1
|
Adedara IA, Atanda OE, Sant'Anna Monteiro C, Rosemberg DB, Aschner M, Farombi EO, Rocha JBT, Furian AF, Emanuelli T. Cellular and molecular mechanisms of aflatoxin B 1-mediated neurotoxicity: The therapeutic role of natural bioactive compounds. ENVIRONMENTAL RESEARCH 2023; 237:116869. [PMID: 37567382 DOI: 10.1016/j.envres.2023.116869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Aflatoxin B1 (AFB1), a dietary toxin from the mold Aspergillus species, is well acknowledged to elicit extra-hepatic toxicity in both animals and humans. The neurotoxicity of AFB1 has become a global public health concern. Contemporary research on how AFB1 enters the brain to elicit neuronal dysregulation leading to noxious neurological outcomes has increased greatly in recent years. The current review discusses several neurotoxic outcomes and susceptible targets of AFB1 toxicity at cellular, molecular and genetic levels. Specifically, neurotoxicity studies involving the use of brain homogenates, neuroblastoma cell line IMR-32, human brain microvascular endothelial cells, microglial cells, and astrocytes, as well as mammalian and non-mammalian models to unravel the mechanisms associated with AFB1 exposure are highlighted. Further, some naturally occurring bioactive compounds with compelling therapeutic effects on AFB1-induced neurotoxicity are reviewed. In conclusion, available data from literature highlight AFB1 as a neurotoxin and its possible pathological contribution to neurological disorders. Further mechanistic studies aimed at discovering and developing effective therapeutics for AFB1 neurotoxicity is warranted.
Collapse
Affiliation(s)
- Isaac A Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Oluwadarasimi E Atanda
- Human Toxicology Program, Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Camila Sant'Anna Monteiro
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology; Albert Einstein College of Medicine Forchheimer 209; 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Department of Biochemical and Molecular Biology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Ana Flávia Furian
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
2
|
Erazo-Toscano R, Fomenko M, Core S, Calabrese RL, Cymbalyuk G. Bursting Dynamics Based on the Persistent Na + and Na +/K + Pump Currents: A Dynamic Clamp Approach. eNeuro 2023; 10:ENEURO.0331-22.2023. [PMID: 37433684 PMCID: PMC10444573 DOI: 10.1523/eneuro.0331-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 06/04/2023] [Accepted: 06/16/2023] [Indexed: 07/13/2023] Open
Abstract
Life-supporting rhythmic motor functions like heart-beating in invertebrates and breathing in vertebrates require an indefatigable generation of a robust rhythm by specialized oscillatory circuits, central pattern generators (CPGs). These CPGs should be sufficiently flexible to adjust to environmental changes and behavioral goals. Continuous self-sustained operation of bursting neurons requires intracellular Na+ concentration to remain in a functional range and to have checks and balances of the Na+ fluxes met on a cycle-to-cycle basis during bursting. We hypothesize that at a high excitability state, the interaction of the Na+/K+ pump current, Ipump, and persistent Na+ current, INaP, produces a mechanism supporting functional bursting. INaP is a low voltage-activated inward current that initiates and supports the bursting phase. This current does not inactivate and is a significant source of Na+ influx. Ipump is an outward current activated by [Na+]i and is the major source of Na+ efflux. Both currents are active and counteract each other between and during bursts. We apply a combination of electrophysiology, computational modeling, and dynamic clamp to investigate the role of Ipump and INaP in the leech heartbeat CPG interneurons (HN neurons). Applying dynamic clamp to introduce additional Ipump and INaP into the dynamics of living synaptically isolated HN neurons in real time, we show that their joint increase produces transition into a new bursting regime characterized by higher spike frequency and larger amplitude of the membrane potential oscillations. Further increase of Ipump speeds up this rhythm by shortening burst duration (BD) and interburst interval (IBI).
Collapse
Affiliation(s)
- Ricardo Erazo-Toscano
- Neuroscience Institute, Georgia State University, Atlanta, 30302 GA
- Department of Biology, Emory University, Atlanta, 30322 GA
| | - Mykhailo Fomenko
- Neuroscience Institute, Georgia State University, Atlanta, 30302 GA
| | - Samuel Core
- Neuroscience Institute, Georgia State University, Atlanta, 30302 GA
| | | | | |
Collapse
|
3
|
Megwa OF, Pascual LM, Günay C, Pulver SR, Prinz AA. Temporal dynamics of Na/K pump mediated memory traces: insights from conductance-based models of Drosophila neurons. Front Neurosci 2023; 17:1154549. [PMID: 37284663 PMCID: PMC10239822 DOI: 10.3389/fnins.2023.1154549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/21/2023] [Indexed: 06/08/2023] Open
Abstract
Sodium potassium ATPases (Na/K pumps) mediate long-lasting, dynamic cellular memories that can last tens of seconds. The mechanisms controlling the dynamics of this type of cellular memory are not well understood and can be counterintuitive. Here, we use computational modeling to examine how Na/K pumps and the ion concentration dynamics they influence shape cellular excitability. In a Drosophila larval motor neuron model, we incorporate a Na/K pump, a dynamic intracellular Na+ concentration, and a dynamic Na+ reversal potential. We probe neuronal excitability with a variety of stimuli, including step currents, ramp currents, and zap currents, then monitor the sub- and suprathreshold voltage responses on a range of time scales. We find that the interactions of a Na+-dependent pump current with a dynamic Na+ concentration and reversal potential endow the neuron with rich response properties that are absent when the role of the pump is reduced to the maintenance of constant ion concentration gradients. In particular, these dynamic pump-Na+ interactions contribute to spike rate adaptation and result in long-lasting excitability changes after spiking and even after sub-threshold voltage fluctuations on multiple time scales. We further show that modulation of pump properties can profoundly alter a neuron's spontaneous activity and response to stimuli by providing a mechanism for bursting oscillations. Our work has implications for experimental studies and computational modeling of the role of Na/K pumps in neuronal activity, information processing in neural circuits, and the neural control of animal behavior.
Collapse
Affiliation(s)
- Obinna F. Megwa
- Department of Biology, Emory University, Atlanta, GA, United States
| | | | - Cengiz Günay
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, United States
| | - Stefan R. Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Astrid A. Prinz
- Department of Biology, Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Pellizzari S, Hu M, Amaral-Silva L, Saunders SE, Santin JM. Neuron populations use variable combinations of short-term feedback mechanisms to stabilize firing rate. PLoS Biol 2023; 21:e3001971. [PMID: 36689462 PMCID: PMC9894548 DOI: 10.1371/journal.pbio.3001971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/02/2023] [Accepted: 12/19/2022] [Indexed: 01/24/2023] Open
Abstract
Neurons tightly regulate firing rate and a failure to do so leads to multiple neurological disorders. Therefore, a fundamental question in neuroscience is how neurons produce reliable activity patterns for decades to generate behavior. Neurons have built-in feedback mechanisms that allow them to monitor their output and rapidly stabilize firing rate. Most work emphasizes the role of a dominant feedback system within a neuronal population for the control of moment-to-moment firing. In contrast, we find that respiratory motoneurons use 2 activity-dependent controllers in unique combinations across cells, dynamic activation of an Na+ pump subtype, and rapid potentiation of Kv7 channels. Both systems constrain firing rate by reducing excitability for up to a minute after a burst of action potentials but are recruited by different cellular signals associated with activity, increased intracellular Na+ (the Na+ pump), and membrane depolarization (Kv7 channels). Individual neurons do not simply contain equal amounts of each system. Rather, neurons under strong control of the Na+ pump are weakly regulated by Kv7 enhancement and vice versa along a continuum. Thus, each motoneuron maintains its characteristic firing rate through a unique combination of the Na+ pump and Kv7 channels, which are dynamically regulated by distinct feedback signals. These results reveal a new organizing strategy for stable circuit output involving multiple fast activity sensors scaled inversely across a neuronal population.
