1
|
Rhee JY, Echavarría C, Soucy E, Greenwood J, Masís JA, Cox DD. Neural correlates of visual object recognition in rats. Cell Rep 2025; 44:115461. [PMID: 40153435 DOI: 10.1016/j.celrep.2025.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 03/30/2025] Open
Abstract
Invariant object recognition-the ability to recognize objects across size, rotation, or context-is fundamental for making sense of a dynamic visual world. Though traditionally studied in primates, emerging evidence suggests rodents recognize objects across a range of identity-preserving transformations. We demonstrate that rats robustly perform visual object recognition and explore a neural pathway that may underlie this capacity by developing a pipeline from high-throughput behavior training to cellular resolution imaging in awake, head-fixed animals. Leveraging our optical approach, we systematically profile neurons in primary and higher-order visual areas and their spatial organization. We find that rat visual cortex exhibits several features similar to those observed in the primate ventral stream but also marked deviations, suggesting species-specific differences in how brains solve visual object recognition. This work reinforces the sophisticated visual abilities of rats and offers the technical foundation to use them as a powerful model for mechanistic perception.
Collapse
Affiliation(s)
- Juliana Y Rhee
- The Rockefeller University, New York, NY 10065, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - César Echavarría
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Edward Soucy
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Joel Greenwood
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Kavli Center for Neurotechnology, Yale University, New Haven, CT 06510, USA
| | - Javier A Masís
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - David D Cox
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; IBM Research, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Neske GT, Cardin JA. Higher-order thalamic input to cortex selectively conveys state information. Cell Rep 2025; 44:115292. [PMID: 39937647 PMCID: PMC11920878 DOI: 10.1016/j.celrep.2025.115292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 10/09/2024] [Accepted: 01/17/2025] [Indexed: 02/14/2025] Open
Abstract
Communication among neocortical areas is largely thought to be mediated by long-range synaptic interactions between cortical neurons, with the thalamus providing only an initial relay of information from the sensory periphery. Higher-order thalamic nuclei receive strong synaptic inputs from the cortex and send robust projections back to other cortical areas, providing a distinct and potentially critical route for corticocortical communication. However, the relative contributions of corticocortical and thalamocortical inputs to higher-order cortical function remain unclear. Using imaging of neurons and axon terminals in combination with optogenetic manipulations, we find that the higher-order visual thalamus of mice has a unique impact on the posterior medial visual cortex (PM). Whereas corticocortical projections from lower cortical areas convey robust visual information to PM, higher-order thalamocortical projections convey information about global arousal state. Together, these findings suggest a key role for the higher-order thalamus in providing contextual signals that may flexibly modulate cortical sensory processing.
Collapse
Affiliation(s)
- Garrett T Neske
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Neuroscience Institute, Yale University, New Haven, CT, USA
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Neuroscience Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Neske GT, Cardin JA. Transthalamic input to higher-order cortex selectively conveys state information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561424. [PMID: 37873181 PMCID: PMC10592671 DOI: 10.1101/2023.10.08.561424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Communication among different neocortical areas is largely thought to be mediated by long-range synaptic interactions between cortical neurons, with the thalamus providing only an initial relay of information from the sensory periphery. Higher-order thalamic nuclei receive strong synaptic inputs from the cortex and send robust projections back to other cortical areas, providing a distinct and potentially critical route for cortico-cortical communication. However, the relative contributions of corticocortical and thalamocortical inputs to higher-order cortical function remain unclear. Using imaging of cortical neurons and projection axon terminals in combination with optogenetic manipulations, we find that the higher-order visual thalamus of mice conveys a specialized stream of information to higher-order visual cortex. Whereas corticocortical projections from lower cortical areas convey robust visual information, higher-order thalamocortical projections convey strong behavioral state information. Together, these findings suggest a key role for higher-order thalamus in providing contextual signals that flexibly modulate sensory processing in higher-order cortex.
