1
|
Nagy CA, Hann F, Brezóczki B, Farkas K, Vékony T, Pesthy O, Németh D. Intact ultrafast memory consolidation in adults with autism and neurotypicals with autism traits. Brain Res 2025; 1847:149299. [PMID: 39486781 DOI: 10.1016/j.brainres.2024.149299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
The processes of learning and memory consolidation are closely interlinked. Therefore, to uncover statistical learning in autism spectrum disorder (ASD), an in-depth examination of memory consolidation is essential. Studies of the last five years have revealed that learning can take place not only during practice but also during micro rest (<1 min) between practice blocks, termed micro offline gains. The concept of micro offline gains refers to performance improvements during short rest periods interspersed with practice, rather than during practice itself. This phenomenon is crucial for the acquisition and consolidation of motor skills and has been observed across various learning contexts. Numerous studies on learning in autism have identified intact learning but there has been no investigation into this fundamental aspect of memory consolidation in autistic individuals to date. We conducted two studies with two different samples: 1) neurotypical adults with distinct levels of autistic traits (N = 166) and 2) ASD-diagnosed adults (NASD = 22, NNTP = 20). Participants performed a well-established probabilistic learning task, allowing us to measure two learning processes separately in the same experimental design: statistical learning (i.e., learning probability-based regularities) and visuomotor performance (i.e., speed-up regardless of probabilities). Here we show considerable individual differences in offline (between blocks) changes during statistical learning and between-blocks improvement during visuomotor performance. However, cumulative evidence from individual studies suggests that the degree of autistic traits and ASD status are not associated with micro offline gains, indicating that, like statistical learning, rapid memory consolidation is intact.
Collapse
Affiliation(s)
- Cintia Anna Nagy
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Flóra Hann
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Experimental Medicine, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Bianka Brezóczki
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Kinga Farkas
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France; Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Orsolya Pesthy
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dezső Németh
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France; Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain; BML-NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
2
|
Kóbor A, Janacsek K, Hermann P, Zavecz Z, Varga V, Csépe V, Vidnyánszky Z, Kovács G, Nemeth D. Finding Pattern in the Noise: Persistent Implicit Statistical Knowledge Impacts the Processing of Unpredictable Stimuli. J Cogn Neurosci 2024; 36:1239-1264. [PMID: 38683699 DOI: 10.1162/jocn_a_02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Humans can extract statistical regularities of the environment to predict upcoming events. Previous research recognized that implicitly acquired statistical knowledge remained persistent and continued to influence behavior even when the regularities were no longer present in the environment. Here, in an fMRI experiment, we investigated how the persistence of statistical knowledge is represented in the brain. Participants (n = 32) completed a visual, four-choice, RT task consisting of statistical regularities. Two types of blocks constantly alternated with one another throughout the task: predictable statistical regularities in one block type and unpredictable ones in the other. Participants were unaware of the statistical regularities and their changing distribution across the blocks. Yet, they acquired the statistical regularities and showed significant statistical knowledge at the behavioral level not only in the predictable blocks but also in the unpredictable ones, albeit to a smaller extent. Brain activity in a range of cortical and subcortical areas, including early visual cortex, the insula, the right inferior frontal gyrus, and the right globus pallidus/putamen contributed to the acquisition of statistical regularities. The right insula, inferior frontal gyrus, and hippocampus as well as the bilateral angular gyrus seemed to play a role in maintaining this statistical knowledge. The results altogether suggest that statistical knowledge could be exploited in a relevant, predictable context as well as transmitted to and retrieved in an irrelevant context without a predictable structure.
Collapse
Affiliation(s)
- Andrea Kóbor
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
| | - Karolina Janacsek
- Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, University of Greenwich, United Kingdom
- ELTE Eötvös Loránd University, Hungary
| | - Petra Hermann
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
| | | | - Vera Varga
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
- University of Pannonia, Hungary
| | - Valéria Csépe
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
- University of Pannonia, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
| | | | - Dezso Nemeth
- INSERM, CRNL U1028 UMR5292, France
- ELTE Eötvös Loránd University & HUN-REN Research Centre for Natural Sciences, Hungary
- University of Atlántico Medio, Spain
| |
Collapse
|
3
|
Pedraza F, Farkas BC, Vékony T, Haesebaert F, Phelipon R, Mihalecz I, Janacsek K, Anders R, Tillmann B, Plancher G, Németh D. Evidence for a competitive relationship between executive functions and statistical learning. NPJ SCIENCE OF LEARNING 2024; 9:30. [PMID: 38609413 PMCID: PMC11014972 DOI: 10.1038/s41539-024-00243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
The ability of the brain to extract patterns from the environment and predict future events, known as statistical learning, has been proposed to interact in a competitive manner with prefrontal lobe-related networks and their characteristic cognitive or executive functions. However, it remains unclear whether these cognitive functions also possess a competitive relationship with implicit statistical learning across individuals and at the level of latent executive function components. In order to address this currently unknown aspect, we investigated, in two independent experiments (NStudy1 = 186, NStudy2 = 157), the relationship between implicit statistical learning, measured by the Alternating Serial Reaction Time task, and executive functions, measured by multiple neuropsychological tests. In both studies, a modest, but consistent negative correlation between implicit statistical learning and most executive function measures was observed. Factor analysis further revealed that a factor representing verbal fluency and complex working memory seemed to drive these negative correlations. Thus, the antagonistic relationship between implicit statistical learning and executive functions might specifically be mediated by the updating component of executive functions or/and long-term memory access.
Collapse
Affiliation(s)
- Felipe Pedraza
- Laboratoire d'Étude des Mécanismes Cognitifs, Université Lumière Lyon 2, Bron, France
- Centre de Recherche en Neurosciences de Lyon, INSERM, CNRS, Université Claude Bernard Lyon 1, CRNL U1028 UMR5292, 95 Boulevard Pinel, F-69500, Bron, France
| | - Bence C Farkas
- Institut du Psychotraumatisme de l'Enfant et de l'Adolescent, Conseil Départemental Yvelines et Hauts-de-Seine et Centre Hospitalier des Versailles, 78000, Versailles, France
- UVSQ, Inserm, Centre de Recherche en Epidémiologie et Santé des Populations, Université Paris-Saclay, 78000, Versailles, France
- LNC2, Département d'études Cognitives, École Normale Supérieure, INSERM, PSL Research University, 75005, Paris, France
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon, INSERM, CNRS, Université Claude Bernard Lyon 1, CRNL U1028 UMR5292, 95 Boulevard Pinel, F-69500, Bron, France.
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain.
| | - Frederic Haesebaert
- Centre de Recherche en Neurosciences de Lyon, INSERM, CNRS, Université Claude Bernard Lyon 1, CRNL U1028 UMR5292, 95 Boulevard Pinel, F-69500, Bron, France
| | - Romane Phelipon
- Centre de Recherche en Neurosciences de Lyon, INSERM, CNRS, Université Claude Bernard Lyon 1, CRNL U1028 UMR5292, 95 Boulevard Pinel, F-69500, Bron, France
| | - Imola Mihalecz
- Centre de Recherche en Neurosciences de Lyon, INSERM, CNRS, Université Claude Bernard Lyon 1, CRNL U1028 UMR5292, 95 Boulevard Pinel, F-69500, Bron, France
| | - Karolina Janacsek
- Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, Old Royal Naval College, Park Row, 150 Dreadnought, London, SE10 9LS, UK
- Institute of Psychology, ELTE Eötvös Loránd University, Kazinczy u. 23-27, H-1075, Budapest, Hungary
| | - Royce Anders
- EPSYLON Laboratory, Department of Psychology, University Paul Valéry Montpellier 3, F34000, Montpellier, France
| | - Barbara Tillmann
- Centre de Recherche en Neurosciences de Lyon, INSERM, CNRS, Université Claude Bernard Lyon 1, CRNL U1028 UMR5292, 95 Boulevard Pinel, F-69500, Bron, France
- Laboratory for Research on Learning and Development, LEAD - CNRS UMR5022, Université de Bourgogne, Dijon, France
| | - Gaën Plancher
- Laboratoire d'Étude des Mécanismes Cognitifs, Université Lumière Lyon 2, Bron, France
- Institut Universitaire de France (IUF), Paris, France
| | - Dezső Németh
- Centre de Recherche en Neurosciences de Lyon, INSERM, CNRS, Université Claude Bernard Lyon 1, CRNL U1028 UMR5292, 95 Boulevard Pinel, F-69500, Bron, France.
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain.
- BML-NAP Research Group, ELTE Eötvös Loránd University & HUN-REN Research Centre for Natural Sciences, Damjanich utca 41, H-1072, Budapest, Hungary.
| |
Collapse
|
4
|
Diedrich L, Kolhoff HI, Chakalov I, Vékony T, Németh D, Antal A. Prefrontal theta-gamma transcranial alternating current stimulation improves non-declarative visuomotor learning in older adults. Sci Rep 2024; 14:4955. [PMID: 38418511 PMCID: PMC10901881 DOI: 10.1038/s41598-024-55125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
The rise in the global population of older adults underscores the significance to investigate age-related cognitive disorders and develop early treatment modalities. Previous research suggests that non-invasive transcranial Alternating Current Stimulation (tACS) can moderately improve cognitive decline in older adults. However, non-declarative cognition has received relatively less attention. This study investigates whether repeated (16-day) bilateral theta-gamma cross-frequency tACS targeting the Dorsolateral Prefrontal Cortex (DLPFC) enhances non-declarative memory. Computerized cognitive training was applied alongside stimulation to control for the state-of-the-brain. The Alternating Serial Reaction Time (ASRT) task was employed to assess non-declarative functions such as visuomotor skill and probabilistic sequence learning. Results from 35 participants aged 55-82 indicated that active tACS led to more substantial improvements in visuomotor skills immediately after treatment, which persisted 3 months later, compared to sham tACS. Treatment benefit was more pronounced in older adults of younger age and those with pre-existing cognitive decline. However, neither intervention group exhibited modulation of probabilistic sequence learning. These results suggest that repeated theta-gamma tACS can selectively improve distinct non-declarative cognitive aspects when targeting the DLPFC. Our findings highlight the therapeutic potential of tACS in addressing deficits in learning and retaining general skills, which could have a positive impact on the quality of life for cognitively impaired older individuals by preserving independence in daily activities.
