1
|
Yaylacıoğlu Tuncay F, Reeves MJ, Yousaf S, Ullah E, Guan B, Goetz KE, Tumminia SJ, Hufnagel RB. Genotype-Phenotype Spectrum of eyeGENE Patients With Familial Exudative Vitreoretinopathy: Novel Variants in Norrin/β-Catenin Signaling Pathway Genes. Invest Ophthalmol Vis Sci 2025; 66:9. [PMID: 39903177 PMCID: PMC11801387 DOI: 10.1167/iovs.66.2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
Purpose To report the variants and genotype-phenotype correlations in patients with familial exudative vitreoretinopathy (FEVR) included in the eyeGENE database. Methods A retrospective study was conducted in a cohort of 122 eyeGENE patients from 114 families with FEVR. Clinical details and genetic test results were provided by referring clinicians and clinical laboratories in the eyeGENE network, respectively. Genotype and phenotype information was reviewed, and reported variants were reclassified. Results Genetic test reports of 50 probands revealed 52 variants in the four genes of the Norrin/β-catenin signaling pathway: LRP5, FZD4, TSPAN12, and NDP. Following variant reclassification, 35 of the reported variants were interpreted as pathogenic or likely pathogenic (12 in LRP5, 11 in FZD4, seven in TSPAN12 and five in NDP), providing a conclusive test result for nearly one-third (32%) of the probands. Among the reported variants, 18 were novel (34.6%) and two-thirds were missense. Retinal detachment was reported less in patients with variants in TSPAN12 (P = 0.017). One-third of the patients (33.3%) with an FZD4 variant had asymmetric findings. In contrast, asymmetry was less pronounced in patients with variants in TSPAN12 (11.1%). Conclusions This was one of the largest cohorts reviewed from North America, expanding the variant spectrum in FEVR. Among the eyeGENE FEVR patients, disease-associated variants in Norrin/β-catenin signaling pathway genes can explain one-third of the cohort. LRP5 and FZD4 variants were the most common. The genotype-phenotype correlations supported the phenotypic variability in FEVR.
Collapse
Affiliation(s)
- Fulya Yaylacıoğlu Tuncay
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
- Medical Biology Department, Gulhane Medical Faculty, University of Health Sciences, Ankara, Turkey
| | - Melissa J. Reeves
- Office of Data Science and Health Informatics, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sairah Yousaf
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ehsan Ullah
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Bin Guan
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kerry E. Goetz
- Office of Data Science and Health Informatics, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Santa J. Tumminia
- Office of the Director, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
- Center for Integrated Healthcare Research, Kaiser Permanente Hawaii Region, Honolulu, Hawaii, United States
| |
Collapse
|
2
|
Zheng S, Sheng R. The emerging understanding of Frizzled receptors. FEBS Lett 2024; 598:1939-1954. [PMID: 38744670 DOI: 10.1002/1873-3468.14903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
The Wnt signaling pathway is a huge network governing development and homeostasis, dysregulation of which is associated with a myriad of human diseases. The Frizzled receptor (FZD) family comprises receptors for Wnt ligands, which indispensably mediate Wnt signaling jointly with a variety of co-receptors. Studies of FZDs have revealed that 10 FZD subtypes play diverse roles in physiological processes. At the same time, dysregulation of FZDs is also responsible for various diseases, in particular human cancers. Enormous attention has been paid to the molecular understanding and targeted therapy of FZDs in the past decade. In this review, we summarize the latest research on FZD structure, function, regulation and targeted therapy, providing a basis for guiding future research in this field.
