1
|
Lyakhovetskii V, Shkorbatova P, Gorskii O, Musienko P. Forward Stepping Evoked by Transvertebral Stimulation in the Decerebrate Cat. Neuromodulation 2024; 27:625-635. [PMID: 36567242 PMCID: PMC10569082 DOI: 10.1016/j.neurom.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/29/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Implantation of stimulating electrodes into the basement of the vertebral spinous process allows the electrodes to be quickly and stably fixed relative to the spinal cord. Using this approach, we have previously shown the selectivity of rat muscle activation during transvertebral stimulation (TS). In this work, we investigated the TS to induce forward stepping of the cat's hindlimbs in comparison with epidural stimulation (ES). MATERIALS AND METHODS TS was performed with an electrode placed in the VL3-VL6 vertebrae in five decerebrated cats. ES was performed on the same cats in L5-L7 segments. Kinematic parameters of stepping were recorded in addition to electromyographic activity of musculus (m.) iliopsoas (IP), m. tibialis anterior (TA), and m. gastrocnemius lateralis (GL) of both hindlimbs. RESULTS With VL3-VL4 TS, all five animals were capable of bipedal forward stepping, whereas VL5 and VL6 TS led to the forward stepping in 3 of 5 and 1 of 5 animals, respectively. Well-coordinated muscle activity led to a high level of intra- and interlimb coordination. Kinematic parameters of TS-induced stepping were similar to those obtained with ES. The TS of the VL3 vertebra causes the frequency lock with the integer multiple of the stimulation frequency. Similarly to the rat model, TS-evoked muscle responses were site specific. They were minimal during VL3 TS and were maximal during VL4-VL5 TS (IP) and VL5-VL6 TS (TA, GL). CONCLUSIONS The obtained results support hypotheses about the location of the central pattern generators in the upper lumbar spinal segments. The proposed approach of electrode placement is surgically easier to perform than is ES. This approach is useful for studying site-specific neuromodulation of the spinal sensorimotor networks and for investigating new strategies of locomotor recovery in animal models.
Collapse
Affiliation(s)
| | - Polina Shkorbatova
- Pavlov Institute of Physiology Russian Academy of Sciences, St Petersburg, Russia; Institute of Translational Biomedicine, Saint Petersburg State University, St Petersburg, Russia; Department of Neurobiology, Sirius University, Sirius, Sochi, Russia
| | - Oleg Gorskii
- Pavlov Institute of Physiology Russian Academy of Sciences, St Petersburg, Russia; Institute of Translational Biomedicine, Saint Petersburg State University, St Petersburg, Russia
| | - Pavel Musienko
- Pavlov Institute of Physiology Russian Academy of Sciences, St Petersburg, Russia; Institute of Translational Biomedicine, Saint Petersburg State University, St Petersburg, Russia; National University of Science and Technology "MISIS," Moscow, Russia.
| |
Collapse
|
2
|
Audet J, Yassine S, Lecomte CG, Mari S, Soucy F, Morency C, Merlet AN, Harnie J, Beaulieu C, Gendron L, Rybak IA, Prilutsky BI, Frigon A. Spinal Sensorimotor Circuits Play a Prominent Role in Hindlimb Locomotor Recovery after Staggered Thoracic Lateral Hemisections but Cannot Restore Posture and Interlimb Coordination during Quadrupedal Locomotion in Adult Cats. eNeuro 2023; 10:ENEURO.0191-23.2023. [PMID: 37328297 PMCID: PMC10288532 DOI: 10.1523/eneuro.0191-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
Spinal sensorimotor circuits interact with supraspinal and peripheral inputs to generate quadrupedal locomotion. Ascending and descending spinal pathways ensure coordination between the forelimbs and hindlimbs. Spinal cord injury (SCI) disrupts these pathways. To investigate the control of interlimb coordination and hindlimb locomotor recovery, we performed two lateral thoracic hemisections on opposite sides of the cord (right T5-T6 and left T10-T11) at an interval of approximately two months in eight adult cats. In three cats, the spinal cord was transected at T12-T13. We collected electromyography (EMG) and kinematic data during quadrupedal and hindlimb-only locomotion before and after spinal lesions. We show that (1) cats spontaneously recover quadrupedal locomotion following staggered hemisections but require balance assistance after the second one, (2) coordination between the forelimbs and hindlimbs displays 2:1 patterns (two cycles of one forelimb within one hindlimb cycle) and becomes weaker and more variable after both hemisections, (3) left-right asymmetries in hindlimb stance and swing durations appear after the first hemisection and reverse after the second, and (4) support periods reorganize after staggered hemisections to favor support involving both forelimbs and diagonal limbs. Cats expressed hindlimb locomotion the day following spinal transection, indicating that lumbar sensorimotor circuits play a prominent role in hindlimb locomotor recovery after staggered hemisections. These results reflect a series of changes in spinal sensorimotor circuits that allow cats to maintain and recover some level of quadrupedal locomotor functionality with diminished motor commands from the brain and cervical cord, although the control of posture and interlimb coordination remains impaired.
Collapse
Affiliation(s)
- Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Charly G Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Félix Soucy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Caroline Morency
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Claudie Beaulieu
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Louis Gendron
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA 19129
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
3
|
Shkorbatova PY, Lyakhovetskii VA, Veshchitskii AA, Bazhenova EY, Pavlova NV, Musienko PE, Merkulyeva NS. Postnatal growth of the lumbosacral spinal segments in cat: Their lengths and positions in relation to vertebrae. Anat Rec (Hoboken) 2023; 306:831-843. [PMID: 35466553 DOI: 10.1002/ar.24945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022]
Abstract
Cat is a prominent model for investigating neural networks of the lumbosacral spinal cord that control locomotor and visceral activity. We previously proposed an integral function, establishing the topographical relationship between the spinal cord segments and vertebrae in adult animals. Here, we investigated the dynamic of this topographical relationship through early and middle periods of development in kittens. We calculated the length of each vertebra relative to the total length of the region from 13th thoracic (T) to the 7th lumbar (L) vertebrae (V) as well as the length of each segment relative to the total region from T13 to the three-dimensional sacral (S) segment. As in our previous work, the length and position of VL2 were used to establish relationships between the characteristics of the segments and vertebrae. Cubic regression reliably approximates the lengths of segments relative to VL2 length. As the cat aged, the relative length of VT13 and VL1 decreased while the relative length of VL5 increased. The relative length of the T13 and L3 segments increased while the relative length of the S1-S2 segments decreased. The T13-L2 segments are descended monotonically relative to the VL1-VL2 border. The L3-S1 segments are also descended, though with more complex dynamics. The positions of the S2-S3 segments remained unchanged. To conclude, different spinal segments displayed different developmental dynamics. The revealed relationship between vertebrae and lumbosacral spinal segments may be helpful for clearly defining stimulation regions to invoke particular functions, both in experimental studies on the spinal cord and clinical treatment.
Collapse
Affiliation(s)
- Polina Y Shkorbatova
- Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | | | | | - Elena Y Bazhenova
- Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Natalia V Pavlova
- Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia
| | - Pavel E Musienko
- Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Natalia S Merkulyeva
- Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
4
|
Audet J, Yassine S, Lecomte CG, Mari S, Félix S, Caroline M, Merlet AN, Harnie J, Beaulieu C, Gendron L, Rybak IA, Prilutsky BI, Frigon A. Spinal sensorimotor circuits play a prominent role in hindlimb locomotor recovery after staggered thoracic lateral hemisections but cannot restore posture and interlimb coordination during quadrupedal locomotion in adult cats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533936. [PMID: 36993268 PMCID: PMC10055434 DOI: 10.1101/2023.03.23.533936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Spinal sensorimotor circuits interact with supraspinal and peripheral inputs to generate quadrupedal locomotion. Ascending and descending spinal pathways ensure coordination between the fore-and hindlimbs. Spinal cord injury disrupts these pathways. To investigate the control of interlimb coordination and hindlimb locomotor recovery, we performed two lateral thoracic hemisections placed on opposite sides of the cord (right T5-T6 and left T10-T11) at an interval of approximately two months in eight adult cats. In three cats, we then made a complete spinal transection caudal to the second hemisection at T12-T13. We collected electromyography and kinematic data during quadrupedal and hindlimb-only locomotion before and after spinal lesions. We show that 1) cats spontaneously recover quadrupedal locomotion following staggered hemisections but require balance assistance after the second one, 2) coordination between the fore-and hindlimbs displays 2:1 patterns and becomes weaker and more variable after both hemisections, 3) left-right asymmetries in hindlimb stance and swing durations appear after the first hemisection and reverse after the second, and 4) support periods reorganize after staggered hemisections to favor support involving both forelimbs and diagonal limbs. Cats expressed hindlimb locomotion the day following spinal transection, indicating that lumbar sensorimotor circuits play a prominent role in hindlimb locomotor recovery after staggered hemisections. These results reflect a series of changes in spinal sensorimotor circuits that allow cats to maintain and recover some level of quadrupedal locomotor functionality with diminished motor commands from the brain and cervical cord, although the control of posture and interlimb coordination remains impaired. Significance Statement Coordinating the limbs during locomotion depends on pathways in the spinal cord. We used a spinal cord injury model that disrupts communication between the brain and spinal cord by sectioning half of the spinal cord on one side and then about two months later, half the spinal cord on the other side at different levels of the thoracic cord in cats. We show that despite a strong contribution from neural circuits located below the second spinal cord injury in the recovery of hindlimb locomotion, the coordination between the forelimbs and hindlimbs weakens and postural control is impaired. We can use our model to test approaches to restore the control of interlimb coordination and posture during locomotion after spinal cord injury.
Collapse
Affiliation(s)
- Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Charly G Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Soucy Félix
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Morency Caroline
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Claudie Beaulieu
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Louis Gendron
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19129, USA
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
5
|
Audet J, Harnie J, Lecomte CG, Mari S, Merlet AN, Prilutsky BI, Rybak IA, Frigon A. Control of Forelimb and Hindlimb Movements and Their Coordination during Quadrupedal Locomotion across Speeds in Adult Spinal Cats. J Neurotrauma 2022; 39:1113-1131. [PMID: 35343245 PMCID: PMC9347373 DOI: 10.1089/neu.2022.0042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Coordinating the four limbs is critical for terrestrial mammalian locomotion. Thoracic spinal transection abolishes neural communication between the brain and spinal networks controlling hindlimb/leg movements. Several studies have shown that animal models of spinal transection (spinalization), such as mice, rats, cats, and dogs recover hindlimb locomotion with the forelimbs stationary or suspended. We know less on the ability to generate quadrupedal locomotion after spinal transection, however. We collected kinematic and electromyography data in four adult cats during quadrupedal locomotion at five treadmill speeds before (intact cats) and after low-thoracic spinal transection (spinal cats). We show that adult spinal cats performed quadrupedal treadmill locomotion and modulated their speed from 0.4 m/sec to 0.8 m/sec but required perineal stimulation. During quadrupedal locomotion, several compensatory strategies occurred, such as postural adjustments of the head and neck and the appearance of new coordination patterns between the forelimbs and hindlimbs, where the hindlimbs took more steps than the forelimbs. We also observed temporal changes, such as shorter forelimb cycle/swing durations and shorter hindlimb cycle/stance durations in the spinal state. Forelimb double support periods occupied a greater proportion of the cycle in the spinal state, and hindlimb stride length was shorter. Coordination between the forelimbs and hindlimbs was weakened and more variable in the spinal state. Changes in muscle activity reflected spatiotemporal changes in the locomotor pattern. Despite important changes in the pattern, our results indicate that biomechanical properties of the musculoskeletal system play an important role in quadrupedal locomotion and offset some of the loss in neural communication between networks controlling the forelimbs and hindlimbs after spinal transection.