Collapse
Affiliation(s)
- Lukas Diedrich
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| | - Hannah I Kolhoff
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ivan Chakalov
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Dezső Németh
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France
- BML-NAP Research Group, Institute of Psychology, Eötvös Loránd University and Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Szücs-Bencze L, Vékony T, Pesthy O, Szabó N, Kincses TZ, Turi Z, Nemeth D. Modulating Visuomotor Sequence Learning by Repetitive Transcranial Magnetic Stimulation: What Do We Know So Far? J Intell 2023; 11:201. [PMID: 37888433 PMCID: PMC10607545 DOI: 10.3390/jintelligence11100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/23/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Predictive processes and numerous cognitive, motor, and social skills depend heavily on sequence learning. The visuomotor Serial Reaction Time Task (SRTT) can measure this fundamental cognitive process. To comprehend the neural underpinnings of the SRTT, non-invasive brain stimulation stands out as one of the most effective methodologies. Nevertheless, a systematic list of considerations for the design of such interventional studies is currently lacking. To address this gap, this review aimed to investigate whether repetitive transcranial magnetic stimulation (rTMS) is a viable method of modulating visuomotor sequence learning and to identify the factors that mediate its efficacy. We systematically analyzed the eligible records (n = 17) that attempted to modulate the performance of the SRTT with rTMS. The purpose of the analysis was to determine how the following factors affected SRTT performance: (1) stimulated brain regions, (2) rTMS protocols, (3) stimulated hemisphere, (4) timing of the stimulation, (5) SRTT sequence properties, and (6) other methodological features. The primary motor cortex (M1) and the dorsolateral prefrontal cortex (DLPFC) were found to be the most promising stimulation targets. Low-frequency protocols over M1 usually weaken performance, but the results are less consistent for the DLPFC. This review provides a comprehensive discussion about the behavioral effects of six factors that are crucial in designing future studies to modulate sequence learning with rTMS. Future studies may preferentially and synergistically combine functional neuroimaging with rTMS to adequately link the rTMS-induced network effects with behavioral findings, which are crucial to develop a unified cognitive model of visuomotor sequence learning.
Collapse
Affiliation(s)
- Laura Szücs-Bencze
- Department of Neurology, University of Szeged, Semmelweis utca 6, H-6725 Szeged, Hungary
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, 95 Boulevard Pinel, F-69500 Bron, France
| | - Orsolya Pesthy
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, H-1064 Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd Universiry, Izabella utca 46, H-1064 Budapest, Hungary
| | - Nikoletta Szabó
- Department of Neurology, University of Szeged, Semmelweis utca 6, H-6725 Szeged, Hungary
| | - Tamás Zsigmond Kincses
- Department of Neurology, University of Szeged, Semmelweis utca 6, H-6725 Szeged, Hungary
- Department of Radiology, University of Szeged, Semmelweis utca 6, H-6725 Szeged, Hungary
| | - Zsolt Turi
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
| | - Dezso Nemeth
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, 95 Boulevard Pinel, F-69500 Bron, France
- BML-NAP Research Group, Institute of Psychology & Institute of Cognitive Neuroscience and Psychology, ELTE Eötvös Loránd University & Research Centre for Natural Sciences, Damjanich utca 41, H-1072 Budapest, Hungary
| |
Collapse
|
6
|
Tóth-Fáber E, Nemeth D, Janacsek K. Lifespan developmental invariance in memory consolidation: evidence from procedural memory. PNAS NEXUS 2023; 2:pgad037. [PMID: 36896125 PMCID: PMC9991456 DOI: 10.1093/pnasnexus/pgad037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Characterizing ontogenetic changes across the lifespan is a crucial tool in understanding neurocognitive functions. While age-related changes in learning and memory functions have been extensively characterized in the past decades, the lifespan trajectory of memory consolidation, a critical function that supports the stabilization and long-term retention of memories, is still poorly understood. Here we focus on this fundamental cognitive function and probe the consolidation of procedural memories that underlie cognitive, motor, and social skills and automatic behaviors. We used a lifespan approach: 255 participants aged between 7 and 76 years performed a well-established procedural memory task in the same experimental design across the whole sample. This task enabled us to disentangle two critical processes in the procedural domain: statistical learning and general skill learning. The former is the ability to extract and learn predictable patterns of the environment, while the latter captures a general speed-up as learning progresses due to improved visuomotor coordination and other cognitive processes, independent of acquisition of the predictable patterns. To measure the consolidation of statistical and general skill knowledge, the task was administered in two sessions with a 24-h delay between them. Here, we report successful retention of statistical knowledge with no differences across age groups. For general skill knowledge, offline improvement was observed over the delay period, and the degree of this improvement was also comparable across the age groups. Overall, our findings reveal age invariance in these two key aspects of procedural memory consolidation across the human lifespan.
Collapse
Affiliation(s)
- Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, H-1064 Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, H-1064 Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, H-1064 Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, F-69500 Bron, France
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, H-1064 Budapest, Hungary
- Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, Old Royal Naval College, SE10 9LS London, UK
| |
Collapse
|
7
|
Association Between Excess Sleep Duration and Risk of Stroke: A Population-Based Study. Can J Neurol Sci 2023; 50:17-22. [PMID: 34670635 DOI: 10.1017/cjn.2021.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Excess sleep is associated with higher risk of stroke, but whether the risk is modified by age and if it remains elevated after accounting for the competing risk of death is not well understood. METHODS We used nine years of the Canadian Community Health Survey between 2000 to 2016 to obtain self-reported sleep duration and created a cohort of individuals without prior stroke, heart disease, or cancer. We linked to hospital records to determine subsequent admissions or emergency department visits for acute stroke until December 31, 2017. We used Cox proportional hazard models to determine the association between sleep duration and risk of stroke, assessing for modification by age and sex and adjusting for demographic, vascular, and social factors. We obtained cumulative incidence of stroke accounting for the competing risk of death. RESULTS There were 82,795 individuals in our cohort who met inclusion criteria and had self-reported sleep duration, with 1705 stroke events in follow-up. There was an association between excess sleep (≥10 h/night) and risk of stroke in those <70 years (fully adjusted hazard ratio 2.29, 95% CI 1.04-5.06), but not ≥70 years of age, with a similar association after accounting for the competing risk of death. CONCLUSION Sleep duration ≥10 h/night is associated with increased risk of stroke in those <70 years of age. The findings support current guidelines for 7-9 h of sleep per night. Further research is needed to elucidate the relationship between sleep and cerebrovascular disease.
Collapse
|
8
|
A failure of sleep-dependent consolidation of visuoperceptual procedural learning in young adults with ADHD. Transl Psychiatry 2022; 12:499. [PMID: 36460644 PMCID: PMC9718731 DOI: 10.1038/s41398-022-02239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 12/04/2022] Open
Abstract
ADHD has been associated with cortico-striatal dysfunction that may lead to procedural memory abnormalities. Sleep plays a critical role in consolidating procedural memories, and sleep problems are an integral part of the psychopathology of ADHD. This raises the possibility that altered sleep processes characterizing those with ADHD could contribute to their skill-learning impairments. On this basis, the present study tested the hypothesis that young adults with ADHD have altered sleep-dependent procedural memory consolidation. Participants with ADHD and neurotypicals were trained on a visual discrimination task that has been shown to benefit from sleep. Half of the participants were tested after a 12-h break that included nocturnal sleep (sleep condition), whereas the other half were tested after a 12-h daytime break that did not include sleep (wakefulness condition) to assess the specific contribution of sleep to improvement in task performance. Despite having a similar degree of initial learning, participants with ADHD did not improve in the visual discrimination task following a sleep interval compared to neurotypicals, while they were on par with neurotypicals during the wakefulness condition. These findings represent the first demonstration of a failure in sleep-dependent consolidation of procedural learning in young adults with ADHD. Such a failure is likely to disrupt automatic control routines that are normally provided by the non-declarative memory system, thereby increasing the load on attentional resources of individuals with ADHD.
Collapse
|
9
|
Kiss M, Nemeth D, Janacsek K. Do temporal factors affect whether our performance accurately reflects our underlying knowledge? The effects of stimulus presentation rates on the performance versus competence dissociation. Cortex 2022; 157:65-80. [PMID: 36274443 DOI: 10.1016/j.cortex.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/05/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022]
Abstract
Ample evidence shows that the momentary performance can dissociate from the underlying knowledge (competence). Under what circumstances such dissociation occurs, however, remains unclear. Here we tested how temporal factors, and more specifically, the elapsed time between subsequent events affects the dissociation between performance and competence by systematically manipulating the stimulus presentation rates during and after learning. Participants completed a probabilistic sequence learning task with a fast (120 msec) or a slow (850 msec) response-to-stimulus-interval (RSI) during the Learning phase and they were tested with both RSIs 24 h later (Testing phase). We also tested whether they gained explicit knowledge about the sequence or their knowledge remained implicit. Our results revealed higher reaction time learning scores when tested with the fast RSI, irrespective of the RSI during learning, suggesting that faster presentation rates can help better express the acquired knowledge, leading to increased performance measures. For accuracy, participants showed higher learning scores when tested with the same presentation rate as the one that they encountered during learning. The acquired knowledge remained implicit in both groups, suggesting that the observed findings were not confounded by differences in awareness gained in the two groups. Overall, our study highlights that the momentary performance does not always accurately reflect the underlying knowledge, and temporal factors seem to influence this dissociation. Our findings have theoretical, methodological, and translational implications that likely extend beyond learning and memory to other functions and domains as well, including aspects of decision-making, perception, theory of mind, and language.
Collapse
Affiliation(s)
- Mariann Kiss
- Department of Cognitive Science, Faculty of Natural Sciences, Budapest University of Technology and Economics, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary; Lyon Neuroscience Research Center (CRNL), Université Claude Bernard Lyon 1, Lyon, France.
| | - Karolina Janacsek
- Centre for Thinking and Learning, Institute of Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, United Kingdom; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
10
|
Si Y, Chen X, Guo W, Wang B. The Effects of Cooperative and Competitive Situations on Statistical Learning. Brain Sci 2022; 12:brainsci12081059. [PMID: 36009122 PMCID: PMC9405654 DOI: 10.3390/brainsci12081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Devising cooperative or competitive situations is an important teaching strategy in educational practices. Nevertheless, there is still controversy regarding which situation is better for learning. This study was conducted to explore the effects of cooperative and competitive situations on statistical learning, through the alternating serial reaction time (ASRT) task. Individual cooperative and competitive situations were devised in this study, in which individual situation served as the control condition. Ninety recruited participants were randomly assigned to a cooperative, competitive, or individual group to perform the ASRT task. For general learning, cooperative and competitive situations could indeed make learners respond faster, and there was no significant difference in the RT between the cooperative and competitive groups. Moreover, statistical learning was observed in all three groups. An additional analysis of the early stage of the experiment showed that the learning effect of the competitive group was greater than those of the cooperative and individual groups, in terms of statistical learning. However, the final learning effect was not significantly different among the three groups. Overall, the cooperative and competitive situations had a positive impact on learning and enabled the students to acquire approximately the same learning effect in a shorter time period, compared with the individual situation. Specifically, the competitive situation accelerated the statistical learning process but not the general learning process.