Collapse
Affiliation(s)
- Shaoqin Zheng
- College of Life and Health Science, Northeastern University, Shenyang, China
| | - Ren Sheng
- College of Life and Health Science, Northeastern University, Shenyang, China
| |
Collapse
|
3
|
Thompson MD, Percy ME, Cole DEC, Bichet DG, Hauser AS, Gorvin CM. G protein-coupled receptor (GPCR) gene variants and human genetic disease. Crit Rev Clin Lab Sci 2024; 61:317-346. [PMID: 38497103 DOI: 10.1080/10408363.2023.2286606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/28/2023] [Accepted: 11/19/2023] [Indexed: 03/19/2024]
Abstract
Genetic variations in the genes encoding G protein-coupled receptors (GPCRs) can disrupt receptor structure and function, which can result in human genetic diseases. Disease-causing mutations have been reported in at least 55 GPCRs for more than 66 monogenic diseases in humans. The spectrum of pathogenic and likely pathogenic variants includes loss of function variants that decrease receptor signaling on one extreme and gain of function that may result in biased signaling or constitutive activity, originally modeled on prototypical rhodopsin GPCR variants identified in retinitis pigmentosa, on the other. GPCR variants disrupt ligand binding, G protein coupling, accessory protein function, receptor desensitization and receptor recycling. Next generation sequencing has made it possible to identify variants of uncertain significance (VUS). We discuss variants in receptors known to result in disease and in silico strategies for disambiguation of VUS such as sorting intolerant from tolerant and polymorphism phenotyping. Modeling of variants has contributed to drug development and precision medicine, including drugs that target the melanocortin receptor in obesity and interventions that reverse loss of gonadotropin-releasing hormone receptor from the cell surface in idiopathic hypogonadotropic hypogonadism. Activating and inactivating variants of the calcium sensing receptor (CaSR) gene that are pathogenic in familial hypocalciuric hypercalcemia and autosomal dominant hypocalcemia have enabled the development of calcimimetics and calcilytics. Next generation sequencing has continued to identify variants in GPCR genes, including orphan receptors, that contribute to human phenotypes and may have therapeutic potential. Variants of the CaSR gene, some encoding an arginine-rich region that promotes receptor phosphorylation and intracellular retention, have been linked to an idiopathic epilepsy syndrome. Agnostic strategies have identified variants of the pyroglutamylated RF amide peptide receptor gene in intellectual disability and G protein-coupled receptor 39 identified in psoriatic arthropathy. Coding variants of the G protein-coupled receptor L1 (GPR37L1) orphan receptor gene have been identified in a rare familial progressive myoclonus epilepsy. The study of the role of GPCR variants in monogenic, Mendelian phenotypes has provided the basis of modeling the significance of more common variants of pharmacogenetic significance.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, ON, Canada
| | - Maire E Percy
- Departments of Physiology and Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada
| | - David E C Cole
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Daniel G Bichet
- Department of Physiology and Medicine, Hôpital du Sacré-Coeur, Université de Montréal, QC, Canada
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
4
|
Ma X, Guo J, Fu Y, Shen C, Jiang P, Zhang Y, Zhang L, Yu Y, Fan J, Chai R. G protein-coupled receptors in cochlea: Potential therapeutic targets for hearing loss. Front Mol Neurosci 2022; 15:1028125. [PMID: 36311029 PMCID: PMC9596917 DOI: 10.3389/fnmol.2022.1028125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
The prevalence of hearing loss-related diseases caused by different factors is increasing worldwide year by year. Currently, however, the patient’s hearing loss has not been effectively improved. Therefore, there is an urgent need to adopt new treatment measures and treatment techniques to help improve the therapeutic effect of hearing loss. G protein-coupled receptors (GPCRs), as crucial cell surface receptors, can widely participate in different physiological and pathological processes, particularly play an essential role in many disease occurrences and be served as promising therapeutic targets. However, no specific drugs on the market have been found to target the GPCRs of the cochlea. Interestingly, many recent studies have demonstrated that GPCRs can participate in various pathogenic process related to hearing loss in the cochlea including heredity, noise, ototoxic drugs, cochlear structure, and so on. In this review, we comprehensively summarize the functions of 53 GPCRs known in the cochlea and their relationships with hearing loss, and highlight the recent advances of new techniques used in cochlear study including cryo-EM, AI, GPCR drug screening, gene therapy vectors, and CRISPR editing technology, as well as discuss in depth the future direction of novel GPCR-based drug development and gene therapy for cochlear hearing loss. Collectively, this review is to facilitate basic and (pre-) clinical research in this area, and provide beneficial help for emerging GPCR-based cochlear therapies.
