1
|
Fischer QS, Kalikulov D, Viana Di Prisco G, Williams CA, Baldwin PR, Friedlander MJ. Synaptic Plasticity in the Injured Brain Depends on the Temporal Pattern of Stimulation. J Neurotrauma 2024. [PMID: 38818799 DOI: 10.1089/neu.2024.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Neurostimulation protocols are increasingly used as therapeutic interventions, including for brain injury. In addition to the direct activation of neurons, these stimulation protocols are also likely to have downstream effects on those neurons' synaptic outputs. It is well known that alterations in the strength of synaptic connections (long-term potentiation, LTP; long-term depression, LTD) are sensitive to the frequency of stimulation used for induction; however, little is known about the contribution of the temporal pattern of stimulation to the downstream synaptic plasticity that may be induced by neurostimulation in the injured brain. We explored interactions of the temporal pattern and frequency of neurostimulation in the normal cerebral cortex and after mild traumatic brain injury (mTBI), to inform therapies to strengthen or weaken neural circuits in injured brains, as well as to better understand the role of these factors in normal brain plasticity. Whole-cell (WC) patch-clamp recordings of evoked postsynaptic potentials in individual neurons, as well as field potential (FP) recordings, were made from layer 2/3 of visual cortex in response to stimulation of layer 4, in acute slices from control (naive), sham operated, and mTBI rats. We compared synaptic plasticity induced by different stimulation protocols, each consisting of a specific frequency (1 Hz, 10 Hz, or 100 Hz), continuity (continuous or discontinuous), and temporal pattern (perfectly regular, slightly irregular, or highly irregular). At the individual neuron level, dramatic differences in plasticity outcome occurred when the highly irregular stimulation protocol was used at 1 Hz or 10 Hz, producing an overall LTD in controls and shams, but a robust overall LTP after mTBI. Consistent with the individual neuron results, the plasticity outcomes for simultaneous FP recordings were similar, indicative of our results generalizing to a larger scale synaptic network than can be sampled by individual WC recordings alone. In addition to the differences in plasticity outcome between control (naive or sham) and injured brains, the dynamics of the changes in synaptic responses that developed during stimulation were predictive of the final plasticity outcome. Our results demonstrate that the temporal pattern of stimulation plays a role in the polarity and magnitude of synaptic plasticity induced in the cerebral cortex while highlighting differences between normal and injured brain responses. Moreover, these results may be useful for optimization of neurostimulation therapies to treat mTBI and other brain disorders, in addition to providing new insights into downstream plasticity signaling mechanisms in the normal brain.
Collapse
Affiliation(s)
- Quentin S Fischer
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Djanenkhodja Kalikulov
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | | | - Carrie A Williams
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
| | - Philip R Baldwin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Michael J Friedlander
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Faculty of Health Sciences, Virginia Tech, Roanoke, Virginia, USA
| |
Collapse
|
2
|
Chokshi V, Grier BD, Dykman A, Lantz CL, Niebur E, Quinlan EM, Lee HK. Naturalistic Spike Trains Drive State-Dependent Homeostatic Plasticity in Superficial Layers of Visual Cortex. Front Synaptic Neurosci 2021; 13:663282. [PMID: 33935679 PMCID: PMC8081846 DOI: 10.3389/fnsyn.2021.663282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The history of neural activity determines the synaptic plasticity mechanisms employed in the brain. Previous studies report a rapid reduction in the strength of excitatory synapses onto layer 2/3 (L2/3) pyramidal neurons of the primary visual cortex (V1) following two days of dark exposure and subsequent re-exposure to light. The abrupt increase in visually driven activity is predicted to drive homeostatic plasticity, however, the parameters of neural activity that trigger these changes are unknown. To determine this, we first recorded spike trains in vivo from V1 layer 4 (L4) of dark exposed (DE) mice of both sexes that were re-exposed to light through homogeneous or patterned visual stimulation. We found that delivering the spike patterns recorded in vivo to L4 of V1 slices was sufficient to reduce the amplitude of miniature excitatory postsynaptic currents (mEPSCs) of V1 L2/3 neurons in DE mice, but not in slices obtained from normal reared (NR) controls. Unexpectedly, the same stimulation pattern produced an up-regulation of mEPSC amplitudes in V1 L2/3 neurons from mice that received 2 h of light re-exposure (LE). A Poisson spike train exhibiting the same average frequency as the patterns recorded in vivo was equally effective at depressing mEPSC amplitudes in L2/3 neurons in V1 slices prepared from DE mice. Collectively, our results suggest that the history of visual experience modifies the responses of V1 neurons to stimulation and that rapid homeostatic depression of excitatory synapses can be driven by non-patterned input activity.