Collapse
Affiliation(s)
- Yajie Si
- College of Physical Education, Yangzhou University, Yangzhou 225009, China
| | - Xinyu Chen
- College of Physical Education, Yangzhou University, Yangzhou 225009, China
| | - Wei Guo
- College of Physical Education, Yangzhou University, Yangzhou 225009, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Biye Wang
- College of Physical Education, Yangzhou University, Yangzhou 225009, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
- Correspondence:
| |
Collapse
|
11
|
Shibazaki A, Watanabe M. Does an interference task immediately after practice prevent memory consolidation of sequence-specific learning? J Phys Ther Sci 2022; 34:1-6. [PMID: 35035070 PMCID: PMC8752284 DOI: 10.1589/jpts.34.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
[Purpose] Learning of movement procedures (sequence learning) is essential in physical therapy. Studies have shown that sequence-specific learning may be integrated from an early stage. This study examines the effect of an interference task on the retention of sequence-specific learning. [Participants and Methods] Young adults were randomly divided into a control group and an interference task group, and two experiments were performed. In each experiment, the control group practiced task A in both the acquisition phase and the retention phase four to five hours later. The Interference group practiced task A in the acquisition phase followed by task B, which is similar to the interference task, and then performed task A in the retention phase four to five hours later. In Experiment 2, the amount of practice for task A in the practice phase was 25% of that in Experiment 1. [Results] Sequence-specific learning occurred in the early stages of practice. In particular, the performance of Experiment 1 reached the ceiling. The results of the retention test showed no significant interference effect due to similar tasks. [Conclusion] Implicit sequence-specific learning stabilizes performance early and is not affected by interference tasks.
Collapse
Affiliation(s)
- Akito Shibazaki
- Department of Physical Therapy, Graduate School of Health and Welfare Sciences, International University of Health and Welfare: 4-1-26 Akasaka, Minato-ku, Tokyo 107-8402, Japan.,Department of Rehabilitation, International University of Health and Welfare Mita Hospital, Japan
| | - Miyoko Watanabe
- Department of Physical Therapy, School of Health Sciences, International University of Health and Welfare, Japan
| |
Collapse
|
12
|
Measuring statistical learning by eye-tracking. EXPERIMENTAL RESULTS 2022. [DOI: 10.1017/exp.2022.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
Statistical learning—the skill to pick up probability-based regularities of the environment—plays a crucial role in adapting to the environment and learning perceptual, motor, and language skills in healthy and clinical populations. Here, we developed a new method to measure statistical learning without any manual responses. We used the Alternating Serial Reaction Time (ASRT) task, adapted to eye-tracker, which, besides measuring reaction times (RTs), enabled us to track learning-dependent anticipatory eye movements. We found robust, interference-resistant learning on RT; moreover, learning-dependent anticipatory eye movements were even more sensitive measures of statistical learning on this task. Our method provides a way to apply the widely used ASRT task to operationalize statistical learning in clinical populations where the use of manual tasks is hindered, such as in Parkinson’s disease. Furthermore, it also enables future basic research to use a more sensitive version of this task to measure predictive processing.
Collapse
|
13
|
Vékony T, Ambrus GG, Janacsek K, Nemeth D. Cautious or causal? Key implicit sequence learning paradigms should not be overlooked when assessing the role of DLPFC (Commentary on Prutean et al.). Cortex 2021; 148:222-226. [PMID: 34789384 DOI: 10.1016/j.cortex.2021.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022]
Abstract
The role of the dorsolateral prefrontal cortex (DLPFC) in implicit sequence/statistical learning has received considerable attention in recent cognitive neuroscience research. Studies have used non-invasive brain stimulation methods to test whether the DLPFC plays a role in the incidental acquisition and expression of implicit sequence learning. In a recent study, Prutean et al. has concluded that stimulating the left or the right DLPFC might not affect the expression of implicit sequence learning measured by the Serial Reaction Time (SRT) task. The authors speculated that the previous results revealing improved implicit sequence learning following DLPFC stimulation might have been found because explicit awareness accumulated with the use of Alternating Serial Reaction Time (ASRT) task. Our response presents solid evidence that the ASRT task measures implicit sequence learning that remains unconscious both at the judgment and structural level. Therefore, contrary to the conclusion of Prutean et al., we argue that the DLPFC could have a crucial effect on implicit sequence learning that may be task-dependent. We suggest that future research should focus on the specific cognitive processes that may be differentially involved in the SRT versus ASRT tasks, and test what the role of the DLPFC is in those specific cognitive processes.
Collapse
Affiliation(s)
- Teodóra Vékony
- Lyon Neuroscience Research Center (CRNL), Université Claude Bernard Lyon 1, Lyon, France
| | | | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary; Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, United Kingdom
| | - Dezso Nemeth
- Lyon Neuroscience Research Center (CRNL), Université Claude Bernard Lyon 1, Lyon, France; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
14
|
Tóth-Fáber E, Tárnok Z, Takács Á, Janacsek K, Németh D. Access to Procedural Memories After One Year: Evidence for Robust Memory Consolidation in Tourette Syndrome. Front Hum Neurosci 2021; 15:715254. [PMID: 34475817 PMCID: PMC8407083 DOI: 10.3389/fnhum.2021.715254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Tourette syndrome is a childhood-onset neurodevelopmental disorder characterized by motor and vocal tics. On the neural level, tics are thought to be related to the disturbances of the cortico-basal ganglia-thalamo-cortical loops, which also play an important role in procedural learning. Several studies have investigated the acquisition of procedural information and the access to established procedural information in TS. Based on these, the notion of procedural hyperfunctioning, i.e., enhanced procedural learning, has been proposed. However, one neglected area is the retention of acquired procedural information, especially following a long-term offline period. Here, we investigated the 5-hour and 1-year consolidation of two aspects of procedural memory, namely serial-order and probability-based information. Nineteen children with TS between the ages of 10 and 15 as well as 19 typically developing gender- and age-matched controls were tested on a visuomotor four-choice reaction time task that enables the simultaneous assessment of the two aspects. They were retested on the same task 5 hours and 1 year later without any practice in the offline periods. Both groups successfully acquired and retained the probability-based information both when tested 5 hours and then 1 year later, with comparable performance between the TS and control groups. Children with TS did not acquire the serial-order information during the learning phase; hence, retention could not be reliably tested. Our study showed evidence for short-term and long-term retention of one aspect of procedural memory, namely probability-based information in TS, whereas learning of serial-order information might be impaired in this disorder.
Collapse
Affiliation(s)
- Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zsanett Tárnok
- Vadaskert Child and Adolescent Psychiatry Hospital, Budapest, Hungary
| | - Ádám Takács
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.,Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, United Kingdom
| | - Dezső Németh
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.,Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université de Lyon, Lyon, France
| |
Collapse
|
15
|
Fitzroy AB, Kainec KA, Seo J, Spencer RMC. Encoding and consolidation of motor sequence learning in young and older adults. Neurobiol Learn Mem 2021; 185:107508. [PMID: 34450244 DOI: 10.1016/j.nlm.2021.107508] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022]
Abstract
Sleep benefits motor memory consolidation in young adults, but this benefit is reduced in older adults. Here we sought to understand whether differences in the neural bases of encoding between young and older adults contribute to aging-related differences in sleep-dependent consolidation of an explicit variant of the serial reaction time task (SRTT). Seventeen young and 18 older adults completed two sessions (nap, wake) one week apart. In the MRI, participants learned the SRTT. Following an afternoon interval either awake or with a nap (recorded with high-density polysomnography), performance on the SRTT was reassessed in the MRI. Imaging and behavioral results from SRTT performance showed clear sleep-dependent consolidation of motor sequence learning in older adults after a daytime nap, compared to an equal interval awake. Young adults, however, showed brain activity and behavior during encoding consistent with high SRTT performance prior to the sleep interval, and did not show further sleep-dependent performance improvements. Young adults did show reduced cortical activity following sleep, suggesting potential systems-level consolidation related to automatization. Sleep physiology data showed that sigma activity topography was affected by hippocampal and cortical activation prior to the nap in both age groups, and suggested a role of theta activity in sleep-dependent automatization in young adults. These results suggest that previously observed aging-related sleep-dependent consolidation deficits may be driven by aging-related deficiencies in fast learning processes. Here we demonstrate that when sufficient encoding strength is reached with additional training, older adults demonstrate intact sleep-dependent consolidation of motor sequence learning.
Collapse
Affiliation(s)
- Ahren B Fitzroy
- Neuroscience & Behavior Program, University of Massachusetts Amherst, United States; Department of Psychological & Brain Sciences, University of Massachusetts Amherst, United States.
| | - Kyle A Kainec
- Neuroscience & Behavior Program, University of Massachusetts Amherst, United States; Department of Psychological & Brain Sciences, University of Massachusetts Amherst, United States.
| | - Jeehye Seo
- Neuroscience & Behavior Program, University of Massachusetts Amherst, United States; Department of Psychological & Brain Sciences, University of Massachusetts Amherst, United States.
| | - Rebecca M C Spencer
- Neuroscience & Behavior Program, University of Massachusetts Amherst, United States; Department of Psychological & Brain Sciences, University of Massachusetts Amherst, United States; Institute for Applied Life Sciences, University of Massachusetts Amherst, United States.
| |
Collapse
|
16
|
Artificial grammar learning is facilitated by distributed practice: Evidence from a letter reordering task. Cogn Process 2021; 23:55-67. [PMID: 34373971 DOI: 10.1007/s10339-021-01048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Previous studies have shown that distributed practice-a training strategy that is known to facilitate memory-is likely to result in greater learning than massed practice. This effect has been demonstrated largely in explicit tasks. The purpose of this study was to test whether statistical learning of artificial grammar is affected by the lag between learning sessions overall, and by high and low complexity stimuli (as measure by chunk strength). Two groups (spaced-short and spaced-long) learned strings of letters created according to a set of rules and were required to produce new strings using given letter sets. For the spaced-short group, the two learning sessions, each including training and a test phase, took place sequentially with a 10-min break, whereas for the spaced-long group, learning sessions were distributed across two days (1-day lag). Overall results showed improved performance following spaced-long practice compared to spaced-short practice. The results also indicated that in the low chunk strength strings (indicating high complexity), both groups demonstrated similar improvement from first to second testing, while in the high chunk strength strings (indicating low complexity), improvement in letter reordering performance was significantly higher when the learning sessions were distributed across two days. This pattern of findings suggests that stimuli complexity affects the extent to which distributed practice enhance artificial grammar learning.