Collapse
Affiliation(s)
- Xiangyu Ma
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Jiamin Guo
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yaoyang Fu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cangsong Shen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Jiang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yuan Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Lei Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yafeng Yu
- First Affiliated Hospital of Soochow University, Soochow, China
- *Correspondence: Yafeng Yu,
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Jiangang Fan,
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Renjie Chai,
| |
Collapse
|
5
|
Zhang Z, Chai R. Hear the sounds: The role of G Protein-Coupled Receptors in the cochlea. Am J Physiol Cell Physiol 2022; 323:C1088-C1099. [PMID: 35938679 DOI: 10.1152/ajpcell.00453.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sound is converted by hair cells in the cochlea into electrical signals, which are transmitted by spiral ganglion neurons (SGNs) and heard by the auditory cortex. G protein-coupled receptors (GPCRs) are crucial receptors that regulate a wide range of physiological functions in different organ and tissues. The research of GPCRs in the cochlea is essential for the understanding of the cochlea development, hearing disorders, and the treatment for hearing loss. Recently, several GPCRs have been found to play important roles in the cochlea. Frizzleds and Lgrs are dominant GPCRs that regulate stem cell self-renew abilities. Moreover, Frizzleds and Celsrs have been demonstrated to play core roles in the modulation of cochlear planar cell polarity (PCP). In addition, hearing loss can be caused by mutations of certain GPCRs, such as Vlgr1, Gpr156, S1P2 and Gpr126. And A1, A2A and CB2 activation by agonists have protective functions on noise- or drug-induced hearing loss. Here, we review the key findings of GPCR in the cochlea, and discuss the role of GPCR in the cochlea, such as stem cell fate, PCP, hearing loss, and hearing protection.
Collapse
Affiliation(s)
- Zhong Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| |
Collapse
|
6
|
Dysregulated genomic and coding-transcriptomic factors in retinopathy of prematurity. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
The expression profile of WNT/β-catanin signalling genes in human oocytes obtained from polycystic ovarian syndrome (PCOS) patients. ZYGOTE 2022; 30:536-542. [PMID: 35357301 DOI: 10.1017/s0967199422000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is a chronic hormonal turmoil that is demonstrated in 2.2-27% of women of pre-menopausal age. This disease is a complex multigenic disorder that results from the interaction between excess androgen expression, genetic susceptibility and environmental influences. PCOS is associated with 40% of female infertility and endometrial cancer. The WNT/β-catenin signalling transduction pathway regulates aspects of cell proliferation, migration and cell fate determination in the tissue along with early embryonic development and controls the proper activation of the female reproductive system, along with regulating hormonal activity in ovarian granulosa cells. In the current study, we investigated the expression profiles of WNT/β-catenin signalling pathway genes (AXIN2, FZD4, TCF4, WNT3, WNT4, WNT5A, WNT7A, WNT1, APC, GSK3B and β-catenin) in a total of 13 oocyte samples. Seven of these samples were from polycystic women and six were from healthy women. The results of this study displayed the absence of expression of AXIN2, FZD4, TCF4, WNT5A, WNT3, WNT4 and WNT7A genes in ovaries from women with PCOS and from healthy women. While APC and β-catenin expression levels were similar in the oocytes of both patients and controls, conversely, WNT1 and GSK3β genes both showed elevated expression in the oocytes of patients with PCOS, therefore suggesting an association between aberrant expression of WNT1 and GSK3β and the pathogenesis of PCOS. The observations of the current study could be helpful to provide evidence regarding the pathogenesis of PCOS and its treatment.
Collapse
|
8
|
Targeting GPCRs and Their Signaling as a Therapeutic Option in Melanoma. Cancers (Basel) 2022; 14:cancers14030706. [PMID: 35158973 PMCID: PMC8833576 DOI: 10.3390/cancers14030706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Sixteen G-protein-coupled receptors (GPCRs) have been involved in melanogenesis or melanomagenesis. Here, we review these GPCRs, their associated signaling, and therapies. Abstract G-protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G-proteins, which induce cellular signaling through various pathways. Such signaling modulates numerous essential cellular processes that occur during melanomagenesis, including proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden melanoma treatment options in the future.