Collapse
Affiliation(s)
- Varun Chokshi
- The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
- Cell Molecular Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States
| | - Bryce D. Grier
- The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Andrew Dykman
- The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Crystal L. Lantz
- Department of Biology, University of Maryland, College Park, MD, United States
| | - Ernst Niebur
- The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Elizabeth M. Quinlan
- Department of Biology, University of Maryland, College Park, MD, United States
- Neuroscience and Cognitive Science Program, Brain and Behavior Institute, University of Maryland, College Park, MD, United States
| | - Hey-Kyoung Lee
- The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
- Cell Molecular Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
3
|
Cui Y, Prokin I, Mendes A, Berry H, Venance L. Robustness of STDP to spike timing jitter. Sci Rep 2018; 8:8139. [PMID: 29802357 PMCID: PMC5970212 DOI: 10.1038/s41598-018-26436-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/09/2018] [Indexed: 01/26/2023] Open
Abstract
In Hebbian plasticity, neural circuits adjust their synaptic weights depending on patterned firing. Spike-timing-dependent plasticity (STDP), a synaptic Hebbian learning rule, relies on the order and timing of the paired activities in pre- and postsynaptic neurons. Classically, in ex vivo experiments, STDP is assessed with deterministic (constant) spike timings and time intervals between successive pairings, thus exhibiting a regularity that differs from biological variability. Hence, STDP emergence from noisy inputs as occurring in in vivo-like firing remains unresolved. Here, we used noisy STDP pairings where the spike timing and/or interval between pairings were jittered. We explored with electrophysiology and mathematical modeling, the impact of jitter on three forms of STDP at corticostriatal synapses: NMDAR-LTP, endocannabinoid-LTD and endocannabinoid-LTP. We found that NMDAR-LTP was highly fragile to jitter, whereas endocannabinoid-plasticity appeared more resistant. When the frequency or number of pairings was increased, NMDAR-LTP became more robust and could be expressed despite strong jittering. Our results identify endocannabinoid-plasticity as a robust form of STDP, whereas the sensitivity to jitter of NMDAR-LTP varies with activity frequency. This provides new insights into the mechanisms at play during the different phases of learning and memory and the emergence of Hebbian plasticity in in vivo-like activity.
Collapse
Affiliation(s)
- Yihui Cui
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Ilya Prokin
- INRIA, Villeurbanne, France.,University of Lyon, LIRIS UMR5205, Villeurbanne, France
| | - Alexandre Mendes
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Hugues Berry
- INRIA, Villeurbanne, France. .,University of Lyon, LIRIS UMR5205, Villeurbanne, France.
| | - Laurent Venance
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
4
|
Choi JW, Jeong MH, Her SJ, Lee BU, Cha KS, Jung KY, Kim KH. Abnormal Sleep Delta Rhythm and Interregional Phase Synchrony in Patients with Restless Legs Syndrome and Their Reversal by Dopamine Agonist Treatment. J Clin Neurol 2017; 13:340-350. [PMID: 28831786 PMCID: PMC5653621 DOI: 10.3988/jcn.2017.13.4.340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 02/05/2023] Open
Abstract
Background and Purpose The purpose of this study was to characterize abnormal cortical activity during sleep in restless legs syndrome (RLS) patients and to determine the effects of treatment with a dopamine agonist. Based on whole-brain electroencephalograms, we attempted to verify alterations in the functional network as well as the spectral power of neural activities during sleep in RLS patients and to determine whether the changes are reversed by treatment with pramipexole. Methods Twelve drug-naïve RLS patients participated in the study. Overnight polysomnography was performed before and after treatment: the first recording was made immediately prior to administering the first dose of pramipexole, and the second recording was made 12–16 weeks after commencing pramipexole administration. Sixteen age-matched healthy participants served as a control group. The spectral power and interregional phase synchrony were analyzed in 30-s epochs. The functional characteristics of the cortical network were quantified using graph-theory measures. Results The delta-band power was significantly increased and the small-world network characteristics in the delta band were disrupted in RLS patients compared to the healthy controls. These abnormalities were successfully treated by dopaminergic medication. The delta-band power was significantly correlated with the RLS severity score in the RLS patients prior to treatment. Conclusions Our findings suggest that the spectral and functional network characteristics of neural activities during sleep become abnormal in RLS patients, and these abnormalities can be successfully treated by a dopamine agonist.