Collapse
Affiliation(s)
- Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
6
|
Noga BR, Whelan PJ. The Mesencephalic Locomotor Region: Beyond Locomotor Control. Front Neural Circuits 2022; 16:884785. [PMID: 35615623 PMCID: PMC9124768 DOI: 10.3389/fncir.2022.884785] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
The mesencephalic locomotor region (MLR) was discovered several decades ago in the cat. It was functionally defined based on the ability of low threshold electrical stimuli within a region comprising the cuneiform and pedunculopontine nucleus to evoke locomotion. Since then, similar regions have been found in diverse vertebrate species, including the lamprey, skate, rodent, pig, monkey, and human. The MLR, while often viewed under the lens of locomotion, is involved in diverse processes involving the autonomic nervous system, respiratory system, and the state-dependent activation of motor systems. This review will discuss the pedunculopontine nucleus and cuneiform nucleus that comprises the MLR and examine their respective connectomes from both an anatomical and functional angle. From a functional perspective, the MLR primes the cardiovascular and respiratory systems before the locomotor activity occurs. Inputs from a variety of higher structures, and direct outputs to the monoaminergic nuclei, allow the MLR to be able to respond appropriately to state-dependent locomotion. These state-dependent effects are roughly divided into escape and exploratory behavior, and the MLR also can reinforce the selection of these locomotor behaviors through projections to adjacent structures such as the periaqueductal gray or to limbic and cortical regions. Findings from the rat, mouse, pig, and cat will be discussed to highlight similarities and differences among diverse species.
Collapse
Affiliation(s)
- Brian R. Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- *Correspondence: Brian R. Noga Patrick J. Whelan
| | - Patrick J. Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Brian R. Noga Patrick J. Whelan
| |
Collapse
|
7
|
Merlet AN, Harnie J, Frigon A. Inhibition and Facilitation of the Spinal Locomotor Central Pattern Generator and Reflex Circuits by Somatosensory Feedback From the Lumbar and Perineal Regions After Spinal Cord Injury. Front Neurosci 2021; 15:720542. [PMID: 34393721 PMCID: PMC8355562 DOI: 10.3389/fnins.2021.720542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/08/2021] [Indexed: 02/03/2023] Open
Abstract
Somatosensory feedback from peripheral receptors dynamically interacts with networks located in the spinal cord and brain to control mammalian locomotion. Although somatosensory feedback from the limbs plays a major role in regulating locomotor output, those from other regions, such as lumbar and perineal areas also shape locomotor activity. In mammals with a complete spinal cord injury, inputs from the lumbar region powerfully inhibit hindlimb locomotion, while those from the perineal region facilitate it. Our recent work in cats with a complete spinal cord injury shows that they also have opposite effects on cutaneous reflexes from the foot. Lumbar inputs increase the gain of reflexes while those from the perineal region decrease it. The purpose of this review is to discuss how somatosensory feedback from the lumbar and perineal regions modulate the spinal locomotor central pattern generator and reflex circuits after spinal cord injury and the possible mechanisms involved. We also discuss how spinal cord injury can lead to a loss of functional specificity through the abnormal activation of functions by somatosensory feedback, such as the concurrent activation of locomotion and micturition. Lastly, we discuss the potential functions of somatosensory feedback from the lumbar and perineal regions and their potential for promoting motor recovery after spinal cord injury.
Collapse
Affiliation(s)
- Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
8
|
Méndez-Fernández A, Moreno-Castillo M, Huidobro N, Flores A, Manjarrez E. Afterdischarges of Spinal Interneurons Following a Brief High-Frequency Stimulation of Ia Afferents in the Cat. Front Integr Neurosci 2020; 13:75. [PMID: 32038185 PMCID: PMC6992651 DOI: 10.3389/fnint.2019.00075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
Spinal motoneurons exhibit sustained afterdischarges and plateau potentials following a brief high-frequency stimulation of Ia afferents. Also, there is evidence that spinal cord interneurons exhibit plateau potentials. However, to our knowledge, there are no reports about the possible afterdischarge behavior of lumbar spinal interneurons activated by Ia afferents. Given that there are spinal interneurons receiving monosynaptic inputs from Ia afferents, these cells could then be activated in parallel to motoneurons after repetitive muscle stretch. We explored this possibility in cats with a precollicular-postmammillary decerebration. We found that a brief high-frequency stimulation of Ia afferents produces afterdischarges that are highly correlated to a DC slow potential recorded at the cord dorsum. We conclude that in the cat spinal cord, not only the motoneurons but also the interneurons from the superficial and deep dorsal horn produce sustained afterdischarges, thus highlighting the importance of interneurons in the spinal neuronal circuitry. The significance of our finding is that it opens the possibility that the spinal cord interneurons activated by Ia afferents could also exhibit bistability, a relevant phenomenon well-characterized in the motoneurons.
Collapse
Affiliation(s)
| | | | - Nayeli Huidobro
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Amira Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Elias Manjarrez
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
9
|
Opris I, Dai X, Johnson DMG, Sanchez FJ, Villamil LM, Xie S, Lee-Hauser CR, Chang S, Jordan LM, Noga BR. Activation of Brainstem Neurons During Mesencephalic Locomotor Region-Evoked Locomotion in the Cat. Front Syst Neurosci 2019; 13:69. [PMID: 31798423 PMCID: PMC6868058 DOI: 10.3389/fnsys.2019.00069] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/31/2019] [Indexed: 12/26/2022] Open
Abstract
The distribution of locomotor-activated neurons in the brainstem of the cat was studied by c-Fos immunohistochemistry in combination with antibody-based cellular phenotyping following electrical stimulation of the mesencephalic locomotor region (MLR) – the anatomical constituents of which remain debated today, primarily between the cuneiform (CnF) and the pedunculopontine tegmental nuclei (PPT). Effective MLR sites were co-extensive with the CnF nucleus. Animals subject to the locomotor task showed abundant Fos labeling in the CnF, parabrachial nuclei of the subcuneiform region, periaqueductal gray, locus ceruleus (LC)/subceruleus (SubC), Kölliker–Fuse, magnocellular and lateral tegmental fields, raphe, and the parapyramidal region. Labeled neurons were more abundant on the side of stimulation. In some animals, Fos-labeled cells were also observed in the ventral tegmental area, medial and intermediate vestibular nuclei, dorsal motor nucleus of the vagus, n. tractus solitarii, and retrofacial nucleus in the ventrolateral medulla. Many neurons in the reticular formation were innervated by serotonergic fibers. Numerous locomotor-activated neurons in the parabrachial nuclei and LC/SubC/Kölliker–Fuse were noradrenergic. Few cholinergic neurons within the PPT stained for Fos. In the medulla, serotonergic neurons within the parapyramidal region and the nucleus raphe magnus were positive for Fos. Control animals, not subject to locomotion, showed few Fos-labeled neurons in these areas. The current study provides positive evidence for a role for the CnF in the initiation of locomotion while providing little evidence for the participation of the PPT. The results also show that MLR-evoked locomotion involves the parallel activation of reticular and monoaminergic neurons in the pons/medulla, and provides the anatomical and functional basis for spinal monoamine release during evoked locomotion. Lastly, the results indicate that vestibular, cardiovascular, and respiratory centers are centrally activated during MLR-evoked locomotion. Altogether, the results show a complex pattern of neuromodulatory influences of brainstem neurons by electrical activation of the MLR.
Collapse
Affiliation(s)
- Ioan Opris
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xiaohong Dai
- Department of Physiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Dawn M G Johnson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Francisco J Sanchez
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Luz M Villamil
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Songtao Xie
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Cecelia R Lee-Hauser
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stephano Chang
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Larry M Jordan
- Department of Physiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Brian R Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
10
|
Gerasimenko Y, Preston C, Zhong H, Roy RR, Edgerton VR, Shah PK. Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat. J Neurophysiol 2019; 122:585-600. [PMID: 30943092 DOI: 10.1152/jn.00810.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The precise location and functional organization of the spinal neuronal locomotor-related networks in adult mammals remain unclear. Our recent neurophysiological findings provided empirical evidence that the rostral lumbar spinal cord segments play a critical role in the initiation and generation of the rhythmic activation patterns necessary for hindlimb locomotion in adult spinal rats. Since added epidural stimulation at the S1 segments significantly enhanced the motor output generated by L2 stimulation, these data also suggested that the sacral spinal cord provides a strong facilitory influence in rhythm initiation and generation. However, whether L2 will initiate hindlimb locomotion in the absence of S1 segments, and whether S1 segments can facilitate locomotion in the absence of L2 segments remain unknown. Herein, adult rats received complete spinal cord transections at T8 and then at either L2 or S1. Rats with spinal cord transections at T8 and S1 remained capable of generating coordinated hindlimb locomotion when receiving epidural stimulation at L2 and when ensembles of locomotor related loadbearing input were present. In contrast, minimal locomotion was observed when S1 stimulation was delivered after spinal cord transections at T8 and L2. Results were similar when the nonspecific serotonergic agonists were administered. These results demonstrate in adult rats that rostral lumbar segments are essential for the regulation of hindlimb locomotor rhythmicity. In addition, the more caudal spinal networks alone cannot control locomotion in the absence of the rostral segments around L2 even when loadbearing rhythmic proprioceptive afferent input is imposed.NEW & NOTEWORTHY The exact location of the spinal neuronal locomotor-related networks in adult mammals remains unknown. The present data demonstrate that when the rostral lumbar spinal segments (~L2) are completely eliminated in thoracic spinal adult rats, hindlimb stepping is not possible with neurochemical modulation of the lumbosacral cord. In contrast, eliminating the sacral cord retains stepping ability. These observations highlight the importance of rostral lumbar segments in generating effective mammalian locomotion.