Collapse
Affiliation(s)
- Sarah Pellizzari
- University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Min Hu
- University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Lara Amaral-Silva
- University of Missouri, Columbia, Missouri, United States of America
| | - Sandy E. Saunders
- University of Missouri, Columbia, Missouri, United States of America
| | - Joseph M. Santin
- University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
5
|
Kinoshita PF, Orellana AM, Andreotti DZ, de Souza GA, de Mello NP, de Sá Lima L, Kawamoto EM, Scavone C. Consequences of the Lack of TNFR1 in Ouabain Response in the Hippocampus of C57BL/6J Mice. Biomedicines 2022; 10:biomedicines10112937. [PMID: 36428505 PMCID: PMC9688030 DOI: 10.3390/biomedicines10112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ouabain is a cardiac glycoside that has a protective effect against neuroinflammation at low doses through Na+/K+-ATPase signaling and that can activate tumor necrosis factor (TNF) in the brain. TNF plays an essential role in neuroinflammation and regulates glutamate receptors by acting on two different receptors (tumor necrosis factor receptor 1 [TNFR1] and TNFR2) that have distinct functions and expression. The activation of constitutively and ubiquitously expressed TNFR1 leads to the expression of pro-inflammatory cytokines. Thus, this study aimed to elucidate the effects of ouabain in a TNFR1 knockout (KO) mouse model. Interestingly, the hippocampus of TNFR1 KO mice showed a basal increase in both TNFR2 membrane expression and brain-derived neurotrophic factor (BDNF) release, suggesting a compensatory mechanism. Moreover, ouabain activated TNF-α-converting enzyme/a disintegrin and metalloprotease 17 (TACE/ADAM17), decreased N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A) expression, and induced anxiety-like behavior in both genotype animals, independent of the presence of TNFR1. However, ouabain induced an increase in interleukin (IL)-1β in the hippocampus, a decrease in IL-6 in serum, and an increase in NMDA receptor subunit 1 (NR1) only in wild-type (WT) mice, indicating that TNFR1 or TNFR2 expression may be important for some effects of ouabain. Collectively, our results indicate a connection between ouabain signaling and TNFR1, with the effect of ouabain partially dependent on TNFR1.
Collapse
Affiliation(s)
- Paula Fernanda Kinoshita
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Ana Maria Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Diana Zukas Andreotti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Giovanna Araujo de Souza
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Natalia Prudente de Mello
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Correspondence:
| |
Collapse
|
6
|
Proskurina EY, Zaitsev AV. Regulation of Potassium and Chloride Concentrations in Nervous Tissue as a Method of Anticonvulsant Therapy. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022050015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Under some pathological conditions, such as pharmacoresistant
epilepsy, status epilepticus or certain forms of genetic abnormalities,
spiking activity of GABAergic interneurons may enhance excitation
processes in neuronal circuits and provoke the generation of ictal
discharges. As a result, anticonvulsants acting on the GABAergic
system may be ineffective or even increase seizure activity. This
paradoxical effect of the inhibitory system is due to ionic imbalances
in nervous tissue. This review addresses the mechanisms of ictal
discharge initiation in neuronal networks due to the imbalance of
chloride and potassium ions, as well as possible ways to regulate
ionic concentrations. Both the enhancement (or attenuation) of the
activity of certain neuronal ion transporters and ion pumps and
their additional expression via gene therapy can be effective in
suppressing seizure activity caused by ionic imbalances. The Na+–K+-pump,
NKCC1 and KCC2 cotransporters are important for maintaining proper
K+ and Cl– concentrations
in nervous tissue, having been repeatedly considered as pharmacological
targets for antiepileptic exposures. Further progress in this direction
is hampered by the lack of sufficiently selective pharmacological
tools and methods for providing effective drug delivery to the epileptic
focus. The use of the gene therapy techniques, such as overexpressing
of the KCC2 transporter in the epileptic focus, seems to be a more promising
approach. Another possible direction could be the use of optogenetic
tools, namely specially designed light-activated ion pumps or ion
channels. In this case, photon energy can be used to create the
required gradients of chloride and potassium ions, although these
methods also have significant limitations which complicate their
rapid introduction into medicine.
Collapse
|
7
|
Phillips RS, Koizumi H, Molkov YI, Rubin JE, Smith JC. Predictions and experimental tests of a new biophysical model of the mammalian respiratory oscillator. eLife 2022; 11:74762. [PMID: 35796425 PMCID: PMC9262387 DOI: 10.7554/elife.74762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Previously our computational modeling studies (Phillips et al., 2019) proposed that neuronal persistent sodium current (INaP) and calcium-activated non-selective cation current (ICAN) are key biophysical factors that, respectively, generate inspiratory rhythm and burst pattern in the mammalian preBötzinger complex (preBötC) respiratory oscillator isolated in vitro. Here, we experimentally tested and confirmed three predictions of the model from new simulations concerning the roles of INaP and ICAN: (1) INaP and ICAN blockade have opposite effects on the relationship between network excitability and preBötC rhythmic activity; (2) INaP is essential for preBötC rhythmogenesis; and (3) ICAN is essential for generating the amplitude of rhythmic output but not rhythm generation. These predictions were confirmed via optogenetic manipulations of preBötC network excitability during graded INaP or ICAN blockade by pharmacological manipulations in slices in vitro containing the rhythmically active preBötC from the medulla oblongata of neonatal mice. Our results support and advance the hypothesis that INaP and ICAN mechanistically underlie rhythm and inspiratory burst pattern generation, respectively, in the isolated preBötC.
Collapse
Affiliation(s)
- Ryan S Phillips
- Department of Mathematics, University of Pittsburgh
- Center for the Neural Basis of Cognition
| | | | - Yaroslav I Molkov
- Department of Mathematics and Statistics, Georgia State University
- Neuroscience Institute, Georgia State University
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh
- Center for the Neural Basis of Cognition
| | | |
Collapse
|
8
|
Robertson RM, Moyes CD. Rapid cold hardening increases axonal Na+/K+-ATPase activity and enhances performance of a visual motion detection circuit in Locusta migratoria. J Exp Biol 2022; 225:275626. [DOI: 10.1242/jeb.244097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Rapid cold hardening (RCH) is a type of phenotypic plasticity that delays the occurrence of chill coma in insects. Chill coma is mediated by a spreading depolarization of neurons and glia in the CNS, triggered by a failure of ion homeostasis. We used biochemical and electrophysiological approaches in the locust, Locusta migratoria, to test the hypothesis that the protection afforded by RCH is mediated by activation of the Na+/K+-ATPase (NKA) in neural tissue. RCH did not affect NKA activity measured in a biochemical assay of homogenized thoracic ganglia. However, RCH hyperpolarized the axon of a visual interneuron (DCMD) and increased the amplitude of an activity-dependent hyperpolarization (ADH) shown previously to be blocked by ouabain. RCH also improved performance of the visual circuitry presynaptic to DCMD to minimize habituation and increase excitability. We conclude that RCH enhances in situ NKA activity in the nervous system but also affects other neuronal properties that promote visual processing in locusts.