Collapse
|
17
|
Takacs A, Münchau A, Nemeth D, Roessner V, Beste C. Lower-level associations in Gilles de la Tourette syndrome: Convergence between hyperbinding of stimulus and response features and procedural hyperfunctioning theories. Eur J Neurosci 2021; 54:5143-5160. [PMID: 34155701 DOI: 10.1111/ejn.15366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/27/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Gilles de la Tourette syndrome (GTS) can be characterized by enhanced cognitive functions related to creating, modifying and maintaining connections between stimuli and responses (S-R links). Specifically, two areas, procedural sequence learning and, as a novel finding, also event file binding, show converging evidence of hyperfunctioning in GTS. In this review, we describe how these two enhanced functions can be considered as cognitive mechanisms behind habitual behaviour, such as tics in GTS. Moreover, the presence of both procedural sequence learning and event file binding hyperfunctioning in the same disorder can be treated as evidence for their functional connections, even beyond GTS. Importantly though, we argue that hyperfunctioning of event file binding and procedural learning are not interchangeable: they have different time scales, different sensitivities to potential impairment in action sequencing and distinguishable contributions to the cognitive profile of GTS. An integrated theoretical account of hyperbinding and hyperlearning in GTS allows to formulate predictions for the emergence, activation and long-term persistence of tics in GTS.
Collapse
Affiliation(s)
- Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Dezso Nemeth
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.,Lyon Neuroscience Research Center (CRNL), Université de Lyon, Lyon, France
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
18
|
Quentin R, Fanuel L, Kiss M, Vernet M, Vékony T, Janacsek K, Cohen LG, Nemeth D. Statistical learning occurs during practice while high-order rule learning during rest period. NPJ SCIENCE OF LEARNING 2021; 6:14. [PMID: 34210989 PMCID: PMC8249495 DOI: 10.1038/s41539-021-00093-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Knowing when the brain learns is crucial for both the comprehension of memory formation and consolidation and for developing new training and neurorehabilitation strategies in healthy and patient populations. Recently, a rapid form of offline learning developing during short rest periods has been shown to account for most of procedural learning, leading to the hypothesis that the brain mainly learns during rest between practice periods. Nonetheless, procedural learning has several subcomponents not disentangled in previous studies investigating learning dynamics, such as acquiring the statistical regularities of the task, or else the high-order rules that regulate its organization. Here we analyzed 506 behavioral sessions of implicit visuomotor deterministic and probabilistic sequence learning tasks, allowing the distinction between general skill learning, statistical learning, and high-order rule learning. Our results show that the temporal dynamics of apparently simultaneous learning processes differ. While high-order rule learning is acquired offline, statistical learning is evidenced online. These findings open new avenues on the short-scale temporal dynamics of learning and memory consolidation and reveal a fundamental distinction between statistical and high-order rule learning, the former benefiting from online evidence accumulation and the latter requiring short rest periods for rapid consolidation.
Collapse
Affiliation(s)
- Romain Quentin
- MEMO Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France.
- COPHY Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France.
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA.
| | - Lison Fanuel
- MEMO Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Mariann Kiss
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Marine Vernet
- IMPACT Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Teodóra Vékony
- MEMO Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, UK
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Dezso Nemeth
- MEMO Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France.
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
19
|
Takács Á, Kóbor A, Kardos Z, Janacsek K, Horváth K, Beste C, Nemeth D. Neurophysiological and functional neuroanatomical coding of statistical and deterministic rule information during sequence learning. Hum Brain Mapp 2021; 42:3182-3201. [PMID: 33797825 PMCID: PMC8193527 DOI: 10.1002/hbm.25427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Humans are capable of acquiring multiple types of information presented in the same information stream. It has been suggested that at least two parallel learning processes are important during learning of sequential patterns-statistical learning and rule-based learning. Yet, the neurophysiological underpinnings of these parallel learning processes are not fully understood. To differentiate between the simultaneous mechanisms at the single trial level, we apply a temporal EEG signal decomposition approach together with sLORETA source localization method to delineate whether distinct statistical and rule-based learning codes can be distinguished in EEG data and can be related to distinct functional neuroanatomical structures. We demonstrate that concomitant but distinct aspects of information coded in the N2 time window play a role in these mechanisms: mismatch detection and response control underlie statistical learning and rule-based learning, respectively, albeit with different levels of time-sensitivity. Moreover, the effects of the two learning mechanisms in the different temporally decomposed clusters of neural activity also differed from each other in neural sources. Importantly, the right inferior frontal cortex (BA44) was specifically implicated in visuomotor statistical learning, confirming its role in the acquisition of transitional probabilities. In contrast, visuomotor rule-based learning was associated with the prefrontal gyrus (BA6). The results show how simultaneous learning mechanisms operate at the neurophysiological level and are orchestrated by distinct prefrontal cortical areas. The current findings deepen our understanding on the mechanisms of how humans are capable of learning multiple types of information from the same stimulus stream in a parallel fashion.
Collapse
Affiliation(s)
- Ádám Takács
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Andrea Kóbor
- Brain Imaging CentreResearch Centre for Natural SciencesBudapestHungary
| | - Zsófia Kardos
- Brain Imaging CentreResearch Centre for Natural SciencesBudapestHungary
- Department of Cognitive ScienceBudapest University of Technology and EconomicsBudapestHungary
| | - Karolina Janacsek
- Institute of PsychologyELTE Eötvös Loránd UniversityBudapestHungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and PsychologyResearch Centre for Natural SciencesBudapestHungary
- Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human SciencesUniversity of GreenwichLondonUK
| | - Kata Horváth
- Institute of PsychologyELTE Eötvös Loránd UniversityBudapestHungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and PsychologyResearch Centre for Natural SciencesBudapestHungary
- Doctoral School of PsychologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Dezso Nemeth
- Institute of PsychologyELTE Eötvös Loránd UniversityBudapestHungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and PsychologyResearch Centre for Natural SciencesBudapestHungary
- Lyon Neuroscience Research Center (CRNL)Université de LyonLyonFrance
| |
Collapse
|
20
|
Regularity detection under stress: Faster extraction of probability-based regularities. PLoS One 2021; 16:e0253123. [PMID: 34129623 PMCID: PMC8205133 DOI: 10.1371/journal.pone.0253123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/31/2021] [Indexed: 11/19/2022] Open
Abstract
Acute stress can crucially influence learning and memory processes. One of the key processes underlying human learning and memory is the ability of our brain to rapidly detect and extract regularities from sensory input across time and space leading to effective predictive processing. Here, we aimed to get an in-depth look into the effect of stress on the acquisition of two aspects of regularity extraction. We examined whether and how stress affects the learning (1) of probability-based regularities and (2) of serial order-based regularities in the same experimental design, and (3) the explicit access to the acquired information. Considering that the acquisition of probability-based regularities is a relatively rapid process, we primarily focused on the early phase of the task. We induced stress with the Socially Evaluated Cold Pressor Test in 27 young adults, while 26 participants were enrolled in the control group. Salivary cortisol levels and subjective ratings of affective states showed successful stress induction. After the stress induction, we measured regularity extraction with the cued Alternating Serial Reaction Time task. We found that stress promoted the extraction of probability-based regularities measured by the learning performance in the early phase of the task and did not alter the learning of serial order-based regularities. Post-block reports showed weaker explicit access to the serial order-based regularities in the stress group. Our results can contribute to a process-level understanding on how stress alters learning and memory functions related to predictive processes.
Collapse
|
21
|
Tóth-Fáber E, Janacsek K, Németh D. Statistical and sequence learning lead to persistent memory in children after a one-year offline period. Sci Rep 2021; 11:12418. [PMID: 34127682 PMCID: PMC8203620 DOI: 10.1038/s41598-021-90560-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/10/2021] [Indexed: 01/09/2023] Open
Abstract
Extraction of environmental patterns underlies human learning throughout the lifespan and plays a crucial role not only in cognitive but also perceptual, motor, and social skills. At least two types of regularities contribute to acquiring skills: (1) statistical, probability-based regularities, and (2) serial order-based regularities. Memory performance of probability-based and/or serial order-based regularities over short periods (from minutes to weeks) has been widely investigated across the lifespan. However, long-term (months or year-long) memory performance of such knowledge has received relatively less attention and has not been assessed in children yet. Here, we aimed to test the long-term memory performance of probability-based and serial order-based regularities over a 1-year offline period in neurotypical children between the age of 9 and 15. Participants performed a visuomotor four-choice reaction time task designed to measure the acquisition of probability-based and serial order-based regularities simultaneously. Short-term consolidation effects were controlled by retesting their performance after a 5-h delay. They were then retested on the same task 1 year later without any practice between the sessions. Participants successfully acquired both probability-based and serial order-based regularities and retained both types of knowledge over the 1-year period. The successful retention was independent of age. Our study demonstrates that the representation of probability-based and serial order-based regularities remains stable over a long period of time. These findings offer indirect evidence for the developmental invariance model of skill consolidation.
Collapse
Affiliation(s)
- Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, 1064, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, 1064, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, 1064, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, Old Royal Naval College, Park Row, 150 Dreadnought, London, SE10 9LS, UK
| | - Dezső Németh
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, 1064, Budapest, Hungary.
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Centre Hospitalier Le Vinatier, Université de Lyon 1, Université de Lyon, Bâtiment 462 - Neurocampus 95 boulevard Pinel, 69675, Bron, Lyon, France.
| |
Collapse
|
22
|
Vakil E, Hayout M, Maler M, Schwizer Ashkenazi S. Day versus night consolidation of implicit sequence learning using manual and oculomotor activation versions of the serial reaction time task: reaction time and anticipation measures. PSYCHOLOGICAL RESEARCH 2021; 86:983-1000. [PMID: 34115193 DOI: 10.1007/s00426-021-01534-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/14/2021] [Indexed: 02/02/2023]
Abstract
This study presents two experiments that explored consolidation of implicit sequence learning based on two dependent variables-reaction time (RT) and correct anticipations to clarify the role of sleep, and whether the manual component is necessary for consolidation processes. Experiment 1 (n = 37) explored the performance of adults using an ocular variant of the serial reaction time task (O-SRT) with manual activation (MA), and Experiment 2 (n = 37) used the ocular activation (OA) version of the task. Each experiment consisted of a Day and a Night group that performed two sessions of the O-SRT with an intervening 12-h offline period (morning/evening in Day group, evening/following morning in Night group). Night offline had an advantage only when manual response was required and when correct anticipations (i.e., accuracy) but not RT (i.e., speed) were measured. We associated this finding with the dual-learning processes required in the MA O-SRT that led to increased sequence specific learning overnight. When using the OA O-SRT, both groups demonstrated similar rates after offline in RT and correct anticipations. We interpreted this finding to reflect stabilization, which confirmed our hypothesis. As expected, all the groups demonstrated reduced performance when another sequence was introduced, thus reflecting sequence-specific learning. This study used a powerful procedure that allows measurement of implicit sequence learning in several ways: by evaluating two different measures (RT, correct anticipations) and by isolating different aspects of the task (i.e., with/without the manual learning component, more/less general skill learning), which are known to affect learning and consolidation.