Collapse
Affiliation(s)
- Yury Gerasimenko
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.,Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Chet Preston
- Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, New York
| | - Hui Zhong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Roland R Roy
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California.,Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, California.,Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, California.,Brain Research Institute, University of California, Los Angeles, California.,Institute Guttmann. Hospital de Neurorehabilitació, Institut Universitari Adscrit a la Universitat Autònoma de Barcelona, Badalona, Spain.,Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia.,Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Prithvi K Shah
- Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, New York.,Department of Neurobiology, Stony Brook University, Stony Brook, New York
| |
Collapse
|
11
|
Spotlight on Neurotrauma Research in Canada's Leading Academic Centers. J Neurotrauma 2018; 35:1986-2004. [PMID: 30074875 DOI: 10.1089/neu.2018.29017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Duenas-Jimenez SH, Castillo Hernandez L, de la Torre Valdovinos B, Mendizabal Ruiz G, Duenas Jimenez JM, Ramirez Abundis V, Aguilar Garcia IG. Hind limb motoneurons activity during fictive locomotion or scratching induced by pinna stimulation, serotonin, or glutamic acid in brain cortex-ablated cats. Physiol Rep 2017; 5:5/18/e13458. [PMID: 28963128 PMCID: PMC5617936 DOI: 10.14814/phy2.13458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/18/2022] Open
Abstract
In brain cortex‐ablated cats (BCAC), hind limb motoneurons activity patterns were studied during fictive locomotion (FL) or fictive scratching (FS) induced by pinna stimulation. In order to study motoneurons excitability: heteronymous monosynaptic reflex (HeMR), intracellular recording, and individual Ia afferent fiber antidromic activity (AA) were analyzed. The intraspinal cord microinjections of serotonin or glutamic acid effects were made to study their influence in FL or FS. During FS, HeMR amplitude in extensor and bifunctional motoneurons increased prior to or during the respective electroneurogram (ENG). In soleus (SOL) motoneurons were reduced during the scratch cycle (SC). AA in medial gastrocnemius (MG) Ia afferent individual fibers of L6‐L7 dorsal roots did not occur during FS. Flexor digitorum longus (FDL) and MG motoneurons fired with doublets during the FS bursting activity, motoneuron membrane potential from some posterior biceps (PB) motoneurons exhibits a depolarization in relation to the PB (ENG). It changed to a locomotor drive potential in relation to one of the double ENG, PB bursts. In FDL and semitendinosus (ST) motoneurons, the membrane potential was depolarized during FS, but it did not change during FL. Glutamic acid injected in the L3‐L4 spinal cord segment favored the transition from FS to FL. During FL, glutamic acid produces a duration increase of extensors ENGs. Serotonin increases the ENG amplitude in extensor motoneurons, as well as the duration of scratching episodes. It did not change the SC duration. Segregation and motoneurons excitability could be regulated by the rhythmic generator and the pattern generator of the central pattern generator.
Collapse
Affiliation(s)
| | - Luis Castillo Hernandez
- Basic Center, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | | | - Gerardo Mendizabal Ruiz
- Department of Computational Sciences CUCEI, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | | | | |
Collapse
|
13
|
Noga BR, Turkson RP, Xie S, Taberner A, Pinzon A, Hentall ID. Monoamine Release in the Cat Lumbar Spinal Cord during Fictive Locomotion Evoked by the Mesencephalic Locomotor Region. Front Neural Circuits 2017; 11:59. [PMID: 28912689 PMCID: PMC5582069 DOI: 10.3389/fncir.2017.00059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/09/2017] [Indexed: 01/28/2023] Open
Abstract
Spinal cord neurons active during locomotion are innervated by descending axons that release the monoamines serotonin (5-HT) and norepinephrine (NE) and these neurons express monoaminergic receptor subtypes implicated in the control of locomotion. The timing, level and spinal locations of release of these two substances during centrally-generated locomotor activity should therefore be critical to this control. These variables were measured in real time by fast-cyclic voltammetry in the decerebrate cat's lumbar spinal cord during fictive locomotion, which was evoked by electrical stimulation of the mesencephalic locomotor region (MLR) and registered as integrated activity in bilateral peripheral nerves to hindlimb muscles. Monoamine release was observed in dorsal horn (DH), intermediate zone/ventral horn (IZ/VH) and adjacent white matter (WM) during evoked locomotion. Extracellular peak levels (all sites) increased above baseline by 138 ± 232.5 nM and 35.6 ± 94.4 nM (mean ± SD) for NE and 5-HT, respectively. For both substances, release usually began prior to the onset of locomotion typically earliest in the IZ/VH and peaks were positively correlated with net activity in peripheral nerves. Monoamine levels gradually returned to baseline levels or below at the end of stimulation in most trials. Monoamine oxidase and uptake inhibitors increased the release magnitude, time-to-peak (TTP) and decline-to-baseline. These results demonstrate that spinal monoamine release is modulated on a timescale of seconds, in tandem with centrally-generated locomotion and indicate that MLR-evoked locomotor activity involves concurrent activation of descending monoaminergic and reticulospinal pathways. These gradual changes in space and time of monoamine concentrations high enough to strongly activate various receptors subtypes on locomotor activated neurons further suggest that during MLR-evoked locomotion, monoamine action is, in part, mediated by extrasynaptic neurotransmission in the spinal cord.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Riza P Turkson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Songtao Xie
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Annette Taberner
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Alberto Pinzon
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Ian D Hentall
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| |
Collapse
|
14
|
Shah PK, Lavrov I. Spinal Epidural Stimulation Strategies: Clinical Implications of Locomotor Studies in Spinal Rats. Neuroscientist 2017; 23:664-680. [PMID: 28345483 DOI: 10.1177/1073858417699554] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Significant advancements in spinal epidural stimulation (ES) strategies to enable volitional motor control in persons with a complete spinal cord injury (SCI) have generated much excitement in the field of neurorehabilitation. Still, an obvious gap lies in the ability of ES to effectively generate a robust locomotor stepping response after a complete SCI in rodents, but not in humans. In order to reveal potential discrepancies between rodent and human studies that account for this void, in this review, we summarize the findings of studies that have utilized ES strategies to enable successful hindlimb stepping in spinal rats. Recent clinical and preclinical evidence indicates that motor training with ES plays a crucial role in tuning spinal neural circuitry to generate meaningful motor output. Concurrently administered pharmacology can also facilitate the circuitry to provide near optimal motor performance in SCI rats. However, as of today, the evidence for pharmacological agents to enhance motor function in persons with complete SCI is insignificant. These and other recent findings discussed in this review provide insight into addressing the translational gap, guide the design of relevant preclinical experiments, and facilitate development of new approaches for motor recovery in patients with complete SCIs.
Collapse
Affiliation(s)
- Prithvi K Shah
- 1 Division of Rehabilitation Sciences, School of Health Technology and Management, Stony Brook University, Stony Brook, NY, USA.,2 Department of Neurobiology, Stony Brook University, Stony Brook, NY, USA
| | - Igor Lavrov
- 3 Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,4 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,5 Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
15
|
Frigon A. The neural control of interlimb coordination during mammalian locomotion. J Neurophysiol 2017; 117:2224-2241. [PMID: 28298308 DOI: 10.1152/jn.00978.2016] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/02/2017] [Accepted: 03/15/2017] [Indexed: 01/06/2023] Open
Abstract
Neuronal networks within the spinal cord directly control rhythmic movements of the arms/forelimbs and legs/hindlimbs during locomotion in mammals. For an effective locomotion, these networks must be flexibly coordinated to allow for various gait patterns and independent use of the arms/forelimbs. This coordination can be accomplished by mechanisms intrinsic to the spinal cord, somatosensory feedback from the limbs, and various supraspinal pathways. Incomplete spinal cord injury disrupts some of the pathways and structures involved in interlimb coordination, often leading to a disruption in the coordination between the arms/forelimbs and legs/hindlimbs in animal models and in humans. However, experimental spinal lesions in animal models to uncover the mechanisms coordinating the limbs have limitations due to compensatory mechanisms and strategies, redundant systems of control, and plasticity within remaining circuits. The purpose of this review is to provide a general overview and critical discussion of experimental studies that have investigated the neural mechanisms involved in coordinating the arms/forelimbs and legs/hindlimbs during mammalian locomotion.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
16
|
Shah PK, Sureddi S, Alam M, Zhong H, Roy RR, Edgerton VR, Gerasimenko Y. Unique Spatiotemporal Neuromodulation of the Lumbosacral Circuitry Shapes Locomotor Success after Spinal Cord Injury. J Neurotrauma 2016; 33:1709-23. [PMID: 26792233 DOI: 10.1089/neu.2015.4256] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinal cord epidural stimulation has resulted in the initiation of voluntary leg movements and improvement in postural, bladder, and sexual function. However, one of the limitations in reaching the full potential of epidural stimulation for therapeutic purposes in humans has been the identification of optimal stimulation configurations that can neuromodulate the spinal cord for stepping. In the present work, we investigated the mechanisms underlying the specificity of interaction between the rostral and caudal spinal cord circuitries in enabling locomotion in spinal rats (n = 10) by epidural spinal cord stimulation. By using unique spatiotemporal epidural stimulation parameters of the lumbar and sacral spinal cords, a robust stepping pattern in spinal rats was observed with only six training sessions and as early as 3 weeks post-injury. Electrophysiological evidence reveals that in addition to frequency of stimulation pulses at the stimulation sites, the relative timing between stimulation pulses applied at the lumbar (L2) and sacral (S1) segments of the spinal cord heavily impacted stepping performance. Best stepping was established at a higher stimulation frequency (40 Hz vs. 5, 10, 15, and 20Hz) and at specific relative time-intervals between the stimulation pulses (L2 pulse applied at 18-25 msec after the onset of the S1 pulse; S1 pulse applied 0-7 msec after the L2 pulse). Our data suggest that controlling pulse-to-pulse timing at multiple stimulation sources provides a novel strategy to optimize spinal stepping by fine-tuning the physiological state of the locomotor networks. These findings hold direct relevance to the clinician who will incorporate electrical stimulation strategies for optimizing control of locomotion after complete paralysis.
Collapse
Affiliation(s)
- Prithvi K Shah
- 1 Division of Rehabilitation Sciences, School of Health Technology and Management, Stony Brook University , Stony Brook, New York.,2 Department of Neurobiology, Stony Brook University , Stony Brook, New York
| | - Shakthi Sureddi
- 3 Department of Neuroscience, University of California , Los Angeles, California
| | - Monzurul Alam
- 4 Department of Neurosurgery, University of California , Los Angeles, California
| | - Hui Zhong
- 5 Department of Integrative Biology and Physiology, University of California , Los Angeles, California
| | - Roland R Roy
- 5 Department of Integrative Biology and Physiology, University of California , Los Angeles, California.,6 Brain Research Institute, University of California , Los Angeles, California
| | - V Reggie Edgerton
- 4 Department of Neurosurgery, University of California , Los Angeles, California.,5 Department of Integrative Biology and Physiology, University of California , Los Angeles, California.,6 Brain Research Institute, University of California , Los Angeles, California.,7 Department of Neurobiology, University of California , Los Angeles, California
| | - Yury Gerasimenko
- 5 Department of Integrative Biology and Physiology, University of California , Los Angeles, California.,8 Pavlov Institute of Physiology, St. Petersburg, Russia .,9 Institute of Fundamental Medicine and Biology, Kazan Federal University , Kazan, Russia
| |
Collapse
|
17
|
Synergy temporal sequences and topography in the spinal cord: evidence for a traveling wave in frog locomotion. Brain Struct Funct 2015; 221:3869-3890. [PMID: 26501407 DOI: 10.1007/s00429-015-1133-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 10/08/2015] [Indexed: 12/27/2022]
Abstract
Locomotion is produced by a central pattern generator. Its spinal cord organization is generally considered to be distributed, with more rhythmogenic rostral lumbar segments. While this produces a rostrocaudally traveling wave in undulating species, this is not thought to occur in limbed vertebrates, with the exception of the interneuronal traveling wave demonstrated in fictive cat scratching (Cuellar et al. J Neurosci 29:798-810, 2009). Here, we reexamine this hypothesis in the frog, using the seven muscle synergies A to G previously identified with intraspinal NMDA (Saltiel et al. J Neurophysiol 85:605-619, 2001). We find that locomotion consists of a sequence of synergy activations (A-B-G-A-F-E-G). The same sequence is observed when focal NMDA iontophoresis in the spinal cord elicits a caudal extension-lateral force-flexion cycle (flexion onset without the C synergy). Examining the early NMDA-evoked motor output at 110 sites reveals a rostrocaudal topographic organization of synergy encoding by the lumbar cord. Each synergy is preferentially activated from distinct regions, which may be multiple, and partially overlap between different synergies. Comparing the sequence of synergy activation in locomotion with their spinal cord topography suggests that the locomotor output is achieved by a rostrocaudally traveling wave of activation in the swing-stance cycle. A two-layer circuitry model, based on this topography and a traveling wave reproduces this output and explores its possible modifications under different afferent inputs. Our results and simulations suggest that a rostrocaudally traveling wave of excitation takes advantage of the topography of interneuronal regions encoding synergies, to activate them in the proper sequence for locomotion.