Collapse
Affiliation(s)
- R. Meldrum Robertson
- Queen's University Department of Biology, 3118 Biosciences Complex , , Kingston, ON , Canada , K7L 3N6
| | - Christopher D. Moyes
- Queen's University Department of Biology, 3118 Biosciences Complex , , Kingston, ON , Canada , K7L 3N6
| |
Collapse
|
9
|
Sharples SA, Parker J, Vargas A, Milla-Cruz JJ, Lognon AP, Cheng N, Young L, Shonak A, Cymbalyuk GS, Whelan PJ. Contributions of h- and Na+/K+ Pump Currents to the Generation of Episodic and Continuous Rhythmic Activities. Front Cell Neurosci 2022; 15:715427. [PMID: 35185470 PMCID: PMC8855656 DOI: 10.3389/fncel.2021.715427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/29/2021] [Indexed: 12/31/2022] Open
Abstract
Developing spinal motor networks produce a diverse array of outputs, including episodic and continuous patterns of rhythmic activity. Variation in excitability state and neuromodulatory tone can facilitate transitions between episodic and continuous rhythms; however, the intrinsic mechanisms that govern these rhythms and their transitions are poorly understood. Here, we tested the capacity of a single central pattern generator (CPG) circuit with tunable properties to generate multiple outputs. To address this, we deployed a computational model composed of an inhibitory half-center oscillator (HCO). Following predictions of our computational model, we tested the contributions of key properties to the generation of an episodic rhythm produced by isolated spinal cords of the newborn mouse. The model recapitulates the diverse state-dependent rhythms evoked by dopamine. In the model, episodic bursting depended predominantly on the endogenous oscillatory properties of neurons, with Na+/K+ ATPase pump (IPump) and hyperpolarization-activated currents (Ih) playing key roles. Modulation of either IPump or Ih produced transitions between episodic and continuous rhythms and silence. As maximal activity of IPump decreased, the interepisode interval and period increased along with a reduction in episode duration. Decreasing maximal conductance of Ih decreased episode duration and increased interepisode interval. Pharmacological manipulations of Ih with ivabradine, and IPump with ouabain or monensin in isolated spinal cords produced findings consistent with the model. Our modeling and experimental results highlight key roles of Ih and IPump in producing episodic rhythms and provide insight into mechanisms that permit a single CPG to produce multiple patterns of rhythmicity.
Collapse
Affiliation(s)
- Simon A. Sharples
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Jessica Parker
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Alex Vargas
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Jonathan J. Milla-Cruz
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Adam P. Lognon
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Ning Cheng
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Leanne Young
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Anchita Shonak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Gennady S. Cymbalyuk
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, United States
- Gennady S. Cymbalyuk,
| | - Patrick J. Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Neuroscience, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Patrick J. Whelan,
| |
Collapse
|
10
|
Hachoumi L, Rensner R, Richmond C, Picton L, Zhang H, Sillar KT. Bimodal modulation of short-term motor memory via dynamic sodium pumps in a vertebrate spinal cord. Curr Biol 2022; 32:1038-1048.e2. [PMID: 35104440 PMCID: PMC9616794 DOI: 10.1016/j.cub.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 01/10/2023]
Abstract
Dynamic neuronal Na+/K+ pumps normally only respond to intense action potential firing owing to their low affinity for intracellular Na+. Recruitment of these Na+ pumps produces a post-activity ultraslow afterhyperpolarization (usAHP) up to ∼10 mV in amplitude and ∼60 s in duration, which influences neuronal properties and future network output. In spinal motor networks, the usAHP underlies short-term motor memory (STMM), reducing the intensity and duration of locomotor network output in a manner dependent on the interval between locomotor bouts. In contrast to tonically active Na+ pumps that help set and maintain the resting membrane potential, dynamic Na+ pumps are selectively antagonized by low concentrations of ouabain, which, we show, blocks both the usAHP and STMM. We examined whether dynamic Na+ pumps and STMM can be influenced by neuromodulators, focusing on 5-HT and nitric oxide. Bath-applied 5-HT alone had no significant effect on the usAHP or STMM. However, this is due to the simultaneous activation of two distinct 5-HT receptor subtypes (5-HT7 and 5-HT2a) that have opposing facilitatory and suppressive influences, respectively, on these two features of the locomotor system. Nitric oxide modulation exerts a potent inhibitory effect that can completely block the usAHP and erase STMM. Using selective blockers of 5-HT7 and 5-HT2a receptors and a nitric oxide scavenger, PTIO, we further provide evidence that the two modulators constitute an endogenous control system that determines how the spinal network self-regulates the intensity of locomotor output in light of recent past experience. Short-term memory in a spinal locomotor network is controlled by dynamic Na+ pumps Na+ pumps mediate an underlying ultraslow AHP modulated by 5-HT receptors and NO 5-HT7Rs increase and 5-HT2aRs and NO decrease the usAHP and short-term motor memory Endogenous 5-HT and NO regulate the usAHP and short-term motor memory
Collapse
|
11
|
Marchini M, Ashkin MR, Bellini M, Sun MMG, Workentine ML, Okuyan HM, Krawetz R, Beier F, Rolian C. A Na +/K + ATPase Pump Regulates Chondrocyte Differentiation and Bone Length Variation in Mice. Front Cell Dev Biol 2022; 9:708384. [PMID: 34970538 PMCID: PMC8712571 DOI: 10.3389/fcell.2021.708384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022] Open
Abstract
The genetic and developmental mechanisms involved in limb formation are relatively well documented, but how these mechanisms are modulated by changes in chondrocyte physiology to produce differences in limb bone length remains unclear. Here, we used high throughput RNA sequencing (RNAseq) to probe the developmental genetic basis of variation in limb bone length in Longshanks, a mouse model of experimental evolution. We find that increased tibia length in Longshanks is associated with altered expression of a few key endochondral ossification genes such as Npr3, Dlk1, Sox9, and Sfrp1, as well reduced expression of Fxyd2, a facultative subunit of the cell membrane-bound Na+/K+ ATPase pump (NKA). Next, using murine tibia and cell cultures, we show a dynamic role for NKA in chondrocyte differentiation and in bone length regulation. Specifically, we show that pharmacological inhibition of NKA disrupts chondrocyte differentiation, by upregulating expression of mesenchymal stem cell markers (Prrx1, Serpina3n), downregulation of chondrogenesis marker Sox9, and altered expression of extracellular matrix genes (e.g., collagens) associated with proliferative and hypertrophic chondrocytes. Together, Longshanks and in vitro data suggest a broader developmental and evolutionary role of NKA in regulating limb length diversity.