Collapse
Affiliation(s)
- Eli Vakil
- Department of Psychology, Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, 52900, Ramat-Gan, Israel.
| | - Moran Hayout
- Department of Psychology, Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | - Matan Maler
- Department of Psychology, Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | - Simone Schwizer Ashkenazi
- Department of Psychology, Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, 52900, Ramat-Gan, Israel
| |
Collapse
|
23
|
Abstract
This review will explore the role of memory consolidation in speech-motor learning. Existing frameworks of speech-motor control account for the protracted time course of building the speech-motor representation. These perspectives converge on the speech-motor representation as a multimodal unit that is comprised of auditory, motor, and linguistic information. Less is known regarding the memory mechanisms that support the emergence of a generalized speech-motor unit from instances of speech production. Here, we consider the broader learning and memory consolidation literature and how it may apply to speech-motor learning. We discuss findings from relevant domains on the stabilization, enhancement, and generalization of learned information. Based on this literature, we provide our predictions for the division of labor between conscious and unconscious memory systems in speech-motor learning, and the subsequent effects of time and sleep to memory consolidation. We identify both the methodological challenges, as well as the practical importance, of advancing this work empirically. This discussion provides a foundation for building a memory-based framework for speech-motor learning.
Collapse
|
24
|
Sánchez-Mora J, Tamayo RM. From incidental learning to explicit memory: The role of sleep after exposure to a serial reaction time task. Acta Psychol (Amst) 2021; 217:103325. [PMID: 33984574 DOI: 10.1016/j.actpsy.2021.103325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
This laboratory study explores whether sleep has different effects on explicit (recognition-based) and implicit (priming-based) memory. Eighty-nine healthy participants were randomly assigned to one of two experimental conditions: sleep or wake. All participants were previously exposed to an incidental learning session involving a 12-element deterministic second-order conditional sequence embedded in a serial reaction time task. The participants' explicit and implicit knowledge was assessed both immediately after the learning session (pretest) and after 12 h (posttest). For the sleep group, participants had a night of normal sleep between pretest and posttest, whereas the wake group spent 12 h awake during the day. The measures involved an explicit recognition test and an implicit priming reaction-time test with old fragments from a previously learned sequence and new fragments of a different control sequence. The sleep group showed statistically significant improvement between the pretest and the posttest in the explicit memory measure, whereas the wake group did not. In the implicit task, both groups improved similarly after a 12-h retention interval. These results suggest that throughout sleep, implicitly acquired information is processed offline to yield an explicit representation of knowledge incidentally acquired the night before.
Collapse
Affiliation(s)
| | - Ricardo M Tamayo
- Departamento de Psicología, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
25
|
Horváth K, Kardos Z, Takács Á, Csépe V, Nemeth D, Janacsek K, Kóbor A. Error Processing During the Online Retrieval of Probabilistic Sequence Knowledge. J PSYCHOPHYSIOL 2021. [DOI: 10.1027/0269-8803/a000262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Adaptive behavior involves rapid error processing and action evaluation. However, it has not been clarified how errors contribute to automatic behaviors that can be retrieved to successfully adapt to our complex environment. Automatic behaviors strongly rely on the process of probabilistic sequence learning and memory. Therefore, the present study investigated error processing during the online retrieval of probabilistic sequence knowledge. Twenty-four healthy young adults acquired and continuously retrieved a repeating stimulus sequence reflected by reaction time (RT) changes on a rapid forced-choice RT task. Performance was compared with a baseline that denoted the processing of random stimuli embedded in the probabilistic sequence. At the neurophysiological level, event-related brain potentials synchronized to responses were measured. Error processing was tracked by the error negativity (Ne) and the error positivity (Pe). The mean amplitude of the Ne gradually decreased as the task progressed, similarly for the sequence retrieval and the embedded baseline process. The mean amplitude of the Pe increased over time, likewise, irrespective of the type of the stimuli. Accordingly, we propose that automatic error detection (Ne) and conscious error evaluation (Pe) are not sensitive to sequence learning and retrieval. Overall, the present study provides insight into how error processing takes place for the retrieval of sequence knowledge in a probabilistic environment.
Collapse
Affiliation(s)
- Kata Horváth
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zsófia Kardos
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ádám Takács
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Valéria Csépe
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Modern Philology and Social Sciences, University of Pannonia, Veszprém, Hungary
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, France
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, UK
| | - Andrea Kóbor
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
26
|
Sequence Structure Has a Differential Effect on Underlying Motor Learning Processes. JOURNAL OF MOTOR LEARNING AND DEVELOPMENT 2021. [DOI: 10.1123/jmld.2020-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Current methods to understand implicit motor sequence learning inadequately assess motor skill acquisition in daily life. Using fixed sequences in the serial reaction time task is not ideal as participants may become aware of the sequence, thereby changing the learning from implicit to explicit. Probabilistic sequences, in which stimuli are linked by statistical, rather than deterministic, associations can ensure that learning remains implicit. Additionally, the processes underlying the learning of motor sequences may differ based on sequence structure. Here, the authors compared the learning of fixed and probabilistic sequences to randomly ordered stimuli using a modified serial reaction time task. Both the fixed and probabilistic sequence groups exhibited learning as indicated by decreased response time and variability. In the initial stage of learning, fixed sequences exhibited both online and offline gains in response time; however, only the offline gain was observed during the learning of probabilistic sequences. These results indicated that probabilistic structures may be learned differently from fixed structures and have important implications for our current understanding of motor learning. Probabilistic sequences more accurately reflect motor skill acquisition in daily life, offer ecological validity to the serial reaction time framework, and advance our understanding of motor learning.
Collapse
|
27
|
Kóbor A, Kardos Z, Horváth K, Janacsek K, Takács Á, Csépe V, Nemeth D. Implicit anticipation of probabilistic regularities: Larger CNV emerges for unpredictable events. Neuropsychologia 2021; 156:107826. [PMID: 33716039 DOI: 10.1016/j.neuropsychologia.2021.107826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 01/28/2021] [Accepted: 03/09/2021] [Indexed: 11/28/2022]
Abstract
Anticipation of upcoming events plays a crucial role in automatic behaviors. It is, however, still unclear whether the event-related brain potential (ERP) markers of anticipation could track the implicit acquisition of probabilistic regularities that can be considered as building blocks of automatic behaviors. Therefore, in a four-choice reaction time (RT) task performed by young adults (N = 36), the contingent negative variation (CNV) as an ERP marker of anticipation was measured from the onset of a cue stimulus until the presentation of a target stimulus. Due to the probability structure of the task, target stimuli were either predictable or unpredictable, but this was unknown to participants. The cue did not contain predictive information on the upcoming target. Results showed that the CNV amplitude during response preparation was larger before the unpredictable than before the predictable target stimuli. In addition, although RTs increased, the P3 amplitude decreased for the unpredictable as compared with the predictable target stimuli, possibly due to the stronger response preparation that preceded stimulus presentation. These results suggest that enhanced attentional resources are allocated to the implicit anticipation and processing of unpredictable events. This might originate from the formation of internal models on the probabilistic regularities of the stimulus stream, which primarily facilitates the processing of predictable events. Overall, we provide ERP evidence that supports the role of implicit anticipation and predictive processes in the acquisition of probabilistic regularities.
Collapse
Affiliation(s)
- Andrea Kóbor
- Brain Imaging Centre, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary.
| | - Zsófia Kardos
- Brain Imaging Centre, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary; Department of Cognitive Science, Budapest University of Technology and Economics, Egry József utca 1, H-1111, Budapest, Hungary
| | - Kata Horváth
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, H-1064, Budapest, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, H-1064, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, H-1064, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary; Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, Old Royal Naval College, Park Row, 150 Dreadnought, SE10 9LS, London, United Kingdom
| | - Ádám Takács
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Valéria Csépe
- Brain Imaging Centre, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary; Faculty of Modern Philology and Social Sciences, University of Pannonia, Egyetem utca 10, H-8200, Veszprém, Hungary
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, H-1064, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary; Lyon Neuroscience Research Center (CRNL), Université de Lyon, Centre Hospitalier Le Vinatier, Bâtiment 462, Neurocampus 95 Boulevard Pinel, 69675, Bron, Lyon, France.
| |
Collapse
|
28
|
Tóth-Fáber E, Tárnok Z, Janacsek K, Kóbor A, Nagy P, Farkas BC, Oláh S, Merkl D, Hegedűs O, Nemeth D, Takács Á. Dissociation between two aspects of procedural learning in Tourette syndrome: Enhanced statistical and impaired sequence learning. Child Neuropsychol 2021; 27:799-821. [DOI: 10.1080/09297049.2021.1894110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | | | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, UK
| | - Andrea Kóbor
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Nagy
- Vadaskert Child Psychiatry Hospital, Budapest, Hungary
- Bethesda Children's Hospital, Budapest, Hungary
| | - Bence Csaba Farkas
- Laboratoire de neurosciences Cognitives et computationnelles, Departement d’etudes Cognitives, École normale superieure, INSERM, PSL University, Paris, France
| | - Szabina Oláh
- Vadaskert Child Psychiatry Hospital, Budapest, Hungary
| | - Dóra Merkl
- Vadaskert Child Psychiatry Hospital, Budapest, Hungary
| | | | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université de Lyon 1, Lyon, France
| | - Ádám Takács
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
29
|
Horváth K, Török C, Pesthy O, Nemeth D, Janacsek K. Divided attention does not affect the acquisition and consolidation of transitional probabilities. Sci Rep 2020; 10:22450. [PMID: 33384423 PMCID: PMC7775459 DOI: 10.1038/s41598-020-79232-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Statistical learning facilitates the efficient processing and prediction of environmental events and contributes to the acquisition of automatic behaviors. Whereas a minimal level of attention seems to be required for learning to occur, it is still unclear how acquisition and consolidation of statistical knowledge are affected when attention is divided during learning. To test the effect of divided attention on statistical learning and consolidation, ninety-six healthy young adults performed the Alternating Serial Reaction Time task in which they incidentally acquired second-order transitional probabilities. Half of the participants completed the task with a concurrent secondary intentional sequence learning task that was applied to the same stimulus stream. The other half of the participants performed the task without any attention manipulation. Performance was retested after a 12-h post-learning offline period. Half of each group slept during the delay, while the other half had normal daily activity, enabling us to test the effect of delay activity (sleep vs. wake) on the consolidation of statistical knowledge. Divided attention had no effect on statistical learning: The acquisition of second-order transitional probabilities was comparable with and without the secondary task. Consolidation was neither affected by divided attention: Statistical knowledge was similarly retained over the 12-h delay, irrespective of the delay activity. Our findings can contribute to a better understanding of the role of attentional processes in and the robustness of visuomotor statistical learning and consolidation.