Collapse
|
18
|
Hurteau MF, Thibaudier Y, Dambreville C, Desaulniers C, Frigon A. Effect of stimulating the lumbar skin caudal to a complete spinal cord injury on hindlimb locomotion. J Neurophysiol 2015; 113:669-76. [DOI: 10.1152/jn.00739.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory feedback is a potent modulator of the locomotor pattern generated by spinal networks. The purpose of this study was to assess the effect of cutaneous inputs from the back on the spinal-generated locomotor pattern. The spinal cord of six adult cats was transected at low thoracic levels. Cats were then trained to recover hindlimb locomotion. During experiments, the skin overlying lumbar vertebrae L2 to L7 was mechanically stimulated by a small calibrated clip or by manual pinching. Trials without and with cutaneous stimulation were performed at a treadmill speed of 0.4 m/s. Although manually pinching the skin completely stopped hindlimb locomotion and abolished weight support, cutaneous stimulation with the calibrated clip produced smaller effects. Specifically, more focalized cutaneous stimulation with the clip reduced flexor and extensor muscle activity and led to a more caudal positioning of the paw at contact and liftoff. Moreover, cutaneous stimulation with the clip led to a greater number of steps with improper nonplantigrade paw placements at contact and paw drag at the stance-to-swing transition. The most consistent effects on the hindlimb locomotor pattern were observed with cutaneous stimulation at midlumbar levels, from L3 to L5. The results indicate that cutaneous stimulation of the skin modulates the excitability of spinal circuits involved in generating locomotion and weight support, particularly at spinal segments thought to be critical for rhythm generation.
Collapse
Affiliation(s)
- Marie-France Hurteau
- Faculty of Medicine and Health Sciences, Department of Physiology and Biophysics, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Yann Thibaudier
- Faculty of Medicine and Health Sciences, Department of Physiology and Biophysics, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Charline Dambreville
- Faculty of Medicine and Health Sciences, Department of Physiology and Biophysics, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Corinne Desaulniers
- Faculty of Medicine and Health Sciences, Department of Physiology and Biophysics, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alain Frigon
- Faculty of Medicine and Health Sciences, Department of Physiology and Biophysics, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
19
|
Lemmens S, Brône B, Dooley D, Hendrix S, Geurts N. Alpha-adrenoceptor modulation in central nervous system trauma: pain, spasms, and paralysis--an unlucky triad. Med Res Rev 2014; 35:653-77. [PMID: 25546087 DOI: 10.1002/med.21337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many researchers have attempted to pharmacologically modulate the adrenergic system to control locomotion, pain, and spasms after central nervous system (CNS) trauma, although such efforts have led to conflicting results. Despite this, multiple studies highlight that α-adrenoceptors (α-ARs) are promising therapeutic targets because in the CNS, they are involved in reactivity to stressors and regulation of locomotion, pain, and spasms. These functions can be activated by direct modulation of these receptors on neuronal networks in the brain and the spinal cord. In addition, these multifunctional receptors are also broadly expressed on immune cells. This suggests that they might play a key role in modulating immunological responses, which may be crucial in treating spinal cord injury and traumatic brain injury as both diseases are characterized by a strong inflammatory component. Reducing the proinflammatory response will create a more permissive environment for axon regeneration and may support neuromodulation in combination therapies. However, pharmacological interventions are hindered by adrenergic system complexity and the even more complicated anatomical and physiological changes in the CNS after trauma. This review is the first concise overview of the pros and cons of α-AR modulation in the context of CNS trauma.
Collapse
Affiliation(s)
- Stefanie Lemmens
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Bert Brône
- Department of Physiology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sven Hendrix
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Nathalie Geurts
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
20
|
Jordan LM, McVagh JR, Noga BR, Cabaj AM, Majczyński H, Sławińska U, Provencher J, Leblond H, Rossignol S. Cholinergic mechanisms in spinal locomotion-potential target for rehabilitation approaches. Front Neural Circuits 2014; 8:132. [PMID: 25414645 PMCID: PMC4222238 DOI: 10.3389/fncir.2014.00132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/13/2014] [Indexed: 01/08/2023] Open
Abstract
Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and to provide a basis for recovery of locomotor capability in the absence of descending pathways. Tests of these suggestions, however, reveal that the spinal cholinergic system plays little if any role in the induction of locomotion, because MLR-evoked locomotion in decerebrate cats is not prevented by cholinergic antagonists. Furthermore, it is not required for the development of stepping movements after spinal cord injury, because cholinergic agonists do not facilitate the appearance of locomotion after spinal cord injury, unlike the dramatic locomotion-promoting effects of clonidine, a noradrenergic α-2 agonist. Furthermore, cholinergic antagonists actually improve locomotor activity after spinal cord injury, suggesting that plastic changes in the spinal cholinergic system interfere with locomotion rather than facilitating it. Changes that have been observed in the cholinergic innervation of motoneurons after spinal cord injury do not decrease motoneuron excitability, as expected. Instead, the development of a “hyper-cholinergic” state after spinal cord injury appears to enhance motoneuron output and suppress locomotion. A cholinergic suppression of afferent input from the limb after spinal cord injury is also evident from our data, and this may contribute to the ability of cholinergic antagonists to improve locomotion. Not only is a role for the spinal cholinergic system in suppressing locomotion after SCI suggested by our results, but an obligatory contribution of a brainstem cholinergic relay to reticulospinal locomotor command systems is not confirmed by our experiments.
Collapse
Affiliation(s)
- Larry M Jordan
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, University of Manitoba Winnipeg, MB, Canada
| | - J R McVagh
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, University of Manitoba Winnipeg, MB, Canada
| | - B R Noga
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miami, FL, USA
| | - A M Cabaj
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS Warsaw, Poland ; Department of Nerve-Muscle Engineering, Institute of Biocybernetics and Biomedical Engineering PAS Warsaw, Poland
| | - H Majczyński
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS Warsaw, Poland
| | - Urszula Sławińska
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS Warsaw, Poland
| | - J Provencher
- Groupe de Recherche sur le Système Nerveux Central and Department of Neuroscience, Faculty of Medicine, Université de Montréal Montreal, QC, Canada
| | - H Leblond
- Groupe de Recherche sur le Système Nerveux Central and Department of Neuroscience, Faculty of Medicine, Université de Montréal Montreal, QC, Canada
| | - Serge Rossignol
- Groupe de Recherche sur le Système Nerveux Central and Department of Neuroscience, Faculty of Medicine, Université de Montréal Montreal, QC, Canada
| |
Collapse
|
21
|
Gerasimenko Y, Gorodnichev R, Puhov A, Moshonkina T, Savochin A, Selionov V, Roy RR, Lu DC, Edgerton VR. Initiation and modulation of locomotor circuitry output with multisite transcutaneous electrical stimulation of the spinal cord in noninjured humans. J Neurophysiol 2014; 113:834-42. [PMID: 25376784 DOI: 10.1152/jn.00609.2014] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The mammalian lumbar spinal cord has the capability to generate locomotor activity in the absence of input from the brain. Previously, we reported that transcutaneous electrical stimulation of the spinal cord at vertebral level T11 can activate the locomotor circuitry in noninjured subjects when their legs are placed in a gravity-neutral position (Gorodnichev RM, Pivovarova EA, Pukhov A, Moiseev SA, Savokhin AA, Moshonkina TR, Shcherbakova NA, Kilimnik VA, Selionov VA, Kozlovskaia IB, Edgerton VR, Gerasimenko IU. Fiziol Cheloveka 38: 46-56, 2012). In the present study we hypothesized that stimulating multiple spinal sites and therefore unique combinations of networks converging on postural and locomotor lumbosacral networks would be more effective in inducing more robust locomotor behavior and more selective control than stimulation of more restricted networks. We demonstrate that simultaneous stimulation at the cervical, thoracic, and lumbar levels induced coordinated stepping movements with a greater range of motion at multiple joints in five of six noninjured subjects. We show that the addition of stimulation at L1 and/or at C5 to stimulation at T11 immediately resulted in enhancing the kinematics and interlimb coordination as well as the EMG patterns in proximal and distal leg muscles. Sequential cessation of stimulation at C5 and then at L1 resulted in a progressive degradation of the stepping pattern. The synergistic and interactive effects of transcutaneous stimulation suggest a multisegmental convergence of descending and ascending, and most likely propriospinal, influences on the spinal neuronal circuitries associated with locomotor activity. The potential impact of using multisite spinal cord stimulation as a strategy to neuromodulate the spinal circuitry has significant implications in furthering our understanding of the mechanisms controlling posture and locomotion and for regaining significant sensorimotor function even after a severe spinal cord injury.
Collapse
Affiliation(s)
- Yury Gerasimenko
- Pavlov Institute of Physiology, St. Petersburg, Russia; Integrative Biology and Physiology, University of California, Los Angeles, California; and
| | - Ruslan Gorodnichev
- Velikie Luky State Academy of Physical Education and Sport, Velikie Luky, Russia
| | - Aleksandr Puhov
- Velikie Luky State Academy of Physical Education and Sport, Velikie Luky, Russia
| | | | | | - Victor Selionov
- Institute for Information Transmission Problems, Russian Academy of Science, Moscow, Russia
| | - Roland R Roy
- Integrative Biology and Physiology, University of California, Los Angeles, California; and Brain Research Institute, University of California, Los Angeles, California
| | - Daniel C Lu
- Departments of Neurosurgery University of California, Los Angeles, California
| | - V Reggie Edgerton
- Departments of Neurosurgery University of California, Los Angeles, California; Integrative Biology and Physiology, University of California, Los Angeles, California; and Brain Research Institute, University of California, Los Angeles, California
| |
Collapse
|
22
|
Abstract
The lumbar spinal cord contains the necessary circuitry to independently drive locomotor behaviors. This function is retained following spinal cord injury (SCI) and is amenable to rehabilitation. Although the effectiveness of task-specific training and pharmacologic modulation has been repeatedly demonstrated in animal studies, results from human studies are less striking. Recently, lumbar epidural stimulation (EDS) along with locomotor training was shown to restore weight-bearing function and lower-extremity voluntary control in a chronic, motor-complete human SCI subject. Related animal studies incorporating EDS as part of the therapeutic regiment are also encouraging. EDS is emerging as a promising neuromodulatory tool for SCI.