Collapse
Affiliation(s)
- Marta Marchini
- Department of Anatomy and Cell Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Mitchell R Ashkin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Melina Bellini
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Margaret Man-Ger Sun
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Matthew Lloyd Workentine
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Hamza Malik Okuyan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Roman Krawetz
- Department of Anatomy and Cell Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Campbell Rolian
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Wenner PA, Pekala D. Homeostatic Regulation of Motoneuron Properties in Development. ADVANCES IN NEUROBIOLOGY 2022; 28:87-107. [PMID: 36066822 DOI: 10.1007/978-3-031-07167-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Homeostatic plasticity represents a set of compensatory mechanisms that are engaged following a perturbation to some feature of neuronal or network function. Homeostatic mechanisms are most robustly expressed during development, a period that is replete with various perturbations such as increased cell size and the addition/removal of synaptic connections. In this review we look at numerous studies that have advanced our understanding of homeostatic plasticity by taking advantage of the accessibility of developing motoneurons. We discuss the homeostatic regulation of embryonic movements in the living chick embryo and describe the spinal compensatory mechanisms that act to recover these movements (homeostatic intrinsic plasticity) or stabilize synaptic strength (synaptic scaling). We describe the expression and triggering mechanisms of these forms of homeostatic plasticity and thereby gain an understanding of their roles in the motor system. We then illustrate how these findings can be extended to studies of developing motoneurons in other systems including the rodents, zebrafish, and fly. Furthermore, studies in developing drosophila have been critical in identifying some of the molecular signaling cascades and expression mechanisms that underlie homeostatic intrinsic membrane excitability. This powerful model organism has also been used to study a presynaptic form of homeostatic plasticity where increases or decreases in synaptic transmission are associated with compensatory changes in probability of release at the neuromuscular junction. Further, we describe studies that demonstrate homeostatic adjustments of ion channel expression following perturbations to other kinds of ion channels. Finally, we discuss work in xenopus that shows a homeostatic regulation of neurotransmitter phenotype in developing motoneurons following activity perturbations. Together, this work illustrates the importance of developing motoneurons in elucidating the mechanisms and roles of homeostatic plasticity.
Collapse
Affiliation(s)
- Peter A Wenner
- Department of Cell Biology, Whitehead Biomedical Research Building, Emory University School of Medicine, Atlanta, GA, USA.
| | - Dobromila Pekala
- Department of Cell Biology, Whitehead Biomedical Research Building, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
13
|
Jiao S, Johnson K, Moreno C, Yano S, Holmgren M. Comparative description of the mRNA expression profile of Na + /K + -ATPase isoforms in adult mouse nervous system. J Comp Neurol 2021; 530:627-647. [PMID: 34415061 PMCID: PMC8716420 DOI: 10.1002/cne.25234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/16/2021] [Accepted: 08/16/2021] [Indexed: 11/09/2022]
Abstract
Mutations in genes encoding Na+ /K+ -ATPase α1, α2, and α3 subunits cause a wide range of disabling neurological disorders, and dysfunction of Na+ /K+ -ATPase may contribute to neuronal injury in stroke and dementia. To better understand the pathogenesis of these diseases, it is important to determine the expression patterns of the different Na+ /K+ -ATPase subunits within the brain and among specific cell types. Using two available scRNA-Seq databases from the adult mouse nervous system, we examined the mRNA expression patterns of the different isoforms of the Na+ /K+ -ATPase α, β and Fxyd subunits at the single-cell level among brain regions and various neuronal populations. We subsequently identified specific types of neurons enriched with transcripts for α1 and α3 isoforms and elaborated how α3-expressing neuronal populations govern cerebellar neuronal circuits. We further analyzed the co-expression network for α1 and α3 isoforms, highlighting the genes that positively correlated with α1 and α3 expression. The top 10 genes for α1 were Chn2, Hpcal1, Nrgn, Neurod1, Selm, Kcnc1, Snrk, Snap25, Ckb and Ccndbp1 and for α3 were Sorcs3, Eml5, Neurod2, Ckb, Tbc1d4, Ptprz1, Pvrl1, Kirrel3, Pvalb, and Asic2.
Collapse
Affiliation(s)
- Song Jiao
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Kory Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Cristina Moreno
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Sho Yano
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Miguel Holmgren
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Abstract
By evaluating children with a malformed cerebral cortex, we identified an ATPase pump (ATP1A3) with an early role in brain development. The ATP1A3 pump maintains the physiological concentration of sodium and potassium ions in cells, a process critical for osmotic equilibrium and membrane potential across several developing cell populations. We employed single-cell sequencing approaches to identify key enrichments for ATP1A3 expression during human cortex development. Unravelling this early cell-type–specific pathophysiology in the developing brain offers a potential basis for the treatment of ATP1A3-related diseases affecting prenatal and early childhood development. Osmotic equilibrium and membrane potential in animal cells depend on concentration gradients of sodium (Na+) and potassium (K+) ions across the plasma membrane, a function catalyzed by the Na+,K+-ATPase α-subunit. Here, we describe ATP1A3 variants encoding dysfunctional α3-subunits in children affected by polymicrogyria, a developmental malformation of the cerebral cortex characterized by abnormal folding and laminar organization. To gain cell-biological insights into the spatiotemporal dynamics of prenatal ATP1A3 expression, we built an ATP1A3 transcriptional atlas of fetal cortical development using mRNA in situ hybridization and transcriptomic profiling of ∼125,000 individual cells with single-cell RNA sequencing (Drop-seq) from 11 areas of the midgestational human neocortex. We found that fetal expression of ATP1A3 is most abundant to a subset of excitatory neurons carrying transcriptional signatures of the developing subplate, yet also maintains expression in nonneuronal cell populations. Moving forward a year in human development, we profiled ∼52,000 nuclei from four areas of an infant neocortex and show that ATP1A3 expression persists throughout early postnatal development, most predominantly in inhibitory neurons, including parvalbumin interneurons in the frontal cortex. Finally, we discovered the heteromeric Na+,K+-ATPase pump complex may form nonredundant cell-type–specific α-β isoform combinations, including α3-β1 in excitatory neurons and α3-β2 in inhibitory neurons. Together, the developmental malformation phenotype of affected individuals and single-cell ATP1A3 expression patterns point to a key role for α3 in human cortex development, as well as a cell-type basis for pre- and postnatal ATP1A3-associated diseases.
Collapse
|
15
|
Moyes CD, Dastjerdi SH, Robertson RM. Measuring enzyme activities in crude homogenates: Na +/K +-ATPase as a case study in optimizing assays. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110577. [PMID: 33609808 DOI: 10.1016/j.cbpb.2021.110577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 12/28/2022]
Abstract
In this review of assays of Na+/K+-ATPase (NKA), we explore the choices made by researchers assaying the enzyme to investigate its role in physiological regulation. We survey NKA structure and function in the context of how it is typically assayed, and how technical choices influence what can be said about the enzyme. In comparing different methods for extraction and assay of NKA, we identified a series of common pitfalls that compromise the veracity of results. We include experimental work to directly demonstrate how choices in detergents, salts and substrates influence NKA activities measured in crude homogenates. Our review of assay approaches integrates what is known from enzymology, biomedical physiology, cell biology and evolutionary biology, offering a more robust method for assaying the enzyme in meaningful ways, identifying caveats and future directions to explore its structure and function. The goal is to provide the sort of background on the enzyme that should be considered in exploring the function of the enzyme in comparative physiology.
Collapse
|
16
|
The M-current works in tandem with the persistent sodium current to set the speed of locomotion. PLoS Biol 2020; 18:e3000738. [PMID: 33186352 PMCID: PMC7688130 DOI: 10.1371/journal.pbio.3000738] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/25/2020] [Accepted: 10/13/2020] [Indexed: 01/20/2023] Open
Abstract
The central pattern generator (CPG) for locomotion is a set of pacemaker neurons endowed with inherent bursting driven by the persistent sodium current (INaP). How they proceed to regulate the locomotor rhythm remained unknown. Here, in neonatal rodents, we identified a persistent potassium current critical in regulating pacemakers and locomotion speed. This current recapitulates features of the M-current (IM): a subthreshold noninactivating outward current blocked by 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE991) and enhanced by N-(2-chloro-5-pyrimidinyl)-3,4-difluorobenzamide (ICA73). Immunostaining and mutant mice highlight an important role of Kv7.2-containing channels in mediating IM. Pharmacological modulation of IM regulates the emergence and the frequency regime of both pacemaker and CPG activities and controls the speed of locomotion. Computational models captured these results and showed how an interplay between IM and INaP endows the locomotor CPG with rhythmogenic properties. Overall, this study provides fundamental insights into how IM and INaP work in tandem to set the speed of locomotion.