Collapse
Affiliation(s)
- Jeong Woo Choi
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Korea
| | - Min Hee Jeong
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Korea
| | - Seong Jin Her
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Korea
| | - Byeong Uk Lee
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Kwang Su Cha
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Korea
| | - Ki Young Jung
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea.
| | - Kyung Hwan Kim
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Korea.
| |
Collapse
|
5
|
Andersen N, Krauth N, Nabavi S. Hebbian plasticity in vivo: relevance and induction. Curr Opin Neurobiol 2017; 45:188-192. [PMID: 28683352 DOI: 10.1016/j.conb.2017.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/30/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022]
Abstract
Hebbian plasticity, as represented by long-term potentiation (LTP) and long-term depression (LTD) of synapses, has been the most influential hypothesis to account for encoding of memories. The evidence for the physiological relevance of LTP is indisputable. However, until recently the ways by which LTP physiologically is induced in its natural environment, the brain, was less clear. Nonetheless, current evidence points to neuromodulators as an indispensable element. The case for LTD in vivo is less certain. Even its relevance has been a matter of speculation and doubts. However, emerging evidence for a physiological role for LTD is promising, as the phenomenon has been observed at different brain regions. More needs to be done before LTD can claim an equal status alongside LTP.
Collapse
Affiliation(s)
- Niels Andersen
- DANDRITE - Danish Research Institute of Translational Neuroscience, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Nathalie Krauth
- DANDRITE - Danish Research Institute of Translational Neuroscience, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Sadegh Nabavi
- DANDRITE - Danish Research Institute of Translational Neuroscience, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Denmark.
| |
Collapse
|
6
|
Frank MG, Benington JH. The Role of Sleep in Memory Consolidation and Brain Plasticity: Dream or Reality? Neuroscientist 2016; 12:477-88. [PMID: 17079514 DOI: 10.1177/1073858406293552] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The notion that a good night of sleep improves memory is widely accepted by the general public. Among sleep scientists, however, the idea has been hotly debated for decades. In this review, the authors consider current evidence for and against the hypothesis that sleep facilitates memory consolidation and promotes plastic changes in the brain. They find that despite a steady accumulation of positive findings over the past decade, the precise role of sleep in memory and brain plasticity remains elusive. This impasse may be resolved by more integrated approaches that combine behavioral and neurophysiological measurements in well-described in vivo models of synaptic plasticity.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia 19104-6074, USA.
| | | |
Collapse
|
7
|
Genzel L, Kroes MC, Dresler M, Battaglia FP. Light sleep versus slow wave sleep in memory consolidation: a question of global versus local processes? Trends Neurosci 2014; 37:10-9. [DOI: 10.1016/j.tins.2013.10.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 01/06/2023]
|
8
|
Learning from the spinal cord: how the study of spinal cord plasticity informs our view of learning. Neurobiol Learn Mem 2013; 108:155-71. [PMID: 23973905 DOI: 10.1016/j.nlm.2013.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 08/01/2013] [Accepted: 08/07/2013] [Indexed: 01/10/2023]
Abstract
The paper reviews research examining whether and how training can induce a lasting change in spinal cord function. A framework for the study of learning, and some essential issues in experimental design, are discussed. A core element involves delayed assessment under common conditions. Research has shown that brain systems can induce a lasting (memory-like) alteration in spinal function. Neurons within the lower (lumbosacral) spinal cord can also adapt when isolated from the brain by means of a thoracic transection. Using traditional learning paradigms, evidence suggests that spinal neurons support habituation and sensitization as well as Pavlovian and instrumental conditioning. At a neurobiological level, spinal systems support phenomena (e.g., long-term potentiation), and involve mechanisms (e.g., NMDA mediated plasticity, protein synthesis) implicated in brain-dependent learning and memory. Spinal learning also induces modulatory effects that alter the capacity for learning. Uncontrollable/unpredictable stimulation disables the capacity for instrumental learning and this effect has been linked to the cytokine tumor necrosis factor (TNF). Predictable/controllable stimulation enables learning and counters the adverse effects of uncontrollable stimulation through a process that depends upon brain-derived neurotrophic factor (BDNF). Finally, uncontrollable, but not controllable, nociceptive stimulation impairs recovery after a contusion injury. A process-oriented approach (neurofunctionalism) is outlined that encourages a broader view of learning phenomena.