Collapse
Affiliation(s)
- Nicholas AuYong
- Department of Neurosurgery, University of California, Los Angeles, 650 Charles E Young Drive South, CHS 74-129, Los Angeles, CA 90095, USA
| | | |
Collapse
|
23
|
Noga BR, Pinzon A. Spontaneous and electrically-evoked catecholamine secretion from long-term cultures of bovine adrenal chromaffin cells. Brain Res 2013; 1529:209-22. [PMID: 23891791 DOI: 10.1016/j.brainres.2013.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/03/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022]
Abstract
Catecholamine release was measured from bovine adrenal medullary chromaffin cell (CC) cultures maintained over a period of three months. Cells were plated over simple biocompatible cell platforms with electrical stimulation capability and at specified times transferred to an acrylic superfusion chamber designed to allow controlled flow of superfusate over the culture. Catecholamine release was measured from the superfusates using fast cyclic voltammetry before, during and after electrical stimulation of the cells. Immunocytochemical staining of CC cultures revealed that they were composed of epinephrine (EP) and/or norepinephrine (NE) type cells. Both spontaneous and evoked-release of catecholamines from CCs were observed throughout the testing period. EP predominated during spontaneous release, whereas NE was more prevalent during electrically-evoked release. Electrical stimulation for 20 s, increased total catecholamine release by 60-130% (measured over a period of 500 s) compared to that observed for an equivalent 20 s period of spontaneous release. Stimulus intensity was correlated with the amount of evoked release, up to a plateau which was observed near the highest intensities. Shorter intervals between stimulation trials did not significantly affect the initial amount of release, and the amount of evoked release was relatively stable over time and did not decrease significantly with age of the culture. The present study demonstrates long-term survival of CC cultures in vitro and describes a technique useful for rapid assessment of cell functionality and release properties of cultured monoaminergic cell types that later can be transplanted for neurotransmitter replacement following injury or disease.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | |
Collapse
|
24
|
Cutaneous inputs from the back abolish locomotor-like activity and reduce spastic-like activity in the adult cat following complete spinal cord injury. Exp Neurol 2012; 235:588-98. [PMID: 22487200 DOI: 10.1016/j.expneurol.2012.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/11/2012] [Accepted: 03/25/2012] [Indexed: 11/20/2022]
Abstract
Spasticity is a condition that can include increased muscle tone, clonus, spasms, and hyperreflexia. In this study, we report the effect of manually stimulating the dorsal lumbosacral skin on spontaneous locomotor-like activity and on a variety of reflex responses in 5 decerebrate chronic spinal cats treated with clonidine. Cats were spinalized 1 month before the terminal experiment. Stretch reflexes were evoked by stretching the left triceps surae muscles. Crossed reflexes were elicited by electrically stimulating the right tibial or superficial peroneal nerves. Wind-up of reflex responses was evoked by electrically stimulating the left tibial or superficial peroneal nerves. We found that pinching the skin of the back abolished spontaneous locomotor-like activity. We also found that back pinch abolished the rhythmic activity observed during reflex testing without eliminating the reflex responses. Some of the rhythmic episodes of activity observed during reflex testing were consistent with clonus with an oscillation frequency greater than 3 Hz. Pinching the skin of the back effectively abolished rhythmic activity occurring spontaneously or evoked during reflex testing, irrespective of oscillation frequency. The results are consistent with the hypothesis that locomotion and clonus are produced by common central pattern-generators. Stimulating the skin of the back could prove helpful in managing undesired rhythmic activity in spinal cord-injured humans.
Collapse
|
25
|
Rossignol S, Frigon A. Recovery of Locomotion After Spinal Cord Injury: Some Facts and Mechanisms. Annu Rev Neurosci 2011; 34:413-40. [PMID: 21469957 DOI: 10.1146/annurev-neuro-061010-113746] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Serge Rossignol
- Groupe de Recherche sur le Système Nerveux Central (FRSQ), Department of Physiology, and Multidisciplinary Team in Locomotor Rehabilitation of the Canadian Institutes for Health Research, Université de Montréal, Montreal H3C 3J7, Canada;
| | - Alain Frigon
- Groupe de Recherche sur le Système Nerveux Central (FRSQ), Department of Physiology, and Multidisciplinary Team in Locomotor Rehabilitation of the Canadian Institutes for Health Research, Université de Montréal, Montreal H3C 3J7, Canada;
- Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke JIH 5N4, Canada
| |
Collapse
|
26
|
Auyong N, Ollivier-Lanvin K, Lemay MA. Population spatiotemporal dynamics of spinal intermediate zone interneurons during air-stepping in adult spinal cats. J Neurophysiol 2011; 106:1943-53. [PMID: 21775722 DOI: 10.1152/jn.00258.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lumbar spinal cord circuitry can autonomously generate locomotion, but it remains to be determined which types of neurons constitute the locomotor generator and how their population activity is organized spatially in the mammalian spinal cord. In this study, we investigated the spatiotemporal dynamics of the spinal interneuronal population activity in the intermediate zone of the adult mammalian cord. Segmental interneuronal population activity was examined via multiunit activity (MUA) during air-stepping initiated by perineal stimulation in subchronic spinal cats. In contrast to single-unit activity, MUA provides a continuous measure of neuronal activity within a ∼100-μm volume around the recording electrode. MUA was recorded during air-stepping, along with hindlimb muscle activity, from segments L3 to L7 with two multichannel electrode arrays placed into the left and right hemicord intermediate zones (lamina V-VII). The phasic modulation and spatial organization of MUA dynamics were examined in relation to the locomotor cycle. Our results show that segmental population activity is modulated with respect to the ipsilateral step cycle during air-stepping, with maximal activity occurring near the ipsilateral swing to stance transition period. The phase difference between the population activity within the left and right hemicords was also found to correlate to the left-right alternation of the step cycle. Furthermore, examination of MUA throughout the rostrocaudal extent showed no differences in population dynamics between segmental levels, suggesting that the spinal interneurons targeted in this study may operate as part of a distributed "clock" mechanism rather than a rostrocaudal oscillation as seen with motoneuronal activity.
Collapse
Affiliation(s)
- Nicholas Auyong
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
27
|
Zaporozhets E, Cowley KC, Schmidt BJ. Neurochemical excitation of propriospinal neurons facilitates locomotor command signal transmission in the lesioned spinal cord. J Neurophysiol 2011; 105:2818-29. [PMID: 21451056 DOI: 10.1152/jn.00917.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previous studies of the in vitro neonatal rat brain stem-spinal cord showed that propriospinal relays contribute to descending transmission of a supraspinal command signal that is capable of activating locomotion. Using the same preparation, the present series examines whether enhanced excitation of thoracic propriospinal neurons facilitates propagation of the locomotor command signal in the lesioned spinal cord. First, we identified neurotransmitters contributing to normal endogenous propriospinal transmission of the locomotor command signal by testing the effect of receptor antagonists applied to cervicothoracic segments during brain stem-induced locomotor-like activity. Spinal cords were either intact or contained staggered bilateral hemisections located at right T1/T2 and left T10/T11 junctions designed to abolish direct long-projecting bulbospinal axons. Serotonergic, noradrenergic, dopaminergic, and glutamatergic, but not cholinergic, receptor antagonists blocked locomotor-like activity. Approximately 73% of preparations with staggered bilateral hemisections failed to generate locomotor-like activity in response to electrical stimulation of the brain stem alone; such preparations were used to test the effect of neuroactive substances applied to thoracic segments (bath barriers placed at T3 and T9) during brain stem stimulation. The percentage of preparations developing locomotor-like activity was as follows: 5-HT (43%), 5-HT/N-methyl-D-aspartate (NMDA; 33%), quipazine (42%), 8-hydroxy-2-(di-n-propylamino)tetralin (20%), methoxamine (45%), and elevated bath K(+) concentration (29%). Combined norepinephrine and dopamine increased the success rate (67%) compared with the use of either agent alone (4 and 7%, respectively). NMDA, Mg(2+) ion removal, clonidine, and acetylcholine were ineffective. The results provide proof of principle that artificial excitation of thoracic propriospinal neurons can improve supraspinal control over hindlimb locomotor networks in the lesioned spinal cord.
Collapse
Affiliation(s)
- Eugene Zaporozhets
- Department of Physiology, Section of Neurology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
28
|
Noga BR, Johnson DMG, Riesgo MI, Pinzon A. Locomotor-activated neurons of the cat. II. Noradrenergic innervation and colocalization with NEα 1a or NEα 2b receptors in the thoraco-lumbar spinal cord. J Neurophysiol 2011; 105:1835-49. [PMID: 21307324 DOI: 10.1152/jn.00342.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Norepinephrine (NE) is a strong modulator and/or activator of spinal locomotor networks. Thus noradrenergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the noradrenergic innervation of functionally related, locomotor-activated neurons within the thoraco-lumbar spinal cord. This was accomplished by immunohistochemical colocalization of noradrenergic fibers using dopamine-β-hydroxylase or NEα(1A) and NEα(2B) receptors with cells expressing the c-fos gene activity-dependent marker Fos. Experiments were performed on paralyzed, precollicular-postmamillary decerebrate cats, in which locomotion was induced by electrical stimulation of the mesencephalic locomotor region. The majority of Fos labeled neurons, especially abundant in laminae VII and VIII throughout the thoraco-lumbar (T13-L7) region of locomotor animals, showed close contacts with multiple noradrenergic boutons. A small percentage (10-40%) of Fos neurons in the T7-L7 segments showed colocalization with NEα(1A) receptors. In contrast, NEα(2B) receptor immunoreactivity was observed in 70-90% of Fos cells, with no obvious rostrocaudal gradient. In comparison with results obtained from our previous study on the same animals, a significantly smaller proportion of Fos labeled neurons were innervated by noradrenergic than serotonergic fibers, with significant differences observed for laminae VII and VIII in some segments. In lamina VII of the lumbar segments, the degree of monoaminergic receptor subtype/Fos colocalization examined statistically generally fell into the following order: NEα(2B) = 5-HT(2A) ≥ 5-HT(7) = 5-HT(1A) > NEα(1A). These results suggest that noradrenergic modulation of locomotion involves NEα(1A)/NEα(2B) receptors on noradrenergic-innervated locomotor-activated neurons within laminae VII and VIII of thoraco-lumbar segments. Further study of the functional role of these receptors in locomotion is warranted.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
29
|
Martinez M, Rossignol S. Changes in CNS structures after spinal cord lesions implications for BMI. PROGRESS IN BRAIN RESEARCH 2011; 194:191-202. [PMID: 21867804 DOI: 10.1016/b978-0-444-53815-4.00007-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is well established that a spinal circuitry can generate locomotor movements of the hindlimbs in absence of descending supraspinal inputs. This is based, among others, on the observation that after a complete spinalization, cats can walk with the hindlimbs on a treadmill. Does this spinal pattern generator (CPG) also participate in the recovery of locomotion after a partial spinal cord lesion (SCI)? After such SCI, functional reorganization can occur spontaneously along the whole neuraxis, namely the spinal cord circuitry below the lesion (CPG) and in supraspinal structures still partially connected to the spinal cord. This review focuses mainly on the capacity of the spinal and supraspinal structures to reorganize spontaneously after incomplete SCI in animals (rats and cats). BMI approaches to foster recovery of functions after various types of SCI should take into account these changes at the various levels of the CNS.