Collapse
|
17
|
A dynamic role for dopamine receptors in the control of mammalian spinal networks. Sci Rep 2020; 10:16429. [PMID: 33009442 PMCID: PMC7532218 DOI: 10.1038/s41598-020-73230-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
Dopamine is well known to regulate movement through the differential control of direct and indirect pathways in the striatum that express D1 and D2 receptors respectively. The spinal cord also expresses all dopamine receptors; however, how the specific receptors regulate spinal network output in mammals is poorly understood. We explore the receptor-specific mechanisms that underlie dopaminergic control of spinal network output of neonatal mice during changes in spinal network excitability. During spontaneous activity, which is a characteristic of developing spinal networks operating in a low excitability state, we found that dopamine is primarily inhibitory. We uncover an excitatory D1-mediated effect of dopamine on motoneurons and network output that also involves co-activation with D2 receptors. Critically, these excitatory actions require higher concentrations of dopamine; however, analysis of dopamine concentrations of neonates indicates that endogenous levels of spinal dopamine are low. Because endogenous levels of spinal dopamine are low, this excitatory dopaminergic pathway is likely physiologically-silent at this stage in development. In contrast, the inhibitory effect of dopamine, at low physiological concentrations is mediated by parallel activation of D2, D3, D4 and α2 receptors which is reproduced when endogenous dopamine levels are increased by blocking dopamine reuptake and metabolism. We provide evidence in support of dedicated spinal network components that are controlled by excitatory D1 and inhibitory D2 receptors that is reminiscent of the classic dopaminergic indirect and direct pathway within the striatum. These results indicate that network state is an important factor that dictates receptor-specific and therefore dose-dependent control of neuromodulators on spinal network output and advances our understanding of how neuromodulators regulate neural networks under dynamically changing excitability.
Collapse
|
18
|
Homeostatic Recovery of Embryonic Spinal Activity Initiated by Compensatory Changes in Resting Membrane Potential. eNeuro 2020; 7:ENEURO.0526-19.2020. [PMID: 32540879 PMCID: PMC7340840 DOI: 10.1523/eneuro.0526-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 05/08/2020] [Accepted: 05/22/2020] [Indexed: 01/20/2023] Open
Abstract
When baseline activity in a neuronal network is modified by external challenges, a set of mechanisms is prompted to homeostatically restore activity levels. These homeostatic mechanisms are thought to be profoundly important in the maturation of the network. It has been shown that blockade of either excitatory GABAergic or glutamatergic transmission in the living chick embryo transiently blocks the movements generated by spontaneous network activity (SNA) in the spinal cord. However, the embryonic movements then begin to recover by 2 h and are completely restored by 12 h of persistent receptor blockade. It remains unclear what mechanisms mediate this early recovery (first hours) after neurotransmitter blockade, or even if the same mechanisms are triggered following GABAergic and glutamatergic antagonists. Here we find two distinct mechanisms that could underlie this homeostatic recovery. First, we see a highly robust compensatory mechanism observed shortly after neurotransmitter receptor blockade. In the first 2 h of GABAergic or glutamatergic blockade in vitro, there was a clear depolarization of resting membrane potential (RMP) in both motoneurons and interneurons. These changes reduced threshold current and were observed in the continued presence of the antagonist. Therefore, it appears that fast changes in RMP represent a key fast homeostatic mechanism for the maintenance of network activity. Second, we see a less consistent compensatory change in the absolute threshold voltage in the first several hours of in vitro and in vivo neurotransmitter blockade. These mechanisms likely contribute to the homeostatic recovery of embryonic movements following neurotransmitter blockade.
Collapse
|
19
|
Ellingson P, Barnett WH, Vargas A, Kueh D, Calabrese R, Cymbalyuk G. Co‐modulation of the Na
+
/K
+
pump and hyperpolarization‐activated currents as a mechanism for robust neuromodulation. FASEB J 2020. [DOI: 10.1096/fasebj.2020.34.s1.06762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Zhao C, Devlin AC, Chouhan AK, Selvaraj BT, Stavrou M, Burr K, Brivio V, He X, Mehta AR, Story D, Shaw CE, Dando O, Hardingham GE, Miles GB, Chandran S. Mutant C9orf72 human iPSC-derived astrocytes cause non-cell autonomous motor neuron pathophysiology. Glia 2019; 68:1046-1064. [PMID: 31841614 PMCID: PMC7078830 DOI: 10.1002/glia.23761] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Mutations in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS). Accumulating evidence implicates astrocytes as important non‐cell autonomous contributors to ALS pathogenesis, although the potential deleterious effects of astrocytes on the function of motor neurons remains to be determined in a completely humanized model of C9orf72‐mediated ALS. Here, we use a human iPSC‐based model to study the cell autonomous and non‐autonomous consequences of mutant C9orf72 expression by astrocytes. We show that mutant astrocytes both recapitulate key aspects of C9orf72‐related ALS pathology and, upon co‐culture, cause motor neurons to undergo a progressive loss of action potential output due to decreases in the magnitude of voltage‐activated Na+ and K+ currents. Importantly, CRISPR/Cas‐9 mediated excision of the C9orf72 repeat expansion reverses these phenotypes, confirming that the C9orf72 mutation is responsible for both cell‐autonomous astrocyte pathology and non‐cell autonomous motor neuron pathophysiology.
Collapse
Affiliation(s)
- Chen Zhao
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Anna-Claire Devlin
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, UK
| | - Amit K Chouhan
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, UK
| | - Bhuvaneish T Selvaraj
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - Maria Stavrou
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - Karen Burr
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - Veronica Brivio
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, UK
| | - Xin He
- Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Arpan R Mehta
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - David Story
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - Christopher E Shaw
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London, UK.,Dementia Research Institute at Kings College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Owen Dando
- Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Giles E Hardingham
- Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Gareth B Miles
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, UK
| | - Siddharthan Chandran
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| |
Collapse
|
21
|
Capsaicin-Induced Impairment of Functional Network Dynamics in Mouse Hippocampus via a TrpV1 Receptor-Independent Pathway: Putative Involvement of Na +/K +-ATPase. Mol Neurobiol 2019; 57:1170-1185. [PMID: 31701438 PMCID: PMC7031213 DOI: 10.1007/s12035-019-01779-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
Abstract
The vanilloid compound capsaicin (Cp) is best known to bind to and activate the transient receptor potential vanilloid receptor-1 (TrpV1). A growing number of studies use capsaicin as a tool to study the role of TrpV1 in the central nervous system (CNS). Although most of capsaicin’s CNS effects have been reported to be mediated by TrpV1 activation, evidence exists that capsaicin can also trigger functional changes in hippocampal activity independently of TrpV1. Recently, we have reported that capsaicin induces impairment in hippocampal gamma oscillations via a TrpV1-independent pathway. Here, we dissect the underlying mechanisms of capsaicin-induced alterations to functional network dynamics. We found that capsaicin induces a reduction in action potential (AP) firing rate and a subsequent loss of synchronicity in pyramidal cell (PC) spiking activity in hippocampus. Moreover, capsaicin induces alterations in PC spike-timing since increased first-spike latency was observed after capsaicin treatment. First-spike latency can be regulated by the voltage-dependent potassium current D (ID) or Na+/K+-ATPase. Selective inhibition of ID via low 4-AP concentration and Na+/K+-ATPase using its blocker ouabain, we found that capsaicin effects on AP spike timing were completely inhibited by ouabain but not with 4-AP. In conclusion, our study shows that capsaicin in a TrpV1-independent manner and possibly involving Na+/K+-ATPase activity can impair cognition-relevant functional network dynamics such as gamma oscillations and provides important data regarding the use of capsaicin as a tool to study TrpV1 function in the CNS.