Collapse
|
9
|
Abstract
Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.
Collapse
Affiliation(s)
- Björn Rasch
- Division of Biopsychology, Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
10
|
Chauvette S, Seigneur J, Timofeev I. Sleep oscillations in the thalamocortical system induce long-term neuronal plasticity. Neuron 2012; 75:1105-13. [PMID: 22998877 DOI: 10.1016/j.neuron.2012.08.034] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2012] [Indexed: 12/26/2022]
Abstract
Long-term plasticity contributes to memory formation and sleep plays a critical role in memory consolidation. However, it is unclear whether sleep slow oscillation by itself induces long-term plasticity that contributes to memory retention. Using in vivo prethalamic electrical stimulation at 1 Hz, which itself does not induce immediate potentiation of evoked responses, we investigated how the cortical evoked response was modulated by different states of vigilance. We found that somatosensory evoked potentials during wake were enhanced after a slow-wave sleep episode (with or without stimulation during sleep) as compared to a previous wake episode. In vitro, we determined that this enhancement has a postsynaptic mechanism that is calcium dependent, requires hyperpolarization periods (slow waves), and requires a coactivation of both AMPA and NMDA receptors. Our results suggest that long-term potentiation occurs during slow-wave sleep, supporting its contribution to memory.
Collapse
Affiliation(s)
- Sylvain Chauvette
- The Centre de Recherche Institut Universitaire en Santé Mentale de Québec-CRIUSMQ, Laval University, Québec, QC G1J 2G3, Canada
| | | | | |
Collapse
|
11
|
Temporal regularity determines the impact of electrical stimulation on tactile reactivity and response to capsaicin in spinally transected rats. Neuroscience 2012; 227:119-33. [PMID: 23036621 DOI: 10.1016/j.neuroscience.2012.09.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/21/2012] [Accepted: 09/22/2012] [Indexed: 01/20/2023]
Abstract
Nociceptive plasticity and central sensitization within the spinal cord depend on neurobiological mechanisms implicated in learning and memory in higher neural systems, suggesting that the factors that impact brain-mediated learning and memory could modulate how stimulation affects spinal systems. One such factor is temporal regularity (predictability). The present paper shows that intermittent hindleg shock has opposing effects in spinally transected rats depending upon whether shock is presented in a regular or irregular (variable) manner. Variable intermittent legshock (900 shocks) enhanced mechanical reactivity to von Frey stimuli (hyperreactivity), whereas 900 fixed-spaced legshocks produced hyporeactivity. The impact of fixed-spaced shock depended upon the duration of exposure; a brief exposure (36 shocks) induced hyperreactivity whereas an extended exposure (900 shocks) produced hyporeactivity. The enhanced reactivity observed after variable shock was most evident 60-180 min after treatment. Fixed and variable intermittent stimulation applied to the sciatic nerve, or the tail, yielded a similar pattern of results. Stimulation had no effect on thermal reactivity. Exposure to fixed-spaced shock, but not variable shock, attenuated the enhanced mechanical reactivity (EMR) produced by treatment with hindpaw capsaicin. The effect of fixed-spaced stimulation lasted 24h. Treatment with fixed-spaced shock also attenuated the maintenance of capsaicin-induced EMR. The results show that variable intermittent shock enhances mechanical reactivity, while an extended exposure to fixed-spaced shock has the opposite effect on mechanical reactivity and attenuates capsaicin-induced EMR.
Collapse
|
12
|
Erasing synapses in sleep: is it time to be SHY? Neural Plast 2012; 2012:264378. [PMID: 22530156 PMCID: PMC3317003 DOI: 10.1155/2012/264378] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/04/2011] [Indexed: 02/04/2023] Open
Abstract
Converging lines of evidence strongly support a role for sleep in brain plasticity. An elegant idea that may explain how sleep accomplishes this role is the "synaptic homeostasis hypothesis (SHY)." According to SHY, sleep promotes net synaptic weakening which offsets net synaptic strengthening that occurs during wakefulness. SHY is intuitively appealing because it relates the homeostatic regulation of sleep to an important function (synaptic plasticity). SHY has also received important experimental support from recent studies in Drosophila melanogaster. There remain, however, a number of unanswered questions about SHY. What is the cellular mechanism governing SHY? How does it fit with what we know about plasticity mechanisms in the brain? In this review, I discuss the evidence and theory of SHY in the context of what is known about Hebbian and non-Hebbian synaptic plasticity. I conclude that while SHY remains an elegant idea, the underlying mechanisms are mysterious and its functional significance unknown.