Collapse
Affiliation(s)
- Garrett T. Neske
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Neuroscience Institute, Yale University, New Haven, CT, USA
- Present address: Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Jessica A. Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Neuroscience Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Reliable, Fast and Stable Contrast Response Function Estimation. VISION (BASEL, SWITZERLAND) 2022; 6:vision6040062. [PMID: 36278674 PMCID: PMC9589942 DOI: 10.3390/vision6040062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
A study was conducted to determine stable cortical contrast response functions (CRFs) accurately and repeatedly in the shortest possible experimentation time. The method consisted of searching for experimental temporal aspects (number and duration of trials and number and distribution of contrasts used) with a model based on inhomogeneous Poisson spike trains to varying contrast levels. The set of values providing both short experimental duration and maximizing fit of the CRFs were saved, and then tested on cats' visual cortical neurons. Our analysis revealed that 4 sets of parameters with less or equal to 6 experimental visual contrasts satisfied our premise of obtaining good CRFs' performance in a short recording period, in which the number of trials seems to be the experimental condition that stabilizes the fit.
Collapse
|
5
|
Koukouli F, Montmerle M, Aguirre A, De Brito Van Velze M, Peixoto J, Choudhary V, Varilh M, Julio-Kalajzic F, Allene C, Mendéz P, Zerlaut Y, Marsicano G, Schlüter OM, Rebola N, Bacci A, Lourenço J. Visual-area-specific tonic modulation of GABA release by endocannabinoids sets the activity and coordination of neocortical principal neurons. Cell Rep 2022; 40:111202. [PMID: 36001978 PMCID: PMC9433882 DOI: 10.1016/j.celrep.2022.111202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/24/2022] [Accepted: 07/21/2022] [Indexed: 12/01/2022] Open
Abstract
Perisomatic inhibition of pyramidal neurons (PNs) coordinates cortical network activity during sensory processing, and this role is mainly attributed to parvalbumin-expressing basket cells (BCs). However, cannabinoid receptor type 1 (CB1)-expressing interneurons are also BCs, but the connectivity and function of these elusive but prominent neocortical inhibitory neurons are unclear. We find that their connectivity pattern is visual area specific. Persistently active CB1 signaling suppresses GABA release from CB1 BCs in the medial secondary visual cortex (V2M), but not in the primary visual cortex (V1). Accordingly, in vivo, tonic CB1 signaling is responsible for higher but less coordinated PN activity in the V2M than in the V1. These differential firing dynamics in the V1 and V2M can be captured by a computational network model that incorporates visual-area-specific properties. Our results indicate a differential CB1-mediated mechanism controlling PN activity, suggesting an alternative connectivity scheme of a specific GABAergic circuit in different cortical areas. CB1+ basket cells exhibit visual-area-specific morphology and connectivity patterns Tonic CB1 signaling underlies high pyramidal neurons (PN) activity in V2M but not V1 Tonic CB1 signaling differentially modulates PN-correlated activity in V1 and V2M Numerical simulations capture specific CB1-dependent firing dynamics of V1 and V2M
Collapse
Affiliation(s)
- Fani Koukouli
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Martin Montmerle
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Andrea Aguirre
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Jérémy Peixoto
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Vikash Choudhary
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Marjorie Varilh
- INSERM, U1215 NeuroCentre Magendie, University of Bordeaux, 33077 Bordeaux, France
| | | | - Camille Allene
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Yann Zerlaut
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, University of Bordeaux, 33077 Bordeaux, France
| | - Oliver M Schlüter
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nelson Rebola
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Alberto Bacci
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France.
| | - Joana Lourenço
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France.