Collapse
|
22
|
Allocco AA, Jin SC, Duy PQ, Furey CG, Zeng X, Dong W, Nelson-Williams C, Karimy JK, DeSpenza T, Hao LT, Reeves B, Haider S, Gunel M, Lifton RP, Kahle KT. Recessive Inheritance of Congenital Hydrocephalus With Other Structural Brain Abnormalities Caused by Compound Heterozygous Mutations in ATP1A3. Front Cell Neurosci 2019; 13:425. [PMID: 31616254 PMCID: PMC6775207 DOI: 10.3389/fncel.2019.00425] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/04/2019] [Indexed: 11/25/2022] Open
Abstract
Background ATP1A3 encodes the α3 subunit of the Na+/K+ ATPase, a fundamental ion-transporting enzyme. Primarily expressed in neurons, ATP1A3 is mutated in several autosomal dominant neurological diseases. To our knowledge, damaging recessive genotypes in ATP1A3 have never been associated with any human disease. Atp1a3 deficiency in zebrafish results in hydrocephalus; however, no known association exists between ATP1A3 and human congenital hydrocephalus (CH). Methods We utilized whole-exome sequencing (WES), bioinformatics, and computational modeling to identify and characterize novel ATP1A3 mutations in a patient with CH. We performed immunohistochemical studies using mouse embryonic brain tissues to characterize Atp1a3 expression during brain development. Results We identified two germline mutations in ATP1A3 (p. Arg19Cys and p.Arg463Cys), each of which was inherited from one of the patient’s unaffected parents, in a single patient with severe obstructive CH due to aqueductal stenosis, along with open schizencephaly, type 1 Chiari malformation, and dysgenesis of the corpus callosum. Both mutations are predicted to be highly deleterious and impair protein stability. Immunohistochemical studies demonstrate robust Atp1a3 expression in neural stem cells (NSCs), differentiated neurons, and choroid plexus of the mouse embryonic brain. Conclusion These data provide the first evidence of a recessive human phenotype associated with mutations in ATP1A3, and implicate impaired Na+/K+ ATPase function in the pathogenesis of CH.
Collapse
Affiliation(s)
- August A Allocco
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Sheng Chih Jin
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, United States.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, United States
| | - Phan Q Duy
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Charuta G Furey
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Xue Zeng
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, United States.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, United States
| | - Weilai Dong
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, United States
| | - Carol Nelson-Williams
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, United States
| | - Jason K Karimy
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Tyrone DeSpenza
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Le T Hao
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Benjamin Reeves
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Shozeb Haider
- Department of Computational Chemistry, University College London School of Pharmacy, London, United Kingdom
| | - Murat Gunel
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States.,Department of Genetics, School of Medicine, Yale University, New Haven, CT, United States
| | - Richard P Lifton
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, United States.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, United States
| | - Kristopher T Kahle
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States.,Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, United States.,NIH-Yale Centers for Mendelian Genomics, School of Medicine, Yale University, New Haven, CT, United States.,Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
23
|
Factors in the disease severity of ATP1A3 mutations: Impairment, misfolding, and allele competition. Neurobiol Dis 2019; 132:104577. [PMID: 31425744 DOI: 10.1016/j.nbd.2019.104577] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/22/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022] Open
Abstract
Dominant mutations of ATP1A3, a neuronal Na,K-ATPase α subunit isoform, cause neurological disorders with an exceptionally wide range of severity. Several new mutations and their phenotypes are reported here (p.Asp366His, p.Asp742Tyr, p.Asp743His, p.Leu924Pro, and a VUS, p.Arg463Cys). Mutations associated with mild or severe phenotypes [rapid-onset dystonia-parkinsonism (RDP), alternating hemiplegia of childhood (AHC), or early infantile epileptic encephalopathy (EIEE)] were expressed in HEK-293 cells. Paradoxically, the severity of human symptoms did not correlate with whether there was enough residual activity to support cell survival. We hypothesized that distinct cellular consequences may result not only from pump inactivation but also from protein misfolding. Biosynthesis was investigated in four tetracycline-inducible isogenic cell lines representing different human phenotypes. Two cell biological complications were found. First, there was impaired trafficking of αβ complex to Golgi apparatus and plasma membrane, as well as changes in cell morphology, for two mutations that produced microcephaly or regions of brain atrophy in patients. Second, there was competition between exogenous mutant ATP1A3 (α3) and endogenous ATP1A1 (α1) so that their sum was constant. This predicts that in patients, the ratio of normal to mutant ATP1A3 proteins will vary when misfolding occurs. At the two extremes, the results suggest that a heterozygous mutation that only impairs Na,K-ATPase activity will produce relatively mild disease, while one that activates the unfolded protein response could produce severe disease and may result in death of neurons independently of ion pump inactivation.
Collapse
|
24
|
Dramatically Amplified Thoracic Sympathetic Postganglionic Excitability and Integrative Capacity Revealed with Whole-Cell Patch-Clamp Recordings. eNeuro 2019; 6:ENEURO.0433-18.2019. [PMID: 31040159 PMCID: PMC6514441 DOI: 10.1523/eneuro.0433-18.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/02/2022] Open
Abstract
Thoracic paravertebral sympathetic postganglionic neurons (tSPNs) comprise the final integrative output of the distributed sympathetic nervous system controlling vascular and thermoregulatory systems. Considered a non-integrating relay, what little is known of tSPN intrinsic excitability has been determined by sharp microelectrodes with presumed impalement injury. We thus undertook the first electrophysiological characterization of tSPN cellular properties using whole-cell recordings and coupled results with a conductance-based model to explore the principles governing their excitability in adult mice of both sexes. Recorded membrane resistance and time constant values were an order of magnitude greater than values previously obtained, leading to a demonstrable capacity for synaptic integration in driving recruitment. Variation in membrane resistivity was the primary determinant controlling cell excitability with vastly lower currents required for tSPN recruitment. Unlike previous microelectrode recordings in mouse which observed inability to sustain firing, all tSPNs were capable of repetitive firing. Computational modeling demonstrated that observed differences are explained by introduction of a microelectrode impalement injury conductance. Overall, tSPNs largely linearly encoded injected current magnitudes over a broad frequency range with distinct subpopulations differentiable based on repetitive firing signatures. Thus, whole-cell recordings reveal tSPNs have more dramatically amplified excitability than previously thought, with greater intrinsic capacity for synaptic integration and with the ability for maintained firing to support sustained actions on vasomotor tone and thermoregulatory function. Rather than acting as a relay, these studies support a more responsive role and possible intrinsic capacity for tSPNs to drive sympathetic autonomic function.