Collapse
|
13
|
Baumbauer KM, Hoy KC, Huie JR, Hughes AJ, Woller SA, Puga DA, Setlow B, Grau JW. Timing in the absence of supraspinal input I: variable, but not fixed, spaced stimulation of the sciatic nerve undermines spinally-mediated instrumental learning. Neuroscience 2008; 155:1030-47. [PMID: 18674601 DOI: 10.1016/j.neuroscience.2008.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/27/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
Abstract
Rats with complete spinal transections are capable of acquiring a simple instrumentally trained response. If rats receive shock to one hind limb when the limb is extended (controllable shock), the spinal cord will learn to hold the leg in a flexed position that minimizes shock exposure. If shock is delivered irrespective of leg position, subjects do not exhibit an increase in flexion duration and subsequently fail to learn when tested with controllable shock (learning deficit). Just 6 min of variable intermittent shock produces a learning deficit that lasts 24 h. Evidence suggests that the neural mechanisms underlying the learning deficit may be related to those involved in other instances of spinal plasticity (e.g. windup, long-term potentiation). The present paper begins to explore these relations by demonstrating that direct stimulation of the sciatic nerve also impairs instrumental learning. Six minutes of electrical stimulation (mono- or biphasic direct current [DC]) of the sciatic nerve in spinally transected rats produced a voltage-dependent learning deficit that persisted for 24 h (experiments 1-2) and was dependent on C-fiber activation (experiment 7). Exposure to continuous stimulation did not produce a deficit, but intermittent burst or single pulse (as short as 0.1 ms) stimulation (delivered at a frequency of 0.5 Hz) did, irrespective of the pattern (fixed or variable) of stimulus delivery (experiments 3-6, 8). When the duration of stimulation was extended from 6 to 30 min, a surprising result emerged; shocks applied in a random (variable) fashion impaired subsequent learning whereas shocks given in a regular pattern (fixed spacing) did not (experiments 9-10). The results imply that spinal neurons are sensitive to temporal relations and that stimulation at regular intervals can have a restorative effect.
Collapse
Affiliation(s)
- K M Baumbauer
- Department of Psychology, Texas A&M University, College Station, TX 77843-4325, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sjöström PJ, Rancz EA, Roth A, Häusser M. Dendritic excitability and synaptic plasticity. Physiol Rev 2008; 88:769-840. [PMID: 18391179 DOI: 10.1152/physrev.00016.2007] [Citation(s) in RCA: 418] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Most synaptic inputs are made onto the dendritic tree. Recent work has shown that dendrites play an active role in transforming synaptic input into neuronal output and in defining the relationships between active synapses. In this review, we discuss how these dendritic properties influence the rules governing the induction of synaptic plasticity. We argue that the location of synapses in the dendritic tree, and the type of dendritic excitability associated with each synapse, play decisive roles in determining the plastic properties of that synapse. Furthermore, since the electrical properties of the dendritic tree are not static, but can be altered by neuromodulators and by synaptic activity itself, we discuss how learning rules may be dynamically shaped by tuning dendritic function. We conclude by describing how this reciprocal relationship between plasticity of dendritic excitability and synaptic plasticity has changed our view of information processing and memory storage in neuronal networks.