| |
Collapse
|
6
|
Diversity of spatiotemporal coding reveals specialized visual processing streams in the mouse cortex. Nat Commun 2022; 13:3249. [PMID: 35668056 PMCID: PMC9170684 DOI: 10.1038/s41467-022-29656-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 03/23/2022] [Indexed: 12/23/2022] Open
Abstract
The cerebral cortex contains diverse neural representations of the visual scene, each enabling distinct visual and spatial abilities. However, the extent to which representations are distributed or segregated across cortical areas remains poorly understood. By determining the spatial and temporal responses of >30,000 layer 2/3 pyramidal neurons, we characterize the functional organization of parallel visual streams across eight areas of the mouse cortex. While dorsal and ventral areas form complementary representations of spatiotemporal frequency, motion speed, and spatial patterns, the anterior and posterior dorsal areas show distinct specializations for fast and slow oriented contrasts. At the cellular level, while diverse spatiotemporal tuning lies along a continuum, oriented and non-oriented spatial patterns are encoded by distinct tuning types. The identified tuning types are present across dorsal and ventral streams. The data underscore the highly specific and highly distributed nature of visual cortical representations, which drives specialization of cortical areas and streams. The cerebral cortex contains different neural representations of the visual scene. Here, the authors show diverse and stereotyped tuning composing specialized representations in the dorsal and ventral areas of the mouse visual cortex, suggesting parallel processing channels and streams.
Collapse
|
7
|
Hierarchical and nonhierarchical features of the mouse visual cortical network. Nat Commun 2022; 13:503. [PMID: 35082302 PMCID: PMC8791996 DOI: 10.1038/s41467-022-28035-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Neocortical computations underlying vision are performed by a distributed network of functionally specialized areas. Mouse visual cortex, a dense interareal network that exhibits hierarchical properties, comprises subnetworks interconnecting distinct processing streams. To determine the layout of the mouse visual hierarchy, we have evaluated the laminar patterns formed by interareal axonal projections originating in each of ten areas. Reciprocally connected pairs of areas exhibit feedforward/feedback relationships consistent with a hierarchical organization. Beta regression analyses, which estimate a continuous hierarchical distance measure, indicate that the network comprises multiple nonhierarchical circuits embedded in a hierarchical organization of overlapping levels. Single-unit recordings in anaesthetized mice show that receptive field sizes are generally consistent with the hierarchy, with the ventral stream exhibiting a stricter hierarchy than the dorsal stream. Together, the results provide an anatomical metric for hierarchical distance, and reveal both hierarchical and nonhierarchical motifs in mouse visual cortex. Mouse visual cortex is a dense, interconnected network of distinct areas. D’Souza et al. identify an anatomical index to quantify the hierarchical nature of pathways, and highlight the hierarchical and nonhierarchical features of the network.
Collapse
|
8
|
Resulaj A. Projections of the Mouse Primary Visual Cortex. Front Neural Circuits 2021; 15:751331. [PMID: 34867213 PMCID: PMC8641241 DOI: 10.3389/fncir.2021.751331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Lesion or damage to the primary visual cortex (V1) results in a profound loss of visual perception in humans. Similarly, in mice, optogenetic silencing of V1 profoundly impairs discrimination of orientated gratings. V1 is thought to have such a critical role in perception in part due to its position in the visual processing hierarchy. It is the first brain area in the neocortex to receive visual input, and it distributes this information to more than 18 brain areas. Here I review recent advances in our understanding of the organization and function of the V1 projections in the mouse. This progress is in part due to new anatomical and viral techniques that allow for efficient labeling of projection neurons. In the final part of the review, I conclude by highlighting challenges and opportunities for future research.
Collapse
Affiliation(s)
- Arbora Resulaj
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Gămănuţ R, Shimaoka D. Anatomical and functional connectomes underlying hierarchical visual processing in mouse visual system. Brain Struct Funct 2021; 227:1297-1315. [PMID: 34846596 DOI: 10.1007/s00429-021-02415-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/08/2021] [Indexed: 10/19/2022]
Abstract
Over the last 10 years, there has been a surge in interest in the rodent visual system resulting from the discovery of visual processing functions shared with primates V1, and of a complex anatomical structure in the extrastriate visual cortex. This surprisingly intricate visual system was elucidated by recent investigations using rapidly growing genetic tools primarily available in the mouse. Here, we examine the structural and functional connections of visual areas that have been identified in mice mostly during the past decade, and the impact of these findings on our understanding of brain functions associated with vision. Special attention is paid to structure-function relationships arising from the hierarchical organization, which is a prominent feature of the primate visual system. Recent evidence supports the existence of a hierarchical organization in rodents that contains levels that are poorly resolved relative to those observed in primates. This shallowness of the hierarchy indicates that the mouse visual system incorporates abundant non-hierarchical processing. Thus, the mouse visual system provides a unique opportunity to study non-hierarchical processing and its relation to hierarchical processing.