Collapse
|
9
|
Planar cell polarity (PCP) proteins support spermatogenesis through cytoskeletal organization in the testis. Semin Cell Dev Biol 2021; 121:99-113. [PMID: 34059418 DOI: 10.1016/j.semcdb.2021.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022]
Abstract
Few reports are found in the literature regarding the role of planar cell polarity (PCP) in supporting spermatogenesis in the testis. Yet morphological studies reported decades earlier have illustrated the directional alignment of polarized developing spermatids, most notably step 17-19 spermatids in stage V-early VIII tubules in the testis, across the plane of the epithelium in seminiferous tubules of adult rats. Such morphological features have unequivocally demonstrated the presence of PCP in developing spermatids, analogous to the PCP noted in hair cells of the cochlea in mammals. Emerging evidence in recent years has shown that Sertoli and germ cells express numerous PCP proteins, mostly notably, the core PCP proteins, PCP effectors and PCP signaling proteins. In this review, we discuss recent findings in the field regarding the two core PCP protein complexes, namely the Van Gogh-like 2 (Vangl2)/Prickle (Pk) complex and the Frizzled (Fzd)/Dishevelled (Dvl) complex. These findings have illustrated that these PCP proteins exert their regulatory role to support spermatogenesis through changes in the organization of actin and microtubule (MT) cytoskeletons in Sertoli cells. For instance, these PCP proteins confer PCP to developing spermatids. As such, developing haploid spermatids can be aligned and orderly packed within the limited space of the seminiferous tubules in the testes for the production of sperm via spermatogenesis. Thus, each adult male in the mouse, rat or human can produce an upward of 30, 50 or 300 million spermatozoa on a daily basis, respectively, throughout the adulthood. We also highlight critical areas of research that deserve attention in future studies. We also provide a hypothetical model by which PCP proteins support spermatogenesis based on recent studies in the testis. It is conceivable that the hypothetical model shown here will be updated as more data become available in future years, but this information can serve as the framework by investigators to unravel the role of PCP in spermatogenesis.
Collapse
|
10
|
Zhang Y, Bailey D, Yang P, Kim E, Que J. The development and stem cells of the esophagus. Development 2021; 148:148/6/dev193839. [PMID: 33782045 PMCID: PMC8034879 DOI: 10.1242/dev.193839] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The esophagus is derived from the anterior portion of the foregut endoderm, which also gives rise to the respiratory system. As it develops, the esophageal lining is transformed from a simple columnar epithelium into a stratified squamous cell layer, accompanied by the replacement of unspecified mesenchyme with layers of muscle cells. Studies in animal models have provided significant insights into the roles of various signaling pathways in esophageal development. More recent studies using human pluripotent stem cells (hPSCs) further demonstrate that some of these signaling pathways are conserved in human esophageal development. In addition, a combination of mouse genetics and hPSC differentiation approaches have uncovered new players that control esophageal morphogenesis. In this Review, we summarize these new findings and discuss how the esophagus is established and matures throughout different stages, including its initial specification, respiratory-esophageal separation, epithelial morphogenesis and maintenance. We also discuss esophageal muscular development and enteric nervous system innervation, which are essential for esophageal structure and function.
Collapse
Affiliation(s)
- Yongchun Zhang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China,Authors for correspondence (; )
| | - Dominique Bailey
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Patrick Yang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Eugene Kim
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Authors for correspondence (; )
| |
Collapse
|
11
|
Floriot S, Duchesne A, Grohs C, Hozé C, Deloche MC, Fayolle G, Vilotte JL, Boichard D, Fritz S, Boussaha M. A missense mutation in the FZD7 gene is associated with dilution of the red areas of the coat in Montbéliarde cattle. Anim Genet 2021; 52:351-355. [PMID: 33686687 DOI: 10.1111/age.13055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
Recently, a new genetically autosomal recessive color phenotype emerged in the red pied bovine Montbéliarde breed. It is characterized by a dilution of the red areas of the coat and was denominated 'milca'. A genome-wide homozygosity scan of 106 cases followed by haplotype analysis revealed a candidate region within BTA2 between positions 89.95 and 91.63 Mb. Analysis of whole-genome sequence data generated from milca animals identified a strong candidate variant within the coding region of the Frizzled-7 gene (FZD7). This gene encodes for a G-protein coupled receptor for Wnt signaling proteins. The variant induces a glycine to alanine substitution in the second extracellular loop, p.(Gly414Ala). Cross-species amino acid alignments revealed that this glycine is conserved among orthologs and most paralogs, suggesting that it plays an important role in FZD function. In addition, genotyping data revealed that the mutant allele is restricted to the Montbéliarde breed, at a 3.7% frequency. All homozygous cows for the mutant allele exhibited the milca phenotype whereas all heterozygotes had no coat color defects. In conclusion, this study strongly suggests that, in cattle, a mutation of FZD7 alone is sufficient to cause a coat color