Collapse
Affiliation(s)
- P Jesper Sjöström
- Wolfson Institute for Biomedical Research and Department of Physiology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
15
|
Schiller Y, Bankirer Y. Cellular Mechanisms Underlying Antiepileptic Effects of Low- and High-Frequency Electrical Stimulation in Acute Epilepsy in Neocortical Brain Slices In Vitro. J Neurophysiol 2007; 97:1887-902. [PMID: 17151229 DOI: 10.1152/jn.00514.2006] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Approximately 30% of epilepsy patients suffer from drug-resistant epilepsy. Direct electrical stimulation of the epileptogenic zone is a potential new treatment modality for this devastating disease. In this study, we investigated the effect of two electrical stimulation paradigms, sustained low-frequency stimulation and short trains of high-frequency stimulation, on epileptiform discharges in neocortical brain slices treated with either bicuculline or magnesium-free extracellular solution. Sustained low-frequency stimulation (5–30 min of 0.1- to 5-Hz stimulation) prevented both interictal-like discharges and seizure-like events in an intensity-, frequency-, and distance-dependent manner. Short trains of high-frequency stimulation (1–5 s of 25- to 200-Hz stimulation) prematurely terminated seizure-like events in a frequency-, intensity-, and duration-dependent manner. Roughly one half the seizures terminated within the 100-Hz stimulation train ( P < 0.01 compared with control), whereas the remaining seizures were significantly shortened by 53 ± 21% ( P < 0.01). Regarding the cellular mechanisms underlying the antiepileptic effects of electrical stimulation, both low- and high-frequency stimulation markedly depressed excitatory postsynaptic potentials (EPSPs). The EPSP amplitude decreased by 75 ± 3% after 10-min, 1-Hz stimulation and by 86 ± 6% after 1-s, 100-Hz stimulation. Moreover, partial pharmacological blockade of ionotropic glutamate receptors was sufficient to suppress epileptiform discharges and enhance the antiepileptic effects of stimulation. In conclusion, this study showed that both low- and high-frequency electrical stimulation possessed antiepileptic effects in the neocortex in vitro, established the parameters determining the antiepileptic efficacy of both stimulation paradigms, and suggested that the antiepileptic effects of stimulation were mediated mostly by short-term synaptic depression of excitatory neurotransmission.
Collapse
Affiliation(s)
- Yitzhak Schiller
- Department of Neurology, Rambam Medical Center, 1 Efron St., Haifa 31096, Israel.
| | | |
Collapse
|
16
|
Mellentin C, Jahnsen H, Abraham WC. Priming of long-term potentiation mediated by ryanodine receptor activation in rat hippocampal slices. Neuropharmacology 2007; 52:118-25. [PMID: 16905161 DOI: 10.1016/j.neuropharm.2006.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 07/04/2006] [Accepted: 07/05/2006] [Indexed: 11/19/2022]
Abstract
Administration of the Group 1 metabotropic glutamate receptor (mGluR) agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) facilitates ("primes") subsequent long-term potentiation (LTP) through a phospholipase C signaling cascade that may involve release of Ca2+ from the endoplasmic reticulum (ER). We investigated the intracellular calcium pathways involved in this priming effect, recording field potentials from area CA1 of rat hippocampal slices before and after high-frequency stimulation. The priming of LTP by DHPG was prevented by co-administration of cyclopiazonic acid, which depletes ER Ca2+ stores. The priming effect was also blocked by the ryanodine receptor (RYR) antagonist ryanodine (RYA, 100 microM). In contrast, a low dose of RYA (10 microM) which opens the RYR channel, by itself primed LTP. In addition to RYR activation, entry of extracellular calcium through store-operated channels appears necessary for priming, since diverse treatments known to impede store-operated channel activity completely blocked both RYA and DHPG priming effects. Thus, RYR activation plays a critical role in the priming of LTP by Group 1 mGluRs, and this effect is coupled to the entry of extracellular calcium, probably through store-operated calcium channels.
Collapse
Affiliation(s)
- C Mellentin
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark; Department of Psychology, University of Otago, Otago, New Zealand.
| | | | | |
Collapse
|
17
|
Czarnecki A, Birtoli B, Ulrich D. Cellular mechanisms of burst firing-mediated long-term depression in rat neocortical pyramidal cells. J Physiol 2006; 578:471-9. [PMID: 17082228 PMCID: PMC2075152 DOI: 10.1113/jphysiol.2006.123588] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During wakefulness and sleep, neurons in the neocortex emit action potentials tonically or in rhythmic bursts, respectively. However, the role of synchronized discharge patterns is largely unknown. We have recently shown that pairings of excitatory postsynaptic potentials (EPSPs) and action potential bursts or single spikes lead to long-term depression (burst-LTD) or long-term potentiation, respectively. In this study, we elucidate the cellular mechanisms of burst-LTD and characterize its functional properties. Whole-cell patch-clamp recordings were obtained from layer V pyramidal cells in somatosensory cortex of juvenile rats in vitro and composite EPSPs and EPSCs were evoked extracellularly in layers II/III. Repetitive burst-pairings led to a long-lasting depression of EPSPs and EPSCs that was blocked by inhibitors of metabotropic glutamate group 1 receptors, phospholipase C, protein kinase C (PKC) and calcium release from the endoplasmic reticulum, and that required an intact machinery for endocytosis. Thus, burst-LTD is induced via a Ca2+- and phosphatidylinositol-dependent activation of PKC and expressed through phosphorylation-triggered endocytosis of AMPA receptors. Functionally, burst-LTD is inversely related to EPSP size and bursts dominate single spikes in determining the sign of synaptic plasticity. Thus burst-firing constitutes a signal by which coincident synaptic inputs are proportionally downsized. Overall, our data thus suggest a mechanism by which synaptic weights can be reconfigured during non-rapid eye movement sleep.