Collapse
Affiliation(s)
- M Martinez
- Department of Physiology, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, SensoriMotor Rehabilitation Research Team of the Canadian Institute for Health Research, Montréal, Québec, Canada
| | | |
Collapse
|
30
|
Chapter 10--a hierarchical perspective on rhythm generation for locomotor control. PROGRESS IN BRAIN RESEARCH 2011; 188:151-66. [PMID: 21333808 DOI: 10.1016/b978-0-444-53825-3.00015-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The control of locomotion is a complex dynamic task solved with apparent ease by our body. How this is accomplished still remains an intriguing mystery. This chapter first describes classical and recent findings relevant to understanding the complexity of the question on the verge of several fields of neurophysiology, biomechanics, and computational neuroscience. Then, control of locomotion is analyzed with numerical simulations to reveal some basic characteristics responsible for modulation of the locomotor rhythm and high-level control of steering in the whole animal. In this study, the concept of a central pattern generator (CPG) for controlling locomotor rhythm first proposed by Brown was implemented in a "simple" model with bilateral half-center oscillators consisting of reciprocally organized integrators. The parameters of the CPG were determined by the process of optimization of its phase-duration characteristic that satisfies biomechanical requirements of the overground locomotion. The general finding of this study is that the modality of the control signal that drives CPGs for each limb corresponds to the desired speed of forward progression. This supports the idea that the descending and sensory feedback inputs to the spinal CPG are combined to produce a high-level control signal that sets forward velocity. The same mechanism may be responsible for the control of steering by generating a differential input of speed commands to different limbs.
Collapse
|
31
|
Rossignol S, Frigon A, Barrière G, Martinez M, Barthélemy D, Bouyer L, Bélanger M, Provencher J, Chau C, Brustein E, Barbeau H, Giroux N, Marcoux J, Langlet C, Alluin O. Chapter 16--spinal plasticity in the recovery of locomotion. PROGRESS IN BRAIN RESEARCH 2011; 188:229-41. [PMID: 21333814 DOI: 10.1016/b978-0-444-53825-3.00021-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Locomotion is a very robust motor pattern which can be optimized after different types of lesions to the central and/or peripheral nervous system. This implies that several plastic mechanisms are at play to re-express locomotion after such lesions. Here, we review some of the key observations that helped identify some of these plastic mechanisms. At the core of this plasticity is the existence of a spinal central pattern generator (CPG) which is responsible for hindlimb locomotion as observed after a complete spinal cord section. However, normally, the CPG pattern is adapted by sensory inputs to take the environment into account and by supraspinal inputs in the context of goal-directed locomotion. We therefore also review some of the sensory and supraspinal mechanisms involved in the recovery of locomotion after partial spinal injury. We particularly stress a recent development using a dual spinal lesion paradigm in which a first partial spinal lesion is made which is then followed, some weeks later, by a complete spinalization. The results show that the spinal cord below the spinalization has been changed by the initial partial lesion suggesting that, in the recovery of locomotion after partial spinal lesion, plastic mechanisms within the spinal cord itself are very important.
Collapse
Affiliation(s)
- Serge Rossignol
- Groupe de Recherche sur le Système Nerveux Central, Department of Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Webb AA, Ngan S, Fowler JD. Spinal cord injury I: A synopsis of the basic science. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2010; 51:485-492. [PMID: 20676289 PMCID: PMC2857426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Substantial knowledge has been gained in the pathological findings following naturally occurring spinal cord injury (SCI) in dogs and cats. The molecular mechanisms involved in failure of neural regeneration within the central nervous system, potential therapeutics including cellular transplantation therapy, neural plasticity, and prognostic indicators of recovery from SCI have been studied. This 2-part review summarizes 1) basic science perspectives regarding treating and curing spinal cord injury, 2) recent studies that shed light on prognosis and recovery from SCI, 3) current thinking regarding standards of care for dogs with SCI, 4) experimental approaches in the laboratory setting, and 5) current clinical trials being conducted in veterinary medicine. Part I presents timely information on the pathophysiology of spinal cord injury, challenges associated with promoting regeneration of neurons of the central nervous system, and experimental approaches aimed at developing treatments for spinal cord injury.
Collapse
Affiliation(s)
- Aubrey A Webb
- Hotchkiss Brain Institute, Department of Comparative Biology and Experimental Medicine, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta T2N 4N1.
| | | | | |
Collapse
|
33
|
Reed WR, Shum-Siu A, Whelan A, Onifer SM, Magnuson DS. Anterograde labeling of ventrolateral funiculus pathways with spinal enlargement connections in the adult rat spinal cord. Brain Res 2009; 1302:76-84. [PMID: 19766612 PMCID: PMC2783768 DOI: 10.1016/j.brainres.2009.09.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/14/2009] [Accepted: 09/14/2009] [Indexed: 01/01/2023]
Abstract
The ventrolateral funiculus in the spinal cord has been identified as containing important ascending and descending pathways related to locomotion and interlimb coordination. The purpose of this descriptive study was to investigate the patterns of axon termination of long ascending and descending ventrolateral pathways within the cervical and lumbar enlargements of the adult rat spinal cord. To accomplish this, we made discrete unilateral injections of the tracer biotinylated dextran-amine (BDA) into the ventrolateral white matter at T9. Although some BDA-labeled axons with varicosities were found bilaterally at all cervical levels, particularly dense BDA labeling was observed in laminae VIII and IX ipsilaterally at the C6 and C8 levels. In the same animals, dense terminal labeling was found in the lumbar enlargement in medial lamina VII and ventromedial laminae VIII and IX contralaterally. This labeling was most apparent in the more rostral lumbar segments. These observations continue the characterization of inter-enlargement (long propriospinal) pathways, illustrating a substantial and largely reciprocal inter-enlargement network with large numbers of both ascending and descending ventrolateral commissural neurons. These pathways are anatomically well-suited to the task of interlimb coordination and to participate in the remarkable recovery of locomotor function seen in the rat following thoracic spinal cord injuries that spare as little as 20% of the total white matter cross sectional area.
Collapse
Affiliation(s)
- William R. Reed
- Department of Anatomical Sciences and Neurobiology, The Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville KY 40292
| | - Alice Shum-Siu
- Department of Neurological Surgery, The Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville KY 40292
| | - Ashley Whelan
- Department of Neurological Surgery, The Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville KY 40292
| | - Stephen M. Onifer
- Department of Anatomical Sciences and Neurobiology, The Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville KY 40292
- Department of Neurological Surgery, The Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville KY 40292
| | - David S.K. Magnuson
- Department of Anatomical Sciences and Neurobiology, The Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville KY 40292
- Department of Neurological Surgery, The Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville KY 40292
| |
Collapse
|
34
|
Noga BR, Johnson DMG, Riesgo MI, Pinzon A. Locomotor-activated neurons of the cat. I. Serotonergic innervation and co-localization of 5-HT7, 5-HT2A, and 5-HT1A receptors in the thoraco-lumbar spinal cord. J Neurophysiol 2009; 102:1560-76. [PMID: 19571190 DOI: 10.1152/jn.91179.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Monoamines are strong modulators and/or activators of spinal locomotor networks. Thus monoaminergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the serotonergic innervation of locomotor-activated neurons within the thoraco-lumbar spinal cord following induction of hindlimb locomotion. This was determined by immunohistochemical co-localization of serotonin (5-HT) fibers or 5-HT(7)/5-HT2A/5-HT1A receptors with cells expressing the activity-dependent marker c-fos. Experiments were performed on paralyzed, decerebrate cats in which locomotion was induced by electrical stimulation of the mesencephalic locomotor region. Abundant c-fos immunoreactive cells were observed in laminae VII and VIII throughout the thoraco-lumbar segments of locomotor animals. Control sections from the same segments showed significantly fewer labeled neurons, mostly within the dorsal horn. Multiple serotonergic boutons were found in close apposition to the majority (80-100%) of locomotor cells, which were most abundant in lumbar segments L3-7. 5-HT7 receptor immunoreactivity was observed on cells across the thoraco-lumbar segments (T7-L7), in a dorsoventral gradient. Most locomotor-activated cells co-localized with 5-HT7, 5-HT2A, and 5-HT1A receptors, with largest numbers in laminae VII and VIII. Co-localization of c-fos and 5-HT7 receptor was highest in the L5-L7 segments (>90%) and decreased rostrally (to approximately 50%) due to the absence of receptors on cells within the intermediolateral nucleus. In contrast, 60-80 and 35-80% of c-fos immunoreactive cells stained positive for 5-HT2A and 5-HT1A receptors, respectively, with no rostrocaudal gradient. These results indicate that serotonergic modulation of locomotion likely involves 5-HT(7)/5-HT2A/5-HT1A receptors located on the soma and proximal dendrites of serotonergic-innervated locomotor-activated neurons within laminae VII and VIII of thoraco-lumbar segments.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
35
|
Rossignol S, Barrière G, Alluin O, Frigon A. Re-expression of Locomotor Function After Partial Spinal Cord Injury. Physiology (Bethesda) 2009; 24:127-39. [DOI: 10.1152/physiol.00042.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
After a complete spinal section, quadruped mammals (cats, rats, and mice) can generally regain hindlimb locomotion on a treadmill because the spinal cord below the lesion can express locomotion through a neural circuitry termed the central pattern generator (CPG). In this review, we propose that the spinal CPG also plays a crucial role in the locomotor recovery after incomplete spinal cord injury.
Collapse
Affiliation(s)
- S. Rossignol
- Department of Physiology, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montreal, Canada; and
- Multidisciplinary Team in Locomotor Rehabilitation after Spinal Cord Injury, Canadian Institutes of Health Research (CIHR)
| | - G. Barrière
- Department of Physiology, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montreal, Canada; and
- Multidisciplinary Team in Locomotor Rehabilitation after Spinal Cord Injury, Canadian Institutes of Health Research (CIHR)
| | - O. Alluin
- Department of Physiology, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montreal, Canada; and
- Multidisciplinary Team in Locomotor Rehabilitation after Spinal Cord Injury, Canadian Institutes of Health Research (CIHR)
| | - A. Frigon
- Department of Physiology, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montreal, Canada; and
| |
Collapse
|
36
|
Delivet-Mongrain H, Leblond H, Rossignol S. Effects of Localized Intraspinal Injections of a Noradrenergic Blocker on Locomotion of High Decerebrate Cats. J Neurophysiol 2008; 100:907-21. [DOI: 10.1152/jn.90454.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Previous studies demonstrated that neuronal networks located in midlumbar segments (L3–L4) are critical for the expression of locomotion in cats following complete spinalization. In the present study the importance of several thoracolumbar segments (T8–L7) for the generation of spontaneous hindlimb locomotion in decerebrate cats was evaluated. Experiments were performed in high decerebrate cats ( n = 18) walking spontaneously. Yohimbine, an alpha2-noradrenergic antagonist, was microinjected intraspinally in various thoracolumbar segments. Locomotor performance was evaluated with kinematics and electromyographic (EMG) recordings before and after each injection. When and if spontaneous locomotion (SL) was abolished, skin or perineal stimuli (exteroceptive stimuli) were used to trigger locomotion (exteroceptive-induced locomotion [EL]). Yohimbine injections at L3 or L4 completely inhibited SL and EL. In contrast, injections at T8 did not interfere with SL or EL. Injections at T10, T11, T12, L5, L6, and L7 inhibited SL but EL could still be evoked. Injections at T13, L1, and L2 had similar effects except that the quality of locomotion evoked by exteroceptive stimulation declined. Combined injections at T13, L1, and L2 abolished SL and EL, in contrast to injections restricted to the same individual segments. Simultaneous injections at L5, L6, and L7 also abolished SL but EL could still be induced. These results suggest that noradrenergic mechanisms in L3–L4 segments are involved in the expression of locomotion in decerebrate cats, whereas antagonizing noradrenergic inputs in individual rostral or caudal segments may alter the expression and overall quality of the locomotor pattern without abolishing locomotion.