Collapse
Affiliation(s)
- Kata Horváth
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, 1064, Hungary.,Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, 1064, Hungary.,Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary
| | - Csenge Török
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, 1064, Hungary
| | - Orsolya Pesthy
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, 1064, Hungary.,Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, 1064, Hungary
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, 1064, Hungary. .,Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary. .,Lyon Neuroscience Research Center, Inserm U1028 - CNRS UMR5292, Université de Lyon, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus 95 Boulevard Pinel, 69675, Bron Cedex, Lyon, France.
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, 1064, Hungary.,Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary.,Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, 150 Dreadnought, Park Row, London, SE10 9LS, UK
| |
Collapse
|
30
|
Vékony T, Török L, Pedraza F, Schipper K, Pleche C, Tóth L, Janacsek K, Nemeth D. Retrieval of a well-established skill is resistant to distraction: Evidence from an implicit probabilistic sequence learning task. PLoS One 2020; 15:e0243541. [PMID: 33301471 PMCID: PMC7728172 DOI: 10.1371/journal.pone.0243541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/24/2020] [Indexed: 11/19/2022] Open
Abstract
The characteristics of acquiring new sequence information under dual-task situations have been extensively studied. A concurrent task has often been found to affect performance. In real life, however, we mostly perform a secondary task when the primary task is already well acquired. The effect of a secondary task on the ability to retrieve well-established sequence representations remains elusive. The present study investigates whether accessing well-acquired probabilistic sequence knowledge is affected by a concurrent task. Participants acquired non-adjacent regularities in an implicit probabilistic sequence learning task. After a 24-hour offline period, participants were tested on the same probabilistic sequence learning task under dual-task or single-task conditions. Here, we show that although the secondary task significantly prolonged the overall reaction times in the primary (sequence learning) task, access to the previously learned probabilistic representations remained intact. Our results highlight the importance of studying the dual-task effect not only in the learning phase but also during memory access to reveal the robustness of the acquired skill.
Collapse
Affiliation(s)
- Teodóra Vékony
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRS, Université Claude Bernard Lyon 1, Lyon, France
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Lilla Török
- Department of Psychology and Sport Psychology, University of Physical Education, Budapest, Hungary
| | - Felipe Pedraza
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRS, Université Claude Bernard Lyon 1, Lyon, France
- Institute of Psychology, Université Lumière - Lyon 2, Lyon, France
| | - Kate Schipper
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRS, Université Claude Bernard Lyon 1, Lyon, France
| | - Claire Pleche
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRS, Université Claude Bernard Lyon 1, Lyon, France
| | - László Tóth
- Department of Psychology and Sport Psychology, University of Physical Education, Budapest, Hungary
| | - Karolina Janacsek
- Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, United Kingdom
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dezso Nemeth
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRS, Université Claude Bernard Lyon 1, Lyon, France
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
31
|
Perceiving structure in unstructured stimuli: Implicitly acquired prior knowledge impacts the processing of unpredictable transitional probabilities. Cognition 2020; 205:104413. [DOI: 10.1016/j.cognition.2020.104413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022]
|
32
|
Vékony T, Marossy H, Must A, Vécsei L, Janacsek K, Nemeth D. Speed or Accuracy Instructions During Skill Learning do not Affect the Acquired Knowledge. Cereb Cortex Commun 2020; 1:tgaa041. [PMID: 34296110 PMCID: PMC8152873 DOI: 10.1093/texcom/tgaa041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/18/2022] Open
Abstract
A crucial question in skill learning research is how instruction affects the performance or the underlying representations. Little is known about the effects of instructions on one critical aspect of skill learning, namely, picking-up statistical regularities. More specifically, the present study tests how prelearning speed or accuracy instructions affect the acquisition of non-adjacent second-order dependencies. We trained 2 groups of participants on an implicit probabilistic sequence learning task: one group focused on being fast and the other on being accurate. As expected, we detected a strong instruction effect: accuracy instruction resulted in a nearly errorless performance, and speed instruction caused short reaction times (RTs). Despite the differences in the average RTs and accuracy scores, we found a similar level of statistical learning performance in the training phase. After the training phase, we tested the 2 groups under the same instruction (focusing on both speed and accuracy), and they showed comparable performance, suggesting a similar level of underlying statistical representations. Our findings support that skill learning can result in robust representations, and they highlight that this form of knowledge may appear with almost errorless performance. Moreover, multiple sessions with different instructions enabled the separation of competence from performance.
Collapse
Affiliation(s)
- Teodóra Vékony
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary
| | - Hanna Marossy
- Institute of Psychology, ELTE Eötvös Loránd University, 1064 Budapest, Hungary
| | - Anita Must
- Institute of Psychology, University of Szeged, 6722 Szeged, Hungary
| | - László Vécsei
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, 1064 Budapest, Hungary
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, 1064 Budapest, Hungary
| |
Collapse
|
33
|
Zavecz Z, Horváth K, Solymosi P, Janacsek K, Nemeth D. Frontal-midline theta frequency and probabilistic learning: A transcranial alternating current stimulation study. Behav Brain Res 2020; 393:112733. [PMID: 32505660 DOI: 10.1016/j.bbr.2020.112733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/15/2022]
Abstract
Probabilistic learning is a fundamental cognitive ability that extracts and represents regularities of our environment enabling predictive processing during perception and acquisition of perceptual, motor, cognitive, and social skills. Previous studies show competition between neural networks related to executive function/working memory vs. probabilistic learning. Theta synchronization has been associated with the former while desynchronization with the latter in correlational studies. In the present paper our aim was to test causal relationship between fronto-parietal midline theta synchronization and probabilistic learning with non-invasive transcranial alternating current (tACS) stimulation. We hypothesize that theta synchronization disrupts probabilistic learning performance by modulating the competitive relationship. Twenty-six young adults performed the Alternating Serial Reaction Time (ASRT) task to assess probabilistic learning in two sessions that took place one week apart. Stimulation was applied in a double-blind cross-over within-subject design with an active theta tACS and a sham stimulation in a counter-balanced order between participants. Sinusoidal current was administered with 1 mA peak-to-peak intensity throughout the task (approximately 20 min) for the active stimulation and 30 s for the sham. We did not find an effect of fronto-parietal midline theta tACS on probabilistic learning comparing performance during active and sham stimulation. To influence probabilistic learning, we suggest applying higher current intensity and stimulation parameters more precisely aligned to endogenous brain activity for future studies.
Collapse
Affiliation(s)
- Zsófia Zavecz
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Horváth
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Solymosi
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, University of Greenwich, London, United Kingdom
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Lyon Neuroscience Research Center (CRNL), INSERM, CNRS, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
34
|
Chellappa SL, Bromundt V, Frey S, Schlote T, Goldblum D, Cajochen C, Reichert CF. Intraocular cataract lens replacement and light exposure potentially impact procedural learning in older adults. J Sleep Res 2020; 30:e13043. [PMID: 32285996 DOI: 10.1111/jsr.13043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 02/03/2023]
Abstract
Procedural learning declines with age and appropriately timed light exposure can improve cognitive performance in older individuals. Because cataract reduces light transmission and is associated with cognitive decline in older adults, we explored whether lens replacement (intraocular blue-blocking [BB] or UV-only blocking) in older patients with cataracts enhances the beneficial effects of light on procedural learning. Healthy older participants (n = 16) and older patients with post-cataract surgery (n = 13 with BB or UV lens replacement) underwent a randomized within-subject crossover laboratory design with three protocols. In each protocol, 3.5 hr dim-dark adaptation was followed by 2 hr evening blue-enriched (6,500K) or non-blue-enriched light exposure (3,000K or 2,500K), 30 min dim post-light, ~8 hr sleep and 2 hr morning dim light. Procedural learning was assessed by the alternating serial reaction time task (ASRT), as part of a larger test battery. Here, ASRT performance was indexed by type of trial (random or sequence) and sequence-specific (high or low probability) measures. During evening light exposure, we observed a significant effect of the interaction of "group" versus "light condition" on the type of trial (p = .04; p = .16; unadjusted and adjusted p-values, respectively) and sequence-specific learning (p = .04; p = .16; unadjusted and adjusted p-values, respectively), whereby patients with UV lens replacement performed better than patients with BB lens or non-cataract controls, during blue-enriched light exposure. Lens replacement in patients with cataracts may potentially be associated with beneficial effects of blue light on procedural learning. Thus, optimizing spectral lens transmission in patients with cataracts may help improve specific aspects of cognitive function, such as procedural learning.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Vivien Bromundt
- Department of Neurology, Sleep Wake Epilepsy Center, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Sylvia Frey
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | | | - David Goldblum
- Department of Ophthalmology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Carolin F Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| |
Collapse
|
35
|
Conte F, Cerasuolo M, Giganti F, Ficca G. Sleep enhances strategic thinking at the expense of basic procedural skills consolidation. J Sleep Res 2020; 29:e13034. [DOI: 10.1111/jsr.13034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Francesca Conte
- Department of Psychology University of Campania “L. Vanvitelli” Caserta Italy
| | | | | | - Gianluca Ficca
- Department of Psychology University of Campania “L. Vanvitelli” Caserta Italy
| |
Collapse
|
36
|
Closed-Loop Acoustic Stimulation Enhances Sleep Oscillations But Not Memory Performance. eNeuro 2019; 6:ENEURO.0306-19.2019. [PMID: 31604814 PMCID: PMC6831893 DOI: 10.1523/eneuro.0306-19.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 11/21/2022] Open
Abstract
Slow oscillations and spindle activity during non-rapid eye movement sleep have been implicated in memory consolidation. Closed-loop acoustic stimulation has previously been shown to enhance slow oscillations and spindle activity during sleep and improve verbal associative memory. We assessed the effect of closed-loop acoustic stimulation during a daytime nap on a virtual reality spatial navigation task in 12 healthy human subjects in a randomized within-subject crossover design. We show robust enhancement of slow oscillation and spindle activity during sleep. However, no effects on behavioral performance were observed when comparing real versus sham stimulation. To explore whether memory enhancement effects were task specific and dependent on nocturnal sleep, in a second experiment with 19 healthy subjects, we aimed to replicate a previous study that used closed-loop acoustic stimulation to enhance memory for word pairs. The methods used were as close as possible to those used in the original study, except that we used a double-blind protocol, in which both subject and experimenter were unaware of the test condition. Again, we successfully enhanced slow oscillation and spindle power, but again did not strengthen associative memory performance with stimulation. We conclude that enhancement of sleep oscillations may be insufficient to enhance memory performance in spatial navigation or verbal association tasks, and provide possible explanations for lack of behavioral replication.