Collapse
Affiliation(s)
- Antonny Czarnecki
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | | | | |
Collapse
|
18
|
Frerking M, Schulte J, Wiebe SP, Stäubli U. Spike timing in CA3 pyramidal cells during behavior: implications for synaptic transmission. J Neurophysiol 2005; 94:1528-40. [PMID: 15872069 PMCID: PMC1378104 DOI: 10.1152/jn.00108.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spike timing is thought to be an important mechanism for transmitting information in the CNS. Recent studies have emphasized millisecond precision in spike timing to allow temporal summation of rapid synaptic signals. However, spike timing over slower time scales could also be important, through mechanisms including activity-dependent synaptic plasticity or temporal summation of slow postsynaptic potentials (PSPs) such as those mediated by kainate receptors. To determine the extent to which these slower mechanisms contribute to information processing, it is first necessary to understand the properties of behaviorally relevant spike timing over this slow time scale. In this study, we examine the activity of CA3 pyramidal cells during the performance of a complex behavioral task in rats. Sustained firing rates vary over a wide range, and the firing rate of a cell is poorly correlated with the behavioral cues to which the cell responds. Nonrandom interactions between successive spikes can last for several seconds, but the nonrandom distribution of interspike intervals (ISIs) can account for the majority of nonrandom multi-spike patterns. During a stimulus, cellular responses are temporally complex, causing a shift in spike timing that favors intermediate ISIs over short and long ISIs. Response discrimination between related stimuli occurs through changes in both response time-course and response intensity. Precise synchrony between cells is limited, but loosely correlated firing between cells is common. This study indicates that spike timing is regulated over long time scales and suggests that slow synaptic mechanisms could play a substantial role in information processing in the CNS.
Collapse
Affiliation(s)
- M Frerking
- Neurological Sciences Institute, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
19
|
Pan B, Yang DW, Han TZ, Xie W. Changes in the paired-pulse ratio after long-term potentiation induced by 2- and 100-Hz tetanus in rat visual cortical slices. Brain Res 2004; 1021:146-50. [PMID: 15328043 DOI: 10.1016/j.brainres.2004.06.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2004] [Indexed: 10/26/2022]
Abstract
The effects of 2- and 100-Hz tetanus on long-term potentiation (LTP) of field potentials recorded from layers II/III and induced in layer IV in rat visual cortical slices were examined. Paired-pulse stimulation was used to probe the different mechanisms of LTP induced by 2- and 100-Hz tetanus. The paired-pulse ratio (PPR) decreased after the LTP induced by 2-Hz tetanus, with the changes in PPR being correlated with LTP amplitude. However, in the LTP induced by 100-Hz tetanus, the changes in PPR were not correlated with LTP expression. These experiments suggest that an enhanced probability of presynaptic transmitter release underlies LTP induced by 2-Hz tetanus, but not LTP induced by 100-Hz tetanus.