Collapse
|
37
|
Lapointe NP, Ung RV, Rouleau P, Guertin PA. Effects of Spinal α2-Adrenoceptor and I1-Imidazoline Receptor Activation on Hindlimb Movement Induction in Spinal Cord-Injured Mice. J Pharmacol Exp Ther 2008; 325:994-1006. [DOI: 10.1124/jpet.107.134874] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
38
|
Descending command systems for the initiation of locomotion in mammals. ACTA ACUST UNITED AC 2008; 57:183-91. [DOI: 10.1016/j.brainresrev.2007.07.019] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 07/11/2007] [Indexed: 01/09/2023]
|
39
|
Hammar I, Stecina K, Jankowska E. Differential modulation by monoamine membrane receptor agonists of reticulospinal input to lamina VIII feline spinal commissural interneurons. Eur J Neurosci 2007; 26:1205-12. [PMID: 17767499 DOI: 10.1111/j.1460-9568.2007.05764.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Noradrenaline and serotonin have previously been demonstrated to facilitate the transmission between descending reticulospinal tracts fibres and commissural interneurons coordinating left-right hindlimb muscle activity. The aim of the present study was to investigate the contribution of subclasses of monoaminergic membrane receptors to this facilitation. The neurons were located in Rexed lamina VIII in midlumbar segments and identified by their projections to the contralateral gastrocnemius-soleus motor nuclei and by lack of projections rostral to the lumbosacral enlargement. The effects of ionophoretically applied membrane receptor agonists [phenylephrine (noradrenergic alpha(1)), clonidine (noradrenergic alpha(2)), 8-OH-DPAT (5-HT(1A), 5-HT(7)), 2-me-5-HT (5-HT(3)), 5-me-5-HT (5-HT(2)) and alpha-me-5-HT (5-HT(2))] were examined on extracellularly recorded spikes evoked monosynaptically by electric stimulation of descending reticulospinal fibres in the medial longitudinal fascicle. Application of alpha(1) and 5-HT(2) agonists resulted in a facilitation of responses in all investigated neurons while application of alpha(2), 5-HT(1A/7) and 5-HT(3) agonists resulted in a depression. These opposite modulatory effects of different agonists suggest that the facilitatory actions of noradrenaline and serotonin on responses of commissural interneurons reported previously following ionophoretic application are the net outcome of the activation of different subclasses of monoaminergic membrane receptors. As these receptors may be distributed predominantly, or even selectively, at either pre- or postsynaptic sites their differential modulatory actions could be compatible with a presynaptically induced depression and a postsynaptically evoked enhancement of synaptic transmission between reticulospinal neurons and commissural interneurons.
Collapse
Affiliation(s)
- Ingela Hammar
- Department of Physiology, Göteborg University, Box 432, 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
40
|
Brownstone RM, Wilson JM. Strategies for delineating spinal locomotor rhythm-generating networks and the possible role of Hb9 interneurones in rhythmogenesis. ACTA ACUST UNITED AC 2007; 57:64-76. [PMID: 17905441 PMCID: PMC5061561 DOI: 10.1016/j.brainresrev.2007.06.025] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 06/17/2007] [Indexed: 01/08/2023]
Abstract
Despite significant advances in our understanding of pattern generation in invertebrates and lower vertebrates, there have been barriers to the application of the principles learned to the definition of networks underlying mammalian locomotion. Major difficulties have arisen in identifying spinal interneurones in preparations which allow study of neuronal intrinsic properties and the role of identified interneurones in locomotor networks. Recent genetic technologies in which selective expression of fluorescent proteins in specific populations of mouse spinal neurones have provided new avenues of investigation. In this review, we focus on the generation of locomotor rhythm and outline criteria that rhythm-generating neurones might be expected to fulfill. We then examine the extent to which a recently identified population of spinal interneurones, Hb9 interneurones, fulfill these criteria. Finally, we suggest that Hb9 interneurones could be involved in an asymmetric model of locomotor rhythmogenesis through projections of electrotonically coupled rhythm-generating modules to flexor pattern formation half-centres. The principles learned from studying this population of interneurones have led to strategies to systematically evaluate neurones that may be involved in locomotor rhythmogenesis.
Collapse
|
41
|
Gerasimenko Y, Roy RR, Edgerton VR. Epidural stimulation: comparison of the spinal circuits that generate and control locomotion in rats, cats and humans. Exp Neurol 2007; 209:417-25. [PMID: 17850791 PMCID: PMC2288525 DOI: 10.1016/j.expneurol.2007.07.015] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 07/20/2007] [Indexed: 11/24/2022]
Abstract
Although epidural stimulation is a technique that has been used for a number of years to treat individuals with a spinal cord injury, the intended outcome has been to suppress plasticity and pain. Over the last decade considerable progress has been made in realizing the potential of epidural stimulation to facilitate posture and locomotion in subjects with severe spinal cord injury who lack the ability to stand or to step. This progress has resulted primarily from experiments with mice, rats and cats having a complete spinal cord transection at a mid-thoracic level and in humans with a complete spinal cord injury. This review describes some of these experiments performed after the complete elimination of supraspinal input that demonstrates that the circuitry necessary to control remarkably normal locomotion appears to reside within the lumbosacral region of the spinal cord. These experiments, however, also demonstrate the essential role of processing proprioceptive information associated with weight-bearing stepping or standing by the spinal circuitry. For example, relatively simple tonic signals provided to the dorsum of the spinal cord epidurally can result in complex and highly adaptive locomotor patterns. Experiments emphasizing a significant complementary effect of epidural stimulation when combined with pharmacological facilitation, e.g., serotonergic agonists, and/or chronic step training also are described. Finally, a major point emphasized in this review is the striking similarity of the lumbosacral circuitry controlling locomotion in the rat and in the human.
Collapse
Affiliation(s)
- Yury Gerasimenko
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, CA 90095
- Pavlov Institute of Physiology, St. Petersburg, 199034, Russia
| | - Roland R. Roy
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - V. Reggie Edgerton
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, CA 90095
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
42
|
Falgairolle M, de Seze M, Juvin L, Morin D, Cazalets JR. Coordinated network functioning in the spinal cord: an evolutionary perspective. ACTA ACUST UNITED AC 2007; 100:304-16. [PMID: 17658245 DOI: 10.1016/j.jphysparis.2007.05.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The successful achievement of harmonious locomotor movement results from the integrated operation of all body segments. Here, we will review current knowledge on the functional organization of spinal networks involved in mammalian locomotion. Attention will not simply be restricted to hindlimb muscle control, but by also considering the necessarily coordinated activation of trunk and forelimb muscles, we will try to demonstrate that while there has been a progressive increase in locomotor system complexity during evolution, many basic organizational features have been preserved across the spectrum from lower vertebrates through to humans. Concerning the organization of axial neuronal networks that control trunk muscles, it has been found across the vertebrate range that during locomotor movement a motor wave travels longitudinally in the spinal cord via the coupling of rhythmic segmental networks. For hindlimb activation it has been found in all species studied that the rostral lumbar segments contain the key elements for pattern generation. We also showed that rhythmic arm movements are under the control of cervical forelimb generators in quadrupeds as well as in human. Finally, it is highlighted that the coordination of quadrupedal movements during locomotion derives principally from an asymmetrical coordinating influence occurring in the caudo-rostral direction from the lumbar hindlimb networks.
Collapse
Affiliation(s)
- Mélanie Falgairolle
- Université Bordeaux 2, CNRS Zone Nord, Bat 2, 2e étage, 146, rue Léo Saigant, 33076 Bordeaux Cedex, France
| | | | | | | | | |
Collapse
|
43
|
Barthélemy D, Leblond H, Rossignol S. Characteristics and mechanisms of locomotion induced by intraspinal microstimulation and dorsal root stimulation in spinal cats. J Neurophysiol 2007; 97:1986-2000. [PMID: 17215509 DOI: 10.1152/jn.00818.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intraspinal microstimulation (ISMS) through a single microelectrode can induce locomotion in cats spinalized at T(13) 1 wk before (untrained) or after 3-5 wk of treadmill training. Here we study the optimal parameters of ISMS and the characteristics of locomotion evoked. ISMS was applied in the dorsal region of segments L(3)-S(1) at different lateralities (midline to 2.5 mm) and after an intravenous injection of clonidine (noradrenergic agonist). Kinematics and electromyographic recordings were used to characterize locomotion. ISMS could induce a bilateral locomotor pattern similar to that obtained with perineal stimulation, and the characteristics of locomotion varied according to the spinal segment stimulated. Mechanisms by which ISMS could evoke locomotion were then investigated by stimulating, inactivating, or lesioning different spinal structures. Dorsal root stimulation (DRS), just like ISMS, could evoke a variety of ipsi- and bilateral nonlocomotor movements as well as locomotor responses. This suggests that sensory afferent pathways are involved in the production of locomotion by ISMS. Microinjections of yohimbine (noradrenergic antagonist) in L(3) and L(4) segments or a complete second spinal lesion at L(3)-L(4) abolished all locomotor activity evoked by ISMS applied at more caudal segments. Progressive dorsoventral spinal lesions at L(3) or L(4) and restricted ventral lesions at L(4) further suggest that the integrity of the ventral or ventrolateral funiculi as well as the L(3)-L(4) segments are critical for the induction of locomotion by ISMS at L(5) to S(1) or by DRS at these caudal segments.
Collapse
Affiliation(s)
- D Barthélemy
- Centre de Recherche en Sciences Neurologiques, Pavillon Paul-G.-Desmarais, 2960 Chemin de la Tour, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | | | | |
Collapse
|
44
|
Guevremont L, Renzi CG, Norton JA, Kowalczewski J, Saigal R, Mushahwar VK. Locomotor-related networks in the lumbosacral enlargement of the adult spinal cat: activation through intraspinal microstimulation. IEEE Trans Neural Syst Rehabil Eng 2006; 14:266-72. [PMID: 17009485 DOI: 10.1109/tnsre.2006.881592] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It is commonly accepted that locomotor-related neuronal circuitry resides in the lumbosacral spinal cord. Pharmacological agents, epidural electrical stimulation, and sensory stimulation can be used to activate these instrinsic networks in in vitro neonatal rat and in vivo cat preparations. In this study, we investigated the use of low-level tonic intraspinal microstimulation (ISMS) as a means of activating spinal locomotor networks in adult cats with complete spinal transections. Trains of low-amplitude electrical pulses were delivered to the spinal cord via groups of fine microwires implanted in the ventral horns of the lumbosacral enlargement. In contrast to published reports, tonic ISMS applied through microwires in the caudal regions of the lumbosacral enlargement (L7-S1) was more effective in eliciting alternating movements in the hindlimbs than stimulation in the rostral regions. Possible mechanisms of action of tonic ISMS include depolarization of locally oscillating networks in the lumbosacral cord, backfiring of primary afferents, or activation of propriospinal neurons.