Collapse
|
37
|
Kóbor A, Horváth K, Kardos Z, Takács Á, Janacsek K, Csépe V, Nemeth D. Tracking the implicit acquisition of nonadjacent transitional probabilities by ERPs. Mem Cognit 2019; 47:1546-1566. [PMID: 31236822 PMCID: PMC6823303 DOI: 10.3758/s13421-019-00949-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The implicit acquisition of complex probabilistic regularities has been found to be crucial in numerous automatized cognitive abilities, including language processing and associative learning. However, it has not been completely elucidated how the implicit extraction of second-order nonadjacent transitional probabilities is reflected by neurophysiological processes. Therefore, this study investigated the sensitivity of event-related brain potentials (ERPs) to these probabilistic regularities embedded in a sequence of visual stimuli without providing explicit information on the structure of the stimulus stream. Healthy young adults (N = 32) performed a four-choice RT task that included a sequential regularity between nonadjacent trials yielding a complex transitional probability structure. ERPs were measured relative to both stimulus and response onset. RTs indicated the rapid acquisition of the sequential regularity and the transitional probabilities. The acquisition process was also tracked by the stimulus-locked and response-locked P3 component: The P3 peak was larger for the sequence than for the random stimuli, while the late P3 was larger for less probable than for more probable short-range relations among the random stimuli. According to the RT and P3 effects, sensitivity to the sequential regularity is assumed to be supported by the initial sensitivity to the transitional probabilities. These results suggest that stimulus-response contingencies on the probabilistic regularities of the ongoing stimulus context are implicitly mapped and constantly revised. Overall, this study (1) highlights the role of predictive processes during implicit memory formation, and (2) delineates a potential to gain further insight into the dynamics of implicit acquisition processes.
Collapse
Affiliation(s)
- Andrea Kóbor
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H–1117 Hungary
| | - Kata Horváth
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, H–1064 Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, H–1064 Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H–1117 Hungary
| | - Zsófia Kardos
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H–1117 Hungary
- Department of Cognitive Science, Budapest University of Technology and Economics, Egry József utca 1, Budapest, H-1111 Hungary
| | - Ádám Takács
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, H–1064 Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, H–1064 Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H–1117 Hungary
| | - Valéria Csépe
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H–1117 Hungary
- Department of Cognitive Science, Budapest University of Technology and Economics, Egry József utca 1, Budapest, H-1111 Hungary
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, H–1064 Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H–1117 Hungary
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRS, Université de Lyon, Centre Hospitalier Le Vinatier–Bâtiment 462–Neurocampus 95 Boulevard Pinel, 69675 Bron, Lyon France
| |
Collapse
|
38
|
Szegedi-Hallgató E, Janacsek K, Nemeth D. Different levels of statistical learning - Hidden potentials of sequence learning tasks. PLoS One 2019; 14:e0221966. [PMID: 31536512 PMCID: PMC6752858 DOI: 10.1371/journal.pone.0221966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/18/2019] [Indexed: 11/23/2022] Open
Abstract
In this paper, we reexamined the typical analysis methods of a visuomotor sequence learning task, namely the ASRT task (J. H. Howard & Howard, 1997). We pointed out that the current analysis of data could be improved by paying more attention to pre-existing biases (i.e. by eliminating artifacts by using new filters) and by introducing a new data grouping that is more in line with the task's inherent statistical structure. These suggestions result in more types of learning scores that can be quantified and also in purer measures. Importantly, the filtering method proposed in this paper also results in higher individual variability, possibly indicating that it had been masked previously with the usual methods. The implications of our findings relate to other sequence learning tasks as well, and opens up opportunities to study different types of implicit learning phenomena.
Collapse
Affiliation(s)
- Emese Szegedi-Hallgató
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Psychology, Faculty of Humanities, University of Szeged, Szeged, Hungary
- Prevention of Mental Illnesses Interdisciplinary Research Group, University of Szeged, Szeged, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Lyon Neuroscience Research Center, Université de Lyon, Lyon, France
| |
Collapse
|
39
|
Juhasz D, Nemeth D, Janacsek K. Is there more room to improve? The lifespan trajectory of procedural learning and its relationship to the between- and within-group differences in average response times. PLoS One 2019; 14:e0215116. [PMID: 31314804 PMCID: PMC6636713 DOI: 10.1371/journal.pone.0215116] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/12/2019] [Indexed: 11/21/2022] Open
Abstract
Characterizing the developmental trajectories of cognitive functions such as learning, memory and decision making across the lifespan faces fundamental challenges. Cognitive functions typically encompass several processes that can be differentially affected by age. Methodological issues also arise when comparisons are made across age groups that differ in basic performance measures, such as in average response times (RTs). Here we focus on procedural learning–a fundamental cognitive function that underlies the acquisition of cognitive, social, and motor skills–and demonstrate how disentangling subprocesses of learning and controlling for differences in average RTs can reveal different developmental trajectories across the human lifespan. Two hundred-seventy participants aged between 7 and 85 years performed a probabilistic sequence learning task that enabled us to separately measure two processes of procedural learning, namely general skill learning and statistical learning. Using raw RT measures, in between-group comparisons, we found a U-shaped trajectory with children and older adults exhibiting greater general skill learning compared to adolescents and younger adults. However, when we controlled for differences in average RTs (either by using ratio scores or focusing on a subsample of participants with similar average speed), only children (but not older adults) demonstrated superior general skill learning consistently across analyses. Testing the relationship between average RTs and general skill learning within age groups shed light on further age-related differences, suggesting that general skill learning measures are more affected by average speed in some age groups. Consistent with previous studies of learning probabilistic regularities, statistical learning showed a gradual decline across the lifespan, and learning performance seemed to be independent of average speed, regardless of the age group. Overall, our results suggest that children are superior learners in various aspects of procedural learning, including both general skill and statistical learning. Our study also highlights the importance to test, and control for, the effect of average speed on other RT measures of cognitive functions, which can fundamentally affect the interpretation of group differences in developmental, aging and clinical psychology and neuroscience studies.
Collapse
Affiliation(s)
- Dora Juhasz
- Doctoral School of Education, University of Szeged, Szeged, Hungary
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Lyon Neuroscience Research Center (CRNL), Université Claude Bernard Lyon 1, Lyon, France
- * E-mail: (KJ); (DN)
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail: (KJ); (DN)
| |
Collapse
|
40
|
Lerner I, Gluck MA. Sleep and the extraction of hidden regularities: A systematic review and the importance of temporal rules. Sleep Med Rev 2019; 47:39-50. [PMID: 31252335 DOI: 10.1016/j.smrv.2019.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/01/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
As part of its role in memory consolidation, sleep has been repeatedly identified as critical for the extraction of regularities from wake experiences. However, many null results have been published as well, with no clear consensus emerging regarding the conditions that yield this sleep effect. Here, we systematically review the role of sleep in the extraction of hidden regularities, specifically those involving associative relations embedded in newly learned information. We found that the specific behavioral task used in a study had far more impact on whether a sleep effect was discovered than either the category of the cognitive processes targeted, or the particular experimental design employed. One emerging pattern, however, was that the explicit detection of hidden rules is more likely to happen when the rules are of a temporal nature (i.e., event A at time t predicts a later event B) than when they are non-temporal. We discuss this temporal rule sensitivity in reference to the compressed memory replay occurring in the hippocampus during slow-wave-sleep, and compare this effect to what happens when the extraction of regularities depends on prior knowledge and relies on structures other than the hippocampus.
Collapse
Affiliation(s)
- Itamar Lerner
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ 07102, USA.
| | - Mark A Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ 07102, USA
| |
Collapse
|
41
|
Sleep preferentially enhances memory for a cognitive strategy but not the implicit motor skills used to acquire it. Neurobiol Learn Mem 2019; 161:135-142. [DOI: 10.1016/j.nlm.2019.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 11/19/2022]
|
42
|
|
43
|
Simor P, Zavecz Z, Horváth K, Éltető N, Török C, Pesthy O, Gombos F, Janacsek K, Nemeth D. Deconstructing Procedural Memory: Different Learning Trajectories and Consolidation of Sequence and Statistical Learning. Front Psychol 2019; 9:2708. [PMID: 30687169 PMCID: PMC6333905 DOI: 10.3389/fpsyg.2018.02708] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
Procedural learning is a fundamental cognitive function that facilitates efficient processing of and automatic responses to complex environmental stimuli. Here, we examined training-dependent and off-line changes of two sub-processes of procedural learning: namely, sequence learning and statistical learning. Whereas sequence learning requires the acquisition of order-based relationships between the elements of a sequence, statistical learning is based on the acquisition of probabilistic associations between elements. Seventy-eight healthy young adults (58 females and 20 males) completed the modified version of the Alternating Serial Reaction Time task that was designed to measure Sequence and Statistical Learning simultaneously. After training, participants were randomly assigned to one of three conditions: active wakefulness, quiet rest, or daytime sleep. We examined off-line changes in Sequence and Statistical Learning as well as further improvements after extended practice. Performance in Sequence Learning increased during training, while Statistical Learning plateaued relatively rapidly. After the off-line period, both the acquired sequence and statistical knowledge was preserved, irrespective of the vigilance state (awake, quiet rest or sleep). Sequence Learning further improved during extended practice, while Statistical Learning did not. Moreover, within the sleep group, cortical oscillations and sleep spindle parameters showed differential associations with Sequence and Statistical Learning. Our findings can contribute to a deeper understanding of the dynamic changes of multiple parallel learning and consolidation processes that occur during procedural memory formation.