Collapse
Affiliation(s)
- Bin Pan
- Department of Physiology, School of Medicine, Xi'an Jiaotong University, Zhuque Dajie 205, Xi'an, Shaanxi 710061, PR China
| | | | | | | |
Collapse
|
20
|
Jiang B, Akaneya Y, Hata Y, Tsumoto T. Long-term depression is not induced by low-frequency stimulation in rat visual cortex in vivo: a possible preventing role of endogenous brain-derived neurotrophic factor. J Neurosci 2003; 23:3761-70. [PMID: 12736347 PMCID: PMC6742196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Low-frequency stimulation (LFS) at 1 Hz for 15 min is an effective protocol to induce homosynaptic long-term depression (LTD) in visual cortical slices. It is reported that LFS becomes ineffective when brain-derived neurotrophic factor (BDNF) is applied to slices. It is not known, however, whether such a protocol induces LTD in visual cortex in vivo, and whether endogenous BDNF has the same or similar action. To address these questions, we recorded field potentials of rat visual cortex evoked by stimulation of lateral geniculate nucleus, white matter, or cortical layer IV. We found that LFS did not induce LTD of cortical responses in vivo. To test the possibility that spontaneous activity from retinas would interfere with the induction of LTD, both eyes were removed or inactivated by tetrodotoxin. LTD was not induced in these conditions either. To test whether the difference in temperature between the two preparations is a factor for the discrepancy, the temperature of slices was increased from 31 to 37 degrees C. LTD was induced in slices at either temperature. Then, we hypothesized that endogenous BNDF and its receptors, TrkB, prevent the induction of LTD. To test this, we infused the cortex with an inhibitor of Trk receptor tyrosine kinases, anti-TrkB IgG1, anti-BDNF, and anti-neurotrophin 4/5 antibodies. LTD was induced when the BDNF-TrkB system was blocked. In slices, the level of phosphorylation of Trks was found to decrease with time. These results indicate that activation of TrkB signal pathway prevents LFS from inducing synaptic depression in visual cortex in vivo.
Collapse
Affiliation(s)
- Bin Jiang
- Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 Japan
| | | | | | | |
Collapse
|
21
|
Gholmieh G, Courellis S, Marmarelis V, Berger T. An efficient method for studying short-term plasticity with random impulse train stimuli. J Neurosci Methods 2002; 121:111-27. [PMID: 12468002 DOI: 10.1016/s0165-0270(02)00164-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this article, we introduce an efficient method that models quantitatively nonlinear dynamics associated with short-term plasticity (STP) in biological neural systems. It is based on the Voterra-Wiener modeling approach adapted for special stimulus/response datasets. The stimuli are random impulse trains (RITs) of fixed amplitude and Poisson distributed, variable interimpulse intervals. The class of stimuli, we use can be viewed as a hybrid between the paired impulse approach (variable interimpulse interval between two input impulses) and the fixed frequency approach (impulses repeated at fixed intervals, varying in frequency from one stimulus dataset to the next). The responses are sequences of population spike amplitudes of variable size and are assumed to be contemporaneous with the corresponding impulses in the RITs they are evoked by. The nonlinear dynamics of the mechanisms underlying STP are captured by kernels used to create compact STP models with predictive capabilities. Compared to similar methods in the literature, the method presented in this article provides a comprehensive model of STP with considerable improvement in prediction accuracy and requires shorter experimental data collection time.
Collapse
Affiliation(s)
- Ghassan Gholmieh
- Department of Biomedical Engineering, OHE-500, mc-1451, University of Southern California, Los Angeles, CA 90089-1451, USA
| | | | | | | |
Collapse
|
22
|
Abstract
The neurotrophins (NTs) have recently been shown to elicit pronounced effects on quantal neurotransmitter release at both central and peripheral nervous system synapses. Due to their activity-dependent release, as well as the subcellular localization of both protein and receptor, NTs are ideally suited to modify the strength of neuronal connections by "fine-tuning" synaptic activity through direct actions at presynaptic terminals. Here, using BDNF as a prototypical example, the authors provide an update of recent evidence demonstrating that NTs enhance quantal neurotransmitter release at synapses through presynaptic mechanisms. The authors further propose that a potential target for NT actions at presynaptic terminals is the mechanism by which terminals retrieve synaptic vesicles after exocytosis. Depending on the temporal demands placed on synapses during high-frequency synaptic transmission, synapses may use two alternative modes of synaptic vesicle retrieval, the conventional slow endosomal recycling or a faster rapid retrieval at the active zone, referred to as "kiss-and-run." By modulating Ca2+ microdomains associated with voltage-gated Ca2+ channels at active zones, NTs may elicit a switch from the slow to the fast mode of endocytosis of vesicles at presynaptic terminals during high-frequency synaptic transmission, allowing more reliable information transfer and neuronal signaling in the central nervous system.
Collapse
Affiliation(s)
- William J Tyler
- Department of Psychology, Civitan International Research Center. University of Alabama at Birmingham, Birmingham, Alabama 35294-0021, USA
| | | | | |
Collapse
|