Collapse
Affiliation(s)
- Lisa Guevremont
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada.
| | | | | | | | | | | |
Collapse
|
45
|
Rossignol S. Plasticity of connections underlying locomotor recovery after central and/or peripheral lesions in the adult mammals. Philos Trans R Soc Lond B Biol Sci 2006; 361:1647-71. [PMID: 16939980 PMCID: PMC1664667 DOI: 10.1098/rstb.2006.1889] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review discusses some aspects of plasticity of connections after spinal injury in adult animal models as a basis for functional recovery of locomotion. After reviewing some pitfalls that must be avoided when claiming functional recovery and the importance of a conceptual framework for the control of locomotion, locomotor recovery after spinal lesions, mainly in cats, is summarized. It is concluded that recovery is partly due to plastic changes within the existing spinal locomotor networks. Locomotor training appears to change the excitability of simple reflex pathways as well as more complex circuitry. The spinal cord possesses an intrinsic capacity to adapt to lesions of central tracts or peripheral nerves but, as a rule, adaptation to lesions entails changes at both spinal and supraspinal levels. A brief summary of the spinal capacity of the rat, mouse and human to express spinal locomotor patterns is given, indicating that the concepts derived mainly from work in the cat extend to other adult mammals. It is hoped that some of the issues presented will help to evaluate how plasticity of existing connections may combine with and potentiate treatments designed to promote regeneration to optimize remaining motor functions.
Collapse
Affiliation(s)
- Serge Rossignol
- Department of Physiology, Centre for Research in Neurological Sciences, Faculty of Medicine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, Québec, Canada H3C 3J7.
| |
Collapse
|
46
|
Barthélemy D, Leblond H, Provencher J, Rossignol S. Nonlocomotor and locomotor hindlimb responses evoked by electrical microstimulation of the lumbar cord in spinalized cats. J Neurophysiol 2006; 96:3273-92. [PMID: 16943319 DOI: 10.1152/jn.00203.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As a preliminary step to using intraspinal microstimulation (ISMS) for rehabilitation purposes, the distribution of various types of hindlimb responses evoked by ISMS in spinal cats (T(13)) is described. The responses to ISMS applied through a single electrode was assessed, before and after an intravenous injection of clonidine (noradrenergic agonist), using kinematics and electromyographic recordings in subacute (5-7 days, untrained) or chronic (3-5 wk trained on a treadmill) spinal cats. ISMS was applied in the dorsal, intermediate and ventral areas of segments L(3)-L(7), from midline to 3 mm laterally. Uni- and bilateral non-locomotor responses as well as rhythmical locomotor responses were evoked. In the subacute cats, ipsilateral flexion was elicited in the dorsal region of L(3)-L(7), whereas ipsilateral extension was evoked more ventrally and mainly in the caudal segments. Dorsal stimuli could induce ipsilateral flexion followed by ipsilateral extension. Sites inducing bilateral flexion and bilateral extension were similarly distributed to those evoking ipsilateral flexion and extension in the rostrocaudal axis but were evoked from more medial sites. Ipsilateral flexion with crossed extension was evoked from intermediate and ventral zones of all segments and lateralities. Unilateral ipsilateral locomotion was rarely observed. Contralateral locomotion was more frequent and mainly evoked medially, whereas bilateral locomotion was evoked exclusively from dorsal regions. With some exceptions, those distribution gradients were similar in the four conditions (subacute, chronic, pre- and postclonidine), but the proportion of each response could vary. The distribution of ISMS-evoked responses is discussed as a function of known localization of interneurons and motoneurons.
Collapse
Affiliation(s)
- Dorothy Barthélemy
- Centre de Recherche en Sciences Neurologiques, Pavillon Paul-G.-Desmarais, 2960 Chemin de la Tour, Université de Montréal, Montréal, Québec H3T 1J4 Canada
| | | | | | | |
Collapse
|
47
|
Skup M, Wiater M, Górnicka E, Walentynowicz M, Czarkowska-Bauch J. Different effect of locomotor exercise on the homogenate concentration of amino acids and monoamines in the rostral and caudal lumbar segments of the spinal cord in the rat. Spinal Cord 2006; 45:140-8. [PMID: 16819557 DOI: 10.1038/sj.sc.3101945] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN The effect of long-term (4 weeks) moderate locomotor exercise on segmental distribution of glutamate (Glu), aspartate, gamma-aminobutyric acid, glycine (Gly), serotonin and noradrenaline in the spinal cord of adult rats was investigated. OBJECTIVES In light of the data showing modulation of some neurotransmitters in the low-lumbar segments of the rat due to physical exercise, our aim was to establish how segmentally specific is this effect with respect to neuroactive amino acids and monoamines. SETTING Laboratory of Reinnervation Processes, Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland. METHODS Amino acids and monoamines content was measured by means of HPLC in the whole tissue homogenate of the spinal cord in nonexercised and exercised rats. RESULTS Glu and Gly homogenate concentration was the highest among all tested compounds. There was an intersegmental rostro-caudal gradient of concentration of neuroactive amino acids and monoamines, progressing caudally. Exercise modified this gradient exerting opposite effect on their concentration of amino acids and monoamines in the rostral and caudal lumbar segments. CONCLUSION Locomotor exercise leads to neurochemical remodeling of the spinal cord, which is differently manifested in the rostral and caudal lumbar segments of the spinal cord.
Collapse
Affiliation(s)
- M Skup
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | |
Collapse
|
48
|
Abstract
Locomotion results from intricate dynamic interactions between a central program and feedback mechanisms. The central program relies fundamentally on a genetically determined spinal circuitry (central pattern generator) capable of generating the basic locomotor pattern and on various descending pathways that can trigger, stop, and steer locomotion. The feedback originates from muscles and skin afferents as well as from special senses (vision, audition, vestibular) and dynamically adapts the locomotor pattern to the requirements of the environment. The dynamic interactions are ensured by modulating transmission in locomotor pathways in a state- and phase-dependent manner. For instance, proprioceptive inputs from extensors can, during stance, adjust the timing and amplitude of muscle activities of the limbs to the speed of locomotion but be silenced during the opposite phase of the cycle. Similarly, skin afferents participate predominantly in the correction of limb and foot placement during stance on uneven terrain, but skin stimuli can evoke different types of responses depending on when they occur within the step cycle. Similarly, stimulation of descending pathways may affect the locomotor pattern in only certain phases of the step cycle. Section ii reviews dynamic sensorimotor interactions mainly through spinal pathways. Section iii describes how similar sensory inputs from the spinal or supraspinal levels can modify locomotion through descending pathways. The sensorimotor interactions occur obviously at several levels of the nervous system. Section iv summarizes presynaptic, interneuronal, and motoneuronal mechanisms that are common at these various levels. Together these mechanisms contribute to the continuous dynamic adjustment of sensorimotor interactions, ensuring that the central program and feedback mechanisms are congruous during locomotion.
Collapse
Affiliation(s)
- Serge Rossignol
- Department of Physiology, Centre for Research in Neurological Sciences, Faculty of Medicine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montreal, Quebec, Canada H3C 3J7.
| | | | | |
Collapse
|
49
|
Carro-Juárez M, Rodríguez-Manzo G. alpha-Adrenergic agents modulate the activity of the spinal pattern generator for ejaculation. Int J Impot Res 2006; 18:32-8. [PMID: 16193073 DOI: 10.1038/sj.ijir.3901393] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 07/22/2005] [Accepted: 07/24/2005] [Indexed: 11/09/2022]
Abstract
Spinal cord transection at a thoracic level activates fictive ejaculation (FE) in the male rat. It has earlier been demonstrated that fictive motor patterns may be activated by pharmacological means and that the noradrenergic system seems to be particularly efficient in triggering locomotor fictive patterns in spinal animals. In the present study, the hypothesis was tested that the spinal noradrenergic system participates in the activation of the spinal generator for ejaculation (SGE). To this aim, the effect of the adrenergic agents, methoxamine, prazosin, clonidine, and yohimbine, upon FE was evaluated in spinal male rats using electromyographic techniques. The results obtained show that ejaculatory rhythmic patterns, accompanied by the expulsion of urethral contents and phasic penile movements, can be elicited by the intravenous (i.v.) injection of methoxamine or yohimbine. These drug-induced motor sequences appear superimposed to the intrinsic ejaculatory spinal rhythm. By contrast, i.v. injection of prazosin or clonidine blocked the expression of the spontaneous ejaculatory rhythmic pattern without inducing any other genital response. These data suggest that an increased noradrenergic tone, either by blockade of presynaptic alpha2-adrenoceptors or by stimulation of postsynaptic alpha1-adrenoceptors, results in the activation of the SGE. Present findings provide the evidence that the SGE might be importantly influenced by the noradrenergic system, which exerts a facilitatory control on the expression of the genital motor pattern of ejaculation.
Collapse
Affiliation(s)
- M Carro-Juárez
- Laboratorio de Comportamiento Reproductivo, Escuela de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tlaxcala, Tlaxcala, México.
| | | |
Collapse
|
50
|
Frigon A, Rossignol S. Functional plasticity following spinal cord lesions. PROGRESS IN BRAIN RESEARCH 2006; 157:231-260. [PMID: 17167915 DOI: 10.1016/s0079-6123(06)57016-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Spinal cord injury results in marked modification and reorganization of several reflex pathways caudal to the injury. The sudden loss or disruption of descending input engenders substantial changes at the level of primary afferents, interneurons, and motoneurons thus dramatically influencing sensorimotor interactions in the spinal cord. As a general rule reflexes are initially depressed following spinal cord injury due to severe reductions in motoneuron excitability but recover and in some instances become exaggerated. It is thought that modified inhibitory connections and/or altered transmission in some of these reflex pathways after spinal injury as well as the recovery and enhancement of membrane properties in motoneurons underlie several symptoms such as spasticity and may explain some characteristics of spinal locomotion observed in spinally transected animals. Indeed, after partial or complete spinal lesions at the last thoracic vertebra cats recover locomotion when the hindlimbs are placed on a treadmill. Although some deficits in spinal locomotion are related to lesion of specific descending motor pathways, other characteristics can also be explained by changes in the excitability of reflex pathways mentioned above. Consequently it may be the case that to reestablish a stable walking pattern that modified afferent inflow to the spinal cord incurred after injury must be normalized to enable a more normal re-expression of locomotor rhythm generating networks. Indeed, recent evidence demonstrates that step training, which has extensively been shown to facilitate and ameliorate locomotor recovery in spinal animals, directly influences transmission in simple reflex pathways after complete spinal lesions.
Collapse
Affiliation(s)
- Alain Frigon
- Center and Group for Neurological Sciences, CIHR Group in Neurological Sciences, CIHR Regenerative Medicine and Nanomedicine Team, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | | |
Collapse
|