Collapse
Affiliation(s)
- Peter Simor
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Zsofia Zavecz
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Horváth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Noémi Éltető
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Csenge Török
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Orsolya Pesthy
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University, Budapest, Hungary
- MTA-PPKE Adolescent Development Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Lyon Neuroscience Research Center (CRNL), Université de Lyon, Lyon, France
| |
Collapse
|
44
|
Sleep Strengthens Predictive Sequence Coding. J Neurosci 2018; 38:8989-9000. [PMID: 30185464 DOI: 10.1523/jneurosci.1352-18.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 02/05/2023] Open
Abstract
Predictive-coding theories assume that perception and action are based on internal models derived from previous experience. Such internal models require selection and consolidation to be stored over time. Sleep is known to support memory consolidation. We hypothesized that sleep supports both consolidation and abstraction of an internal task model that is subsequently used to predict upcoming stimuli. Human subjects (of either sex) were trained on deterministic visual sequences and tested with interleaved deviant stimuli after retention intervals of sleep or wakefulness. Adopting a predictive-coding approach, we found increased prediction strength after sleep, as expressed by increased error rates to deviant stimuli, but fewer errors for the immediately following standard stimuli. Sleep likewise enhanced the formation of an abstract sequence model, independent of the temporal context during training. Moreover, sleep increased confidence for sequence knowledge, reflecting enhanced metacognitive access to the model. Our results suggest that sleep supports the formation of internal models which can be used to predict upcoming events in different contexts.SIGNIFICANCE STATEMENT To efficiently interact with the ever-changing world, we predict upcoming events based on similar previous experiences. Sleep is known to benefit memory consolidation. However, it is not clear whether sleep specifically supports the transformation of past experience into predictions of future events. Here, we find that, when human subjects sleep after learning a sequence of predictable visual events, they make better predictions about upcoming events compared with subjects who stayed awake for an equivalent period of time. In addition, sleep supports the transfer of such knowledge between different temporal contexts (i.e., when sequences unfold at different speeds). Thus, sleep supports perception and action by enhancing the predictive utility of previous experiences.
Collapse
|
45
|
Shaikh N, Coulthard E. Nap-mediated benefit to implicit information processing across age using an affective priming paradigm. J Sleep Res 2018; 28:e12728. [PMID: 30033579 PMCID: PMC7140178 DOI: 10.1111/jsr.12728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/23/2018] [Accepted: 06/06/2018] [Indexed: 12/27/2022]
Abstract
Understanding how sleep‐related information processing affects behaviour may allow targeted cognitive enhancement to improve quality of life. Previous evidence demonstrates that implicitly‐presented cues are processed during subsequent sleep, resulting in enhanced cognition upon waking. We used a masked priming task to investigate this further. To assess sleep‐mediated effects on reactions to implicitly presented primes, participants performed an Affective Priming Task pre‐and‐post 90 min of sleep, compared with an equal period of wakefulness. The Choice Reaction Time Task—a similar binary choice task but without the implicit aspect—was used as a control. Sixteen healthy participants across a range of ages were tested and sleep monitored using electroencephalogram. In stark contrast to the control task, in the Affective Priming Task reaction times significantly improved across all prime types after sleep, but not an equal period of wake. There was no significant change in reaction times on Choice Reaction Time Task after wakefulness or sleep. Rather than a general suppression of all primes, the data are more in keeping with specific strategic optimisation of prime processing during sleep. We plan future work to probe the mechanisms and neuroanatomical substrate of sleep‐mediated prime processing.
Collapse
Affiliation(s)
- Netasha Shaikh
- ReMemBr Group, Institute for Clinical Neurosciences, University of Bristol, Bristol, UK.,North Bristol NHS Trust, Bristol, UK
| | - Elizabeth Coulthard
- ReMemBr Group, Institute for Clinical Neurosciences, University of Bristol, Bristol, UK.,North Bristol NHS Trust, Bristol, UK
| |
Collapse
|
46
|
Kóbor A, Takács Á, Kardos Z, Janacsek K, Horváth K, Csépe V, Nemeth D. ERPs differentiate the sensitivity to statistical probabilities and the learning of sequential structures during procedural learning. Biol Psychol 2018; 135:180-193. [DOI: 10.1016/j.biopsycho.2018.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
|
47
|
Janacsek K, Borbély-Ipkovich E, Nemeth D, Gonda X. How can the depressed mind extract and remember predictive relationships of the environment? Evidence from implicit probabilistic sequence learning. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:17-24. [PMID: 28958916 DOI: 10.1016/j.pnpbp.2017.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/11/2017] [Accepted: 09/21/2017] [Indexed: 11/29/2022]
Abstract
A growing body of evidence suggests that emotion and cognition are fundamentally intertwined; impairments in explicit, more effortful and attention-dependent cognitive functions have widely been observed in negative mood. Here we aimed to test how negative mood affects implicit cognition that is less susceptible to motivational and attentional factors associated with negative mood. Therefore, we examined implicit learning and retention of predictive relationships in patients with major depressive episode (MDE). Additionally, we directly compared subgroups of patients with major depressive disorder (MDD) vs. bipolar disorder (BD) in order to gain a deeper understanding of how implicit cognition is affected by these conditions. Implicit probabilistic sequence learning was measured by the Alternating Serial Reaction Time Task. The acquired knowledge was retested after a 24-hour delay period. Consistent with the frontostriatal deficits frequently reported in depression, we found weaker learning in patients with MDE, with a more pronounced deficit in patients with MDD compared to BD. After the 24-hour delay, MDE patients (both subgroups) showed forgetting, while the controls retained the previously acquired knowledge. These results cannot be explained by alterations in motivation, attention and reward processing but suggest more profound impairments of implicit learning and retention of predictive relationships among neutral stimuli in depression. To the best of our knowledge, this is the first study investigating retention of implicitly acquired sequential knowledge and reporting deficits in this domain in MDE. Our findings not only contribute to a better understanding of the complex interplay between affect and cognition but can also help improve screening, diagnosis and treatment protocols of depression.
Collapse
Affiliation(s)
- Karolina Janacsek
- MTA ELTE NAP-B Brain, Memory and Language Lab, ICNP, RCNS, Hungarian Academy of Sciences, Budapest, Hungary; Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
| | | | - Dezso Nemeth
- MTA ELTE NAP-B Brain, Memory and Language Lab, ICNP, RCNS, Hungarian Academy of Sciences, Budapest, Hungary; Institute of Psychology, Eötvös Loránd University, Budapest, Hungary.
| | - Xénia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group of the Hungarian Academy of Sciences, Semmelweis University, Hungary
| |
Collapse
|
48
|
Viczko J, Sergeeva V, Ray LB, Owen AM, Fogel SM. Does sleep facilitate the consolidation of allocentric or egocentric representations of implicitly learned visual-motor sequence learning? ACTA ACUST UNITED AC 2018; 25:67-77. [PMID: 29339558 PMCID: PMC5772393 DOI: 10.1101/lm.044719.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 10/03/2017] [Indexed: 11/25/2022]
Abstract
Sleep facilitates the consolidation (i.e., enhancement) of simple, explicit (i.e., conscious) motor sequence learning (MSL). MSL can be dissociated into egocentric (i.e., motor) or allocentric (i.e., spatial) frames of reference. The consolidation of the allocentric memory representation is sleep-dependent, whereas the egocentric consolidation process is independent of sleep or wake for explicit MSL. However, it remains unclear the extent to which sleep contributes to the consolidation of implicit (i.e., unconscious) MSL, nor is it known what aspects of the memory representation (egocentric, allocentric) are consolidated by sleep. Here, we investigated the extent to which sleep is involved in consolidating implicit MSL, specifically, whether the egocentric or the allocentric cognitive representations of a learned sequence are enhanced by sleep, and whether these changes support the development of explicit sequence knowledge across sleep but not wake. Our results indicate that egocentric and allocentric representations can be behaviorally dissociated for implicit MSL. Neither representation was preferentially enhanced across sleep nor were developments of explicit awareness observed. However, after a 1-wk interval performance enhancement was observed in the egocentric representation. Taken together, these results suggest that like explicit MSL, implicit MSL has dissociable allocentric and egocentric representations, but unlike explicit sequence learning, implicit egocentric and allocentric memory consolidation is independent of sleep, and the time-course of consolidation differs significantly.
Collapse
Affiliation(s)
- Jeremy Viczko
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada.,Department of Psychology, Western University, London, Ontario N6A 5C2, Canada
| | - Valya Sergeeva
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada.,Department of Psychology, Western University, London, Ontario N6A 5C2, Canada
| | - Laura B Ray
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada
| | - Adrian M Owen
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada.,Department of Psychology, Western University, London, Ontario N6A 5C2, Canada
| | - Stuart M Fogel
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada.,Department of Psychology, Western University, London, Ontario N6A 5C2, Canada.,School of Psychology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.,The Royal's Institute for Mental Health Research, Ottawa, Ontario K1Z 7K5, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
49
|
Nagai H, de Vivo L, Bellesi M, Ghilardi MF, Tononi G, Cirelli C. Sleep Consolidates Motor Learning of Complex Movement Sequences in Mice. Sleep 2017; 40:2731603. [PMID: 28364506 DOI: 10.1093/sleep/zsw059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2016] [Indexed: 12/16/2022] Open
Abstract
Introduction Sleep-dependent consolidation of motor learning has been extensively studied in humans, but it remains unclear why some, but not all, learned skills benefit from sleep. Aims and Methods Here, we compared 2 different motor tasks, both requiring the mice to run on an accelerating device. In the rotarod task, mice learn to maintain balance while running on a small rod, while in the complex wheel task, mice run on an accelerating wheel with an irregular rung pattern. Results In the rotarod task, performance improved to the same extent after sleep or after sleep deprivation (SD). Overall, using 7 different experimental protocols (41 sleep deprived mice, 26 sleeping controls), we found large interindividual differences in the learning and consolidation of the rotarod task, but sleep before/after training did not account for this variability. By contrast, using the complex wheel, we found that sleep after training, relative to SD, led to better performance from the beginning of the retest session, and longer sleep was correlated with greater subsequent performance. As in humans, the effects of sleep showed large interindividual variability and varied between fast and slow learners, with sleep favoring the preservation of learned skills in fast learners and leading to a net offline gain in the performance in slow learners. Using Fos expression as a proxy for neuronal activation, we also found that complex wheel training engaged motor cortex and hippocampus more than the rotarod training. Conclusions Sleep specifically consolidates a motor skill that requires complex movement sequences and strongly engages both motor cortex and hippocampus.
Collapse
Affiliation(s)
- Hirotaka Nagai
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719
| | - Luisa de Vivo
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719
| | - Michele Bellesi
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719.,Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Felice Ghilardi
- Department of Physiology and Pharmacology, City University of New York Medical School, New York, NY10017
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719
| |
Collapse
|
50
|
Cellini N. Memory consolidation in sleep disorders. Sleep Med Rev 2017; 35:101-112. [DOI: 10.1016/j.smrv.2016.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
|