Collapse
|
25
|
|
26
|
|
27
|
Petrovic A, Veeraraghavan P, Olivieri D, Nistri A, Jurcic N, Mladinic M. Loss of inhibitory synapses causes locomotor network dysfunction of the rat spinal cord during prolonged maintenance in vitro. Brain Res 2018; 1710:8-21. [PMID: 30578767 DOI: 10.1016/j.brainres.2018.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/06/2018] [Accepted: 12/19/2018] [Indexed: 12/17/2022]
Abstract
The isolated spinal cord of the neonatal rat is widely employed to clarify the basic mechanisms of network development or the early phase of degeneration after injury. Nevertheless, this preparation survives in Krebs solution up to 24 h only, making it desirable to explore approaches to extend its survival for longitudinal studies. The present report shows that culturing the spinal cord in oxygenated enriched Basal Medium Eagle (BME) provided excellent preservation of neurons (including motoneurons), glia and primary afferents (including dorsal root ganglia) for up to 72 h. Using DMEM medium was unsuccessful. Novel characteristics of spinal networks emerged with strong spontaneous activity, and deficit in fictive locomotion patterns with stereotypically slow cycles. Staining with markers for synaptic proteins synapsin 1 and synaptophysin showed thoroughly weaker signal after 3 days in vitro. Immunohistochemical staining of markers for glutamatergic and glycinergic neurons indicated significant reduction of the latter. Likewise, there was lower expression of the GABA-synthesizing enzyme GAD65. Thus, malfunction of locomotor networks appeared related to loss of inhibitory synapses. This phenomenon did not occur in analogous opossum preparations of the spinal cord kept in vitro. In conclusion, despite histological data suggesting that cultured spinal cords were undamaged (except for inhibitory biomarkers), electrophysiological data revealed important functional impairment. Thus, the downregulation of inhibitory synapses may account for the progressive hyperexcitability of rat spinal networks despite apparently normal histological appearance. Our observations may help to understand the basis of certain delayed effects of spinal injury like chronic pain and spasticity.
Collapse
Affiliation(s)
- Antonela Petrovic
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy; Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | | | - Dario Olivieri
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Andrea Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Nina Jurcic
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Miranda Mladinic
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy; Department of Biotechnology, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
28
|
Picton LD, Sillar KT, Zhang HY. Control of Xenopus Tadpole Locomotion via Selective Expression of Ih in Excitatory Interneurons. Curr Biol 2018; 28:3911-3923.e2. [PMID: 30503615 PMCID: PMC6303192 DOI: 10.1016/j.cub.2018.10.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/06/2018] [Accepted: 10/22/2018] [Indexed: 11/16/2022]
Abstract
Locomotion relies on the coordinated activity of rhythmic neurons in the hindbrain and spinal cord and depends critically on the intrinsic properties of excitatory interneurons. Therefore, understanding how ion channels sculpt the properties of these interneurons, and the consequences for circuit function and behavior, is an important task. The hyperpolarization-activated cation current, Ih, is known to play important roles in shaping neuronal properties and for rhythm generation in many neuronal networks. We show in stage 42 Xenopus laevis frog tadpoles that Ih is strongly expressed only in excitatory descending interneurons (dINs), an important ipsilaterally projecting population that drives swimming activity. The voltage-dependent HCN channel blocker ZD7288 completely abolished a prominent depolarizing sag potential in response to hyperpolarization, the hallmark of Ih, and hyperpolarized dINs. ZD7288 also affected dIN post-inhibitory rebound firing, upon which locomotor rhythm generation relies, and disrupted locomotor output. Block of Ih also unmasked an activity-dependent ultraslow afterhyperpolarization (usAHP) in dINs following swimming, mediated by a dynamic Na/K pump current. This usAHP, unmasked in dINs by ZD7288, resulted in suprathreshold stimuli failing to evoke swimming at short inter-swim intervals, indicating an important role for Ih in maintaining swim generation capacity and in setting the post-swim refractory period of the network. Collectively, our data suggest that the selective expression of Ih in dINs determines specific dIN properties that are important for rhythm generation and counteracts an activity-dependent usAHP to ensure that dINs can maintain coordinated swimming over a wide range of inter-swim intervals. Ih is strongly expressed in Xenopus locomotor-rhythm-generating dIN interneurons Ih is active at rest in dINs, contributing to their distinct electrical properties dINs normally lack a Na pump-dependent ultra-slow afterhyperpolarization (usAHP) Ih counterbalances dIN usAHPs to preserve tadpole rhythm generating capacity
Collapse
Affiliation(s)
- Laurence D Picton
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| | - Keith T Sillar
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| | - Hong-Yan Zhang
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
29
|
|
30
|
Koblinger K, Jean-Xavier C, Sharma S, Füzesi T, Young L, Eaton SEA, Kwok CHT, Bains JS, Whelan PJ. Optogenetic Activation of A11 Region Increases Motor Activity. Front Neural Circuits 2018; 12:86. [PMID: 30364230 PMCID: PMC6193508 DOI: 10.3389/fncir.2018.00086] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/21/2018] [Indexed: 11/13/2022] Open
Abstract
Limbic brain regions drive goal-directed behaviors. These behaviors often require dynamic motor responses, but the functional connectome of limbic structures in the diencephalon that control locomotion is not well known. The A11 region, within the posterior diencephalon has been postulated to contribute to motor function and control of pain. Here we show that the A11 region initiates movement. Photostimulation of channelrhodopsin 2 (ChR2) transfected neurons in A11 slice preparations showed that neurons could follow stimulation at frequencies of 20 Hz. Our data show that photostimulation of ChR2 transfected neurons in the A11 region enhances motor activity often leading to locomotion. Using vGluT2-reporter and vGAT-reporter mice we show that the A11 tyrosine hydroxylase positive (TH) dopaminergic neurons are vGluT2 and vGAT negative. We find that in addition to dopaminergic neurons within the A11 region, there is another neuronal subtype which expresses the monoenzymatic aromatic L-amino acid decarboxylase (AADC), but not TH, a key enzyme involved in the synthesis of catecholamines including dopamine. This monoaminergic-based motor circuit may be involved in the control of motor behavior as part of a broader diencephalic motor region.
Collapse
Affiliation(s)
- Kathrin Koblinger
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Céline Jean-Xavier
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Sandeep Sharma
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Tamás Füzesi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Leanne Young
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Shane E A Eaton
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Charlie Hong Ting Kwok
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Jaideep Singh Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Patrick J Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
31
|
Dopamine Pumping Up Spinal Locomotor Network Function. J Neurosci 2018; 37:3103-3105. [PMID: 28330979 DOI: 10.1523/jneurosci.0019-17.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/06/2017] [Accepted: 02/16/2017] [Indexed: 01/11/2023] Open
|
32
|
Currie SP, Sillar KT. Developmental changes in spinal neuronal properties, motor network configuration, and neuromodulation at free-swimming stages of Xenopus tadpoles. J Neurophysiol 2017; 119:786-795. [PMID: 29142093 DOI: 10.1152/jn.00219.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We describe a novel preparation of the isolated brain stem and spinal cord from prometamorphic tadpole stages of the South African clawed frog ( Xenopus laevis) that permits whole cell patch-clamp recordings from neurons in the ventral spinal cord. Previous research on earlier stages of the same species has provided one of the most detailed understandings of the design and operation of a central pattern generator circuit. Here we have addressed how development sculpts complexity from this more basic circuit. The preparation generates bouts of fictive swimming activity either spontaneously or in response to electrical stimulation of the optic tectum, allowing an investigation into how the neuronal properties, activity patterns, and neuromodulation of locomotor rhythm generation change during development. We describe an increased repertoire of cellular responses compared with younger larval stages and investigate the cellular-level effects of nitrergic neuromodulation as well as the development of a sodium pump-mediated ultraslow afterhyperpolarization (usAHP) in these free-swimming larval animals. NEW & NOTEWORTHY A novel in vitro brain stem-spinal cord preparation is described that enables whole cell patch-clamp recordings from spinal neurons in prometamorphic Xenopus tadpoles. Compared with the well-characterized earlier stages of development, spinal neurons display a wider range of firing properties during swimming and have developed novel cellular properties. This preparation now makes it feasible to investigate in detail spinal central pattern generator maturation during the dramatic switch between undulatory and limb-based locomotion strategies during amphibian metamorphosis.