Collapse
Affiliation(s)
- Răzvan Gămănuţ
- Department of Physiology, Monash University, Melbourne, Australia
| | - Daisuke Shimaoka
- Department of Physiology, Monash University, Melbourne, Australia.
| |
Collapse
|
10
|
Oude Lohuis MN, Canton AC, Pennartz CMA, Olcese U. Higher Order Visual Areas Enhance Stimulus Responsiveness in Mouse Primary Visual Cortex. Cereb Cortex 2021; 32:3269-3288. [PMID: 34849636 PMCID: PMC9340391 DOI: 10.1093/cercor/bhab414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023] Open
Abstract
Over the past few years, the various areas that surround the primary visual cortex (V1) in the mouse have been associated with many functions, ranging from higher order visual processing to decision-making. Recently, some studies have shown that higher order visual areas influence the activity of the primary visual cortex, refining its processing capabilities. Here, we studied how in vivo optogenetic inactivation of two higher order visual areas with different functional properties affects responses evoked by moving bars in the primary visual cortex. In contrast with the prevailing view, our results demonstrate that distinct higher order visual areas similarly modulate early visual processing. In particular, these areas enhance stimulus responsiveness in the primary visual cortex, by more strongly amplifying weaker compared with stronger sensory-evoked responses (for instance specifically amplifying responses to stimuli not moving along the direction preferred by individual neurons) and by facilitating responses to stimuli entering the receptive field of single neurons. Such enhancement, however, comes at the expense of orientation and direction selectivity, which increased when the selected higher order visual areas were inactivated. Thus, feedback from higher order visual areas selectively amplifies weak sensory-evoked V1 responses, which may enable more robust processing of visual stimuli.
Collapse
Affiliation(s)
- Matthijs N Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Alexis Cervan Canton
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
11
|
Li JY, Hass CA, Matthews I, Kristl AC, Glickfeld LL. Distinct recruitment of feedforward and recurrent pathways across higher-order areas of mouse visual cortex. Curr Biol 2021; 31:5024-5036.e5. [PMID: 34637748 DOI: 10.1016/j.cub.2021.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/18/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Cortical visual processing transforms features of the external world into increasingly complex and specialized neuronal representations. These transformations arise in part through target-specific routing of information; however, within-area computations may also contribute to area-specific function. Here, we sought to determine whether higher order visual cortical areas lateromedial (LM), anterolateral (AL), posteromedial (PM), and anteromedial (AM) have specialized anatomical and physiological properties by using a combination of whole-cell recordings and optogenetic stimulation of primary visual cortex (V1) axons in vitro. We discovered area-specific differences in the strength of recruitment of interneurons through feedforward and recurrent pathways, as well as differences in cell-intrinsic properties and interneuron densities. These differences were most striking when comparing across medial and lateral areas, suggesting that these areas have distinct profiles for net excitability and integration of V1 inputs. Thus, cortical areas are not defined simply by the information they receive but also by area-specific circuit properties that enable specialized filtering of these inputs.
Collapse
Affiliation(s)
- Jennifer Y Li
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Charles A Hass
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ian Matthews
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Amy C Kristl
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lindsey L Glickfeld
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Broussard GJ, Petreanu L. Eavesdropping wires: Recording activity in axons using genetically encoded calcium indicators. J Neurosci Methods 2021; 360:109251. [PMID: 34119572 PMCID: PMC8363211 DOI: 10.1016/j.jneumeth.2021.109251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 12/23/2022]
Abstract
Neurons broadcast electrical signals to distal brain regions through extensive axonal arbors. Genetically encoded calcium sensors permit the direct observation of action potential activity at axonal terminals, providing unique insights on the organization and function of neural projections. Here, we consider what information can be gleaned from axonal recordings made at scales ranging from the summed activity extracted from multi-cell axon projections to single boutons. In particular, we discuss the application of different recently developed multi photon and fiber photometry methods for recording neural activity in axons of rodents. We define experimental difficulties associated with imaging approaches in the axonal compartment and highlight the latest methodological advances for addressing these issues. Finally, we reflect on ways in which new technologies can be used in conjunction with axon calcium imaging to address current questions in neurobiology.
