the implicit rule, plausibly because M1 cTBS increased dopamine release in the putamen in an indirect way. This finding corroborates the view that cTBS may affect activity in unstimulated areas, such as the basal ganglia. Notably, this effect was short-lasting; it did not persist overnight, suggesting that the functional integrity of M1 during learning is a prerequisite for the consolidation of implicit value information to occur. Besides, cTBS over M1 did not impact the use of the implicit rule when applied on Day 3, although it did so when applied on Day 2 in a recent study where the reliance on the implicit rule declined following cTBS (Derosiere et al., 2017). Overall, these findings indicate that the human M1 is functionally involved in the consolidation and implementation of implicit value information underlying motor decisions. However, M1 contribution seems to vanish as subjects become more experienced in using the implicit value information to make their motor decisions.
Collapse
Affiliation(s)
- Gerard Derosiere
- Institute of Neuroscience, Université catholique de Louvain, 1200, Brussels, Belgium.
| | - Pierre Vassiliadis
- Institute of Neuroscience, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Sophie Demaret
- Institute of Neuroscience, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Alexandre Zénon
- Institute of Neuroscience, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Julie Duque
- Institute of Neuroscience, Université catholique de Louvain, 1200, Brussels, Belgium
| |
Collapse
|
42
|
Noh TS, Rah YC, Kyong JS, Kim JS, Park MK, Lee JH, Oh SH, Chung CK, Suh MW. Comparison of treatment outcomes between 10 and 20 EEG electrode location system-guided and neuronavigation-guided repetitive transcranial magnetic stimulation in chronic tinnitus patients and target localization in the Asian brain. Acta Otolaryngol 2017; 137:945-951. [PMID: 28471721 DOI: 10.1080/00016489.2017.1316870] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE rTMS is a non-invasive method that applies a brief magnetic pulse to the cortex and is regarded as a possible therapeutic method for tinnitus control. However, it remains unclear whether the rTMS treatment effect would be the same in tinnitus patients receiving the 10-20 EEG-based target localization as in those receiving imaging-based neuronavigation target localization. METHODS We compared the treatment outcome of the 10-20 EEG-guided rTMS (Group 1) with that of the neuronavigation-guided rTMS (Group 2). Using the individual subject's MRI data and neuronavigation system, the coordinates of the AC relative to the 10-20 EEG system were identified in Asian and compared with those of Caucasian. RESULTS There was significant improvement in the THI and VAS scores in Group 1 and 2. However, there was no significant difference between the two groups. The location of the AC in Asians was significantly different to that in Caucasians. CONCLUSION The 10-20 EEG coordinates of the AC in Asians were significantly different to those in Caucasians. To accurately aim for the AC in Asians, it is recommended that the rTMS be located 1.8 cm superior to the T3 and 0.6 cm posterior to the T3-Cz line. However, because the spatial resolution of the TMS is rather low, this difference probably was not reflected in the treatment outcome.
Collapse
Affiliation(s)
- Tae-Soo Noh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoon-Chan Rah
- Department of Otorhinolaryngology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Jeong Sug Kyong
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - June Sic Kim
- Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chun Kee Chung
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
43
|
Webster K, Ro T. Retinal and visual cortex distance from transcranial magnetic stimulation of the vertex affects phosphene perception. Exp Brain Res 2017; 235:2857-2866. [DOI: 10.1007/s00221-017-5022-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
|
44
|
Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG. Next-generation probes, particles, and proteins for neural interfacing. SCIENCE ADVANCES 2017; 3:e1601649. [PMID: 28630894 PMCID: PMC5466371 DOI: 10.1126/sciadv.1601649] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 04/18/2017] [Indexed: 05/18/2023]
Abstract
Bidirectional interfacing with the nervous system enables neuroscience research, diagnosis, and therapy. This two-way communication allows us to monitor the state of the brain and its composite networks and cells as well as to influence them to treat disease or repair/restore sensory or motor function. To provide the most stable and effective interface, the tools of the trade must bridge the soft, ion-rich, and evolving nature of neural tissue with the largely rigid, static realm of microelectronics and medical instruments that allow for readout, analysis, and/or control. In this Review, we describe how the understanding of neural signaling and material-tissue interactions has fueled the expansion of the available tool set. New probe architectures and materials, nanoparticles, dyes, and designer genetically encoded proteins push the limits of recording and stimulation lifetime, localization, and specificity, blurring the boundary between living tissue and engineered tools. Understanding these approaches, their modality, and the role of cross-disciplinary development will support new neurotherapies and prostheses and provide neuroscientists and neurologists with unprecedented access to the brain.
Collapse
Affiliation(s)
- Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Palo Alto Research Center, Palo Alto, CA 94304, USA
- Corresponding author.
| | - Huiliang Wang
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Lief Fenno
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - George G. Malliaras
- Department of Bioelectronics, École Nationale Supérieure des Mines, CMP-EMSE, MOC, Gardanne 13541, France
| |
Collapse
|
45
|
Lefebvre S, Liew SL. Anatomical Parameters of tDCS to Modulate the Motor System after Stroke: A Review. Front Neurol 2017; 8:29. [PMID: 28232816 PMCID: PMC5298973 DOI: 10.3389/fneur.2017.00029] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/23/2017] [Indexed: 01/19/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method to modulate the local field potential in neural tissue and consequently, cortical excitability. As tDCS is relatively portable, affordable, and accessible, the applications of tDCS to probe brain-behavior connections have rapidly increased in the last 10 years. One of the most promising applications is the use of tDCS to modulate excitability in the motor cortex after stroke and promote motor recovery. However, the results of clinical studies implementing tDCS to modulate motor excitability have been highly variable, with some studies demonstrating that as many as 50% or more of patients fail to show a response to stimulation. Much effort has therefore been dedicated to understand the sources of variability affecting tDCS efficacy. Possible suspects include the placement of the electrodes, task parameters during stimulation, dosing (current amplitude, duration of stimulation, frequency of stimulation), individual states (e.g., anxiety, motivation, attention), and more. In this review, we first briefly review potential sources of variability specific to stroke motor recovery following tDCS. We then examine how the anatomical variability in tDCS placement [e.g., neural target(s) and montages employed] may alter the neuromodulatory effects that tDCS exerts on the post-stroke motor system.
Collapse
Affiliation(s)
- Stephanie Lefebvre
- Neural Plasticity and Neurorehabilitation Laboratory, Chan Division of Occupational Science and Occupational Therapy, Division of Biokinesiology and Physical Therapy, Department of Neurology, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Sook-Lei Liew
- Neural Plasticity and Neurorehabilitation Laboratory, Chan Division of Occupational Science and Occupational Therapy, Division of Biokinesiology and Physical Therapy, Department of Neurology, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
46
|
Thut G, Bergmann TO, Fröhlich F, Soekadar SR, Brittain JS, Valero-Cabré A, Sack AT, Miniussi C, Antal A, Siebner HR, Ziemann U, Herrmann CS. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper. Clin Neurophysiol 2017; 128:843-857. [PMID: 28233641 DOI: 10.1016/j.clinph.2017.01.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/10/2016] [Accepted: 01/08/2017] [Indexed: 01/31/2023]
Abstract
Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension of NTBS with respect to the ongoing brain activity. Temporal patterns of ongoing neuronal activity, in particular brain oscillations and their fluctuations, can be traced with electro- or magnetoencephalography (EEG/MEG), to guide the timing as well as the stimulation settings of NTBS. These novel, online and offline EEG/MEG-guided NTBS-approaches are tailored to specifically interact with the underlying brain activity. Online EEG/MEG has been used to guide the timing of NTBS (i.e., when to stimulate): by taking into account instantaneous phase or power of oscillatory brain activity, NTBS can be aligned to fluctuations in excitability states. Moreover, offline EEG/MEG recordings prior to interventions can inform researchers and clinicians how to stimulate: by frequency-tuning NTBS to the oscillation of interest, intrinsic brain oscillations can be up- or down-regulated. In this paper, we provide an overview of existing approaches and ideas of EEG/MEG-guided interventions, and their promises and caveats. We point out potential future lines of research to address challenges.
Collapse
Affiliation(s)
- Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.
| | - Til Ole Bergmann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Institute for Medical Psychology and Behavioral Neurobiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Flavio Fröhlich
- Department of Psychiatry & Department of Biomedical Engineering & Department of Cell Biology and Physiology & Neuroscience Center & Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Surjo R Soekadar
- Applied Neurotechnology Lab, Department of Psychiatry and Psychotherapy & MEG Center, University Hospital of Tübingen, Tübingen, Germany
| | - John-Stuart Brittain
- Nuffield Department of Clinical Neurosciences, Charles Wolfson Neuroscience Clinical Research Facility, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab, Institut du Cerveau et la Moelle (ICM), CNRS UMR 7225-INSERM U-117, Université Pierre et Marie Curie, Paris, France
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Carlo Miniussi
- Center for Mind/Brain Sciences CIMeC University of Trento, Rovereto, Italy & Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Göttingen, Germany
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Center for Excellence "Hearing4all", European Medical School, Carl von Ossietzky University & Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
47
|
Thirty years of transcranial magnetic stimulation: where do we stand? Exp Brain Res 2017; 235:973-984. [DOI: 10.1007/s00221-016-4865-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022]
|
48
|
Sollmann N, Hauck T, Tussis L, Ille S, Maurer S, Boeckh-Behrens T, Ringel F, Meyer B, Krieg SM. Results on the spatial resolution of repetitive transcranial magnetic stimulation for cortical language mapping during object naming in healthy subjects. BMC Neurosci 2016; 17:67. [PMID: 27776478 PMCID: PMC5078936 DOI: 10.1186/s12868-016-0305-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/19/2016] [Indexed: 11/20/2022] Open
Abstract
Background The spatial resolution of repetitive navigated transcranial magnetic stimulation (rTMS) for language mapping is largely unknown. Thus, to determine a minimum spatial resolution of rTMS for language mapping, we evaluated the mapping sessions derived from 19 healthy volunteers for cortical hotspots of no-response errors. Then, the distances between hotspots (stimulation points with a high error rate) and adjacent mapping points (stimulation points with low error rates) were evaluated. Results Mean distance values of 13.8 ± 6.4 mm (from hotspots to ventral points, range 0.7–30.7 mm), 10.8 ± 4.8 mm (from hotspots to dorsal points, range 2.0–26.5 mm), 16.6 ± 4.8 mm (from hotspots to apical points, range 0.9–27.5 mm), and 13.8 ± 4.3 mm (from hotspots to caudal points, range 2.0–24.2 mm) were measured. Conclusions According to the results, the minimum spatial resolution of rTMS should principally allow for the identification of a particular gyrus, and according to the literature, it is in good accordance with the spatial resolution of direct cortical stimulation (DCS). Since measurement was performed between hotspots and adjacent mapping points and not on a finer-grained basis, we only refer to a minimum spatial resolution. Furthermore, refinement of our results within the scope of a prospective study combining rTMS and DCS for resolution measurement during language mapping should be the next step.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Theresa Hauck
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Lorena Tussis
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Stefanie Maurer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Tobias Boeckh-Behrens
- Section of Neuroradiology, Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Florian Ringel
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany. .,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
49
|
Motor imagery-based skill acquisition disrupted following rTMS of the inferior parietal lobule. Exp Brain Res 2016; 234:397-407. [PMID: 26487181 DOI: 10.1007/s00221-015-4472-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/09/2015] [Indexed: 01/13/2023]
Abstract
Motor imagery (MI), the mental rehearsal of motor tasks, has promise as a therapy in post-stroke rehabilitation. The potential effectiveness of MI is attributed to the facilitation of plasticity in numerous brain regions akin to those recruited for physical practice. It is suggested, however, that MI relies more heavily on regions commonly affected post-stroke, including left hemisphere parietal regions involved in visuospatial processes. However, the impact of parietal damage on MI-based skill acquisition that underlies rehabilitation remains unclear. Here, we examine the contribution of the left inferior parietal lobule (IPL) to MI using inhibitory transcranial magnetic stimulation (TMS) and an MI-based implicit sequence learning (ISL) paradigm. Participants (N = 27) completed the MI-based ISL paradigm after receiving continuous theta burst stimulation to the left IPL (TMS), or with the coil angled away from the scalp (sham). Reaction time differences (dRT) and effect sizes between implicit and random sequences assessed success of MI-based learning. Mean dRT for the sham group was 36.1 ± 28.2 ms (d = 0.71). Mean dRT in the TMS group was 7.7 ± 38.5 ms (d = 0.11). These results indicate that inhibition of the left IPL impaired MI-based learning. We conclude that the IPL and likely the visuospatial processes it mediates are critical for MI performance and thus MI-based skill acquisition or learning. Ultimately, these findings have implications for the use of MI in post-stroke rehabilitation.
Collapse
|
50
|
Derosiere G, Zénon A, Alamia A, Duque J. Primary motor cortex contributes to the implementation of implicit value-based rules during motor decisions. Neuroimage 2016; 146:1115-1127. [PMID: 27742597 DOI: 10.1016/j.neuroimage.2016.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/14/2016] [Accepted: 10/05/2016] [Indexed: 11/18/2022] Open
Abstract
In the present study, we investigated the functional contribution of the human primary motor cortex (M1) to motor decisions. Continuous theta burst stimulation (cTBS) was used to alter M1 activity while participants performed a decision-making task in which the reward associated with the subjects' responses (right hand finger movements) depended on explicit and implicit value-based rules. Subjects performed the task over two consecutive days and cTBS occurred in the middle of Day 2, once the subjects were just about to implement implicit rules, in addition to the explicit instructions, to choose their responses, as evident in the control group (cTBS over the right somatosensory cortex). Interestingly, cTBS over the left M1 prevented subjects from implementing the implicit value-based rule while its implementation was enhanced in the group receiving cTBS over the right M1. Hence, cTBS had opposite effects depending on whether it was applied on the contralateral or ipsilateral M1. The use of the explicit value-based rule was unaffected by cTBS in the three groups of subject. Overall, the present study provides evidence for a functional contribution of M1 to the implementation of freshly acquired implicit rules, possibly through its involvement in a cortico-subcortical network controlling value-based motor decisions.
Collapse
Affiliation(s)
- Gerard Derosiere
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.
| | - Alexandre Zénon
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Andrea Alamia
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Julie Duque
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|