Collapse
Affiliation(s)
- Stephen P Currie
- School of Psychology and Neuroscience, University of St. Andrews , St. Andrews , United Kingdom
| | - Keith T Sillar
- School of Psychology and Neuroscience, University of St. Andrews , St. Andrews , United Kingdom
| |
Collapse
|
33
|
Jean-Xavier C, Sharples SA, Mayr KA, Lognon AP, Whelan PJ. Retracing your footsteps: developmental insights to spinal network plasticity following injury. J Neurophysiol 2017; 119:521-536. [PMID: 29070632 DOI: 10.1152/jn.00575.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During development of the spinal cord, a precise interaction occurs between descending projections and sensory afferents, with spinal networks that lead to expression of coordinated motor output. In the rodent, during the last embryonic week, motor output first occurs as regular bursts of spontaneous activity, progressing to stochastic patterns of episodes that express bouts of coordinated rhythmic activity perinatally. Locomotor activity becomes functionally mature in the 2nd postnatal wk and is heralded by the onset of weight-bearing locomotion on the 8th and 9th postnatal day. Concomitantly, there is a maturation of intrinsic properties and key conductances mediating plateau potentials. In this review, we discuss spinal neuronal excitability, descending modulation, and afferent modulation in the developing rodent spinal cord. In the adult, plastic mechanisms are much more constrained but become more permissive following neurotrauma, such as spinal cord injury. We discuss parallel mechanisms that contribute to maturation of network function during development to mechanisms of pathological plasticity that contribute to aberrant motor patterns, such as spasticity and clonus, which emerge following central injury.
Collapse
Affiliation(s)
- C Jean-Xavier
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| | - S A Sharples
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Neuroscience, University of Calgary , Calgary, Alberta , Canada
| | - K A Mayr
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Neuroscience, University of Calgary , Calgary, Alberta , Canada
| | - A P Lognon
- Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| | - P J Whelan
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
34
|
Kim LH, Sharma S, Sharples SA, Mayr KA, Kwok CHT, Whelan PJ. Integration of Descending Command Systems for the Generation of Context-Specific Locomotor Behaviors. Front Neurosci 2017; 11:581. [PMID: 29093660 PMCID: PMC5651258 DOI: 10.3389/fnins.2017.00581] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/04/2017] [Indexed: 11/23/2022] Open
Abstract
Over the past decade there has been a renaissance in our understanding of spinal cord circuits; new technologies are beginning to provide key insights into descending circuits which project onto spinal cord central pattern generators. By integrating work from both the locomotor and animal behavioral fields, we can now examine context-specific control of locomotion, with an emphasis on descending modulation arising from various regions of the brainstem. Here we examine approach and avoidance behaviors and the circuits that lead to the production and arrest of locomotion.
Collapse
Affiliation(s)
- Linda H Kim
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Sandeep Sharma
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Simon A Sharples
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Kyle A Mayr
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Charlie H T Kwok
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Patrick J Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Neuroscience, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
35
|
Abbott GW. Chansporter complexes in cell signaling. FEBS Lett 2017; 591:2556-2576. [PMID: 28718502 DOI: 10.1002/1873-3468.12755] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022]
Abstract
Ion channels facilitate diffusion of ions across cell membranes for such diverse purposes as neuronal signaling, muscular contraction, and fluid homeostasis. Solute transporters often utilize ionic gradients to move aqueous solutes up their concentration gradient, also fulfilling a wide variety of tasks. Recently, an increasing number of ion channel-transporter ('chansporter') complexes have been discovered. Chansporter complex formation may overcome what could otherwise be considerable spatial barriers to rapid signal integration and feedback between channels and transporters, the ions and other substrates they transport, and environmental factors to which they must respond. Here, current knowledge in this field is summarized, covering both heterologous expression structure/function findings and potential mechanisms by which chansporter complexes fulfill contrasting roles in cell signaling in vivo.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
36
|
Picton LD, Zhang H, Sillar KT. Sodium pump regulation of locomotor control circuits. J Neurophysiol 2017; 118:1070-1081. [PMID: 28539392 DOI: 10.1152/jn.00066.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/03/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
Sodium pumps are ubiquitously expressed membrane proteins that extrude three Na+ ions in exchange for two K+ ions, using ATP as an energy source. Recent studies have illuminated additional, dynamic roles for sodium pumps in regulating the excitability of neuronal networks in an activity-dependent fashion. We review their role in a novel form of short-term memory within rhythmic locomotor networks. The data we review derives mainly from recent studies on Xenopus tadpoles and neonatal mice. The role and underlying mechanisms of pump action broadly match previously published data from an invertebrate, the Drosophila larva. We therefore propose a highly conserved mechanism by which sodium pump activity increases following a bout of locomotion. This results in an ultraslow afterhyperpolarization (usAHP) of the membrane potential that lasts around 1 min, but which only occurs in around half the network neurons. This usAHP in turn alters network excitability so that network output is reduced in a locomotor interval-dependent manner. The pumps therefore confer on spinal locomotor networks a temporary memory trace of recent network performance.
Collapse
Affiliation(s)
- Laurence D Picton
- School of Psychology and Neuroscience, University of St. Andrews, St Andrews, Fife, Scotland, United Kingdom; and
| | - HongYan Zhang
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Keith T Sillar
- School of Psychology and Neuroscience, University of St. Andrews, St Andrews, Fife, Scotland, United Kingdom; and
| |
Collapse
|
37
|
Modulation of Rhythmic Activity in Mammalian Spinal Networks Is Dependent on Excitability State. eNeuro 2017; 4:eN-NWR-0368-16. [PMID: 28144626 PMCID: PMC5272924 DOI: 10.1523/eneuro.0368-16.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 11/21/2022] Open
Abstract
Neuromodulators play an important role in activating rhythmically active motor networks; however, what remains unclear are the network interactions whereby neuromodulators recruit spinal motor networks to produce rhythmic activity. Evidence from invertebrate systems has demonstrated that the effect of neuromodulators depends on the pre-existing state of the network. We explored how network excitation state affects the ability of dopamine to evoke rhythmic locomotor activity in the neonatal mouse isolated spinal cord. We found that dopamine can evoke unique patterns of motor activity that are dependent on the excitability state of motor networks. Different patterns of motor activity ranging from tonic, nonrhythmic activity to multirhythmic, nonlocomotor activity to locomotor activity were produced by altering global motor network excitability through manipulations of the extracellular potassium and bath NMDA concentration. A similar effect was observed when network excitation was manipulated during an unstable multirhythm evoked by a low concentration (15 µm) of 5-HT, suggesting that our results are not neuromodulator specific. Our data show in vertebrate systems that modulation is a two-way street and that modulatory actions are largely influenced by the network state. The level of network excitation can account for variability between preparations and is an additional factor to be considered when circuit elements are removed from the network.
Collapse
|