Collapse
Affiliation(s)
| | - Leopoldo Petreanu
- Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal.
| |
Collapse
|
13
|
Aton SJ. Aligning one's sights: The pulvinar provides context for visual information processing. Neuron 2021; 109:1909-1911. [PMID: 34139179 DOI: 10.1016/j.neuron.2021.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pulvinar (lateral posterior [LP]), like other higher-order thalamic nuclei, receives input from-and sends output to-multiple neocortical structures. In this issue of Neuron, Blot et al. (2021) demonstrate that LP integrates multimodal inputs to put visual information in context.
Collapse
Affiliation(s)
- Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
Niell CM, Scanziani M. How Cortical Circuits Implement Cortical Computations: Mouse Visual Cortex as a Model. Annu Rev Neurosci 2021; 44:517-546. [PMID: 33914591 PMCID: PMC9925090 DOI: 10.1146/annurev-neuro-102320-085825] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mouse, as a model organism to study the brain, gives us unprecedented experimental access to the mammalian cerebral cortex. By determining the cortex's cellular composition, revealing the interaction between its different components, and systematically perturbing these components, we are obtaining mechanistic insight into some of the most basic properties of cortical function. In this review, we describe recent advances in our understanding of how circuits of cortical neurons implement computations, as revealed by the study of mouse primary visual cortex. Further, we discuss how studying the mouse has broadened our understanding of the range of computations performed by visual cortex. Finally, we address how future approaches will fulfill the promise of the mouse in elucidating fundamental operations of cortex.
Collapse
Affiliation(s)
- Cristopher M. Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | - Massimo Scanziani
- Department of Physiology and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California 94158, USA;
| |
Collapse
|
15
|
Nonlinear Spatial Integration Underlies the Diversity of Retinal Ganglion Cell Responses to Natural Images. J Neurosci 2021; 41:3479-3498. [PMID: 33664129 PMCID: PMC8051676 DOI: 10.1523/jneurosci.3075-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
How neurons encode natural stimuli is a fundamental question for sensory neuroscience. In the early visual system, standard encoding models assume that neurons linearly filter incoming stimuli through their receptive fields, but artificial stimuli, such as contrast-reversing gratings, often reveal nonlinear spatial processing. We investigated to what extent such nonlinear processing is relevant for the encoding of natural images in retinal ganglion cells in mice of either sex. How neurons encode natural stimuli is a fundamental question for sensory neuroscience. In the early visual system, standard encoding models assume that neurons linearly filter incoming stimuli through their receptive fields, but artificial stimuli, such as contrast-reversing gratings, often reveal nonlinear spatial processing. We investigated to what extent such nonlinear processing is relevant for the encoding of natural images in retinal ganglion cells in mice of either sex. We found that standard linear receptive field models yielded good predictions of responses to flashed natural images for a subset of cells but failed to capture the spiking activity for many others. Cells with poor model performance displayed pronounced sensitivity to fine spatial contrast and local signal rectification as the dominant nonlinearity. By contrast, sensitivity to high-frequency contrast-reversing gratings, a classical test for nonlinear spatial integration, was not a good predictor of model performance and thus did not capture the variability of nonlinear spatial integration under natural images. In addition, we also observed a class of nonlinear ganglion cells with inverse tuning for spatial contrast, responding more strongly to spatially homogeneous than to spatially structured stimuli. These findings highlight the diversity of receptive field nonlinearities as a crucial component for understanding early sensory encoding in the context of natural stimuli. SIGNIFICANCE STATEMENT Experiments with artificial visual stimuli have revealed that many types of retinal ganglion cells pool spatial input signals nonlinearly. However, it is still unclear how relevant this nonlinear spatial integration is when the input signals are natural images. Here we analyze retinal responses to natural scenes in large populations of mouse ganglion cells. We show that nonlinear spatial integration strongly influences responses to natural images for some ganglion cells, but not for others. Cells with nonlinear spatial integration were sensitive to spatial structure inside their receptive fields, and a small group of cells displayed a surprising sensitivity to spatially homogeneous stimuli. Traditional analyses with contrast-reversing gratings did not predict this variability of nonlinear spatial integration under natural images.
Collapse
|
16
|
Tohmi M, Tanabe S, Cang J. Motion Streak Neurons in the Mouse Visual Cortex. Cell Rep 2021; 34:108617. [PMID: 33440151 DOI: 10.1016/j.celrep.2020.108617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/22/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022] Open
Abstract
Motion streaks are smeared representation of fast-moving objects due to temporal integration. Here, we test for motion streak signals in mice with two-photon calcium imaging. For small dots moving at low speeds, neurons in primary visual cortex (V1) encode the component motion, with preferred direction along the axis perpendicular to their preferred orientation. At high speeds, V1 neurons prefer the direction along the axis parallel to their preferred orientation, as expected for encoding motion streaks. Whereas some V1 neurons (∼20%) display a switch of preferred motion axis with increasing speed, others (>40%) respond specifically to high speeds at the parallel axis. Motion streak neurons are also seen in higher visual lateromedial (LM), anterolateral (AL), and rostrolateral (RL) areas, but with higher transition speeds, and many still prefer the perpendicular axis even with fast motion. Our results thus indicate that diverse motion encoding exists in mouse visual cortex, with intriguing differences among visual areas.
Collapse
Affiliation(s)
- Manavu Tohmi
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | - Seiji Tanabe
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA; Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
17
|
Jin M, Glickfeld LL. Mouse Higher Visual Areas Provide Both Distributed and Specialized Contributions to Visually Guided Behaviors. Curr Biol 2020; 30:4682-4692.e7. [PMID: 33035487 PMCID: PMC7725996 DOI: 10.1016/j.cub.2020.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/06/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022]
Abstract
Cortical parallel processing streams segregate many diverse features of a sensory scene. However, some features are distributed across streams, begging the question of whether and how such distributed representations contribute to perception. We determined the necessity of the primary visual cortex (V1) and three key higher visual areas (lateromedial [LM], anterolateral [AL], and posteromedial [PM]) for perception of orientation and contrast, two features that are robustly encoded across all four areas. Suppressing V1, LM, or AL decreased sensitivity for both orientation discrimination and contrast detection, consistent with a role for these areas in sensory perception. In comparison, suppressing PM selectively increased false alarm (FA) rates during contrast detection, without any effect on orientation discrimination. This effect was not retinotopically specific, suggesting that suppression of PM altered sensory integration or the decision-making process rather than processing of local visual features. Thus, we find that distributed representations in the visual system can nonetheless support specialized perceptual roles for higher visual cortical areas.
Collapse
Affiliation(s)
- Miaomiao Jin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lindsey L Glickfeld
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
18
|
Abstract
In this article, we review the anatomical inputs and outputs to the mouse primary visual cortex, area V1. Our survey of data from the Allen Institute Mouse Connectivity project indicates that mouse V1 is highly interconnected with both cortical and subcortical brain areas. This pattern of innervation allows for computations that depend on the state of the animal and on behavioral goals, which contrasts with simple feedforward, hierarchical models of visual processing. Thus, to have an accurate description of the function of V1 during mouse behavior, its involvement with the rest of the brain circuitry has to be considered. Finally, it remains an open question whether the primary visual cortex of higher mammals displays the same degree of sensorimotor integration in the early visual system.
Collapse
Affiliation(s)
- Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Paul G Fahey
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Stelios M Smirnakis
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Jamaica Plain VA Medical Center, Boston, Massachusetts 02130, USA
| | - Edward J Tehovnik
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| |
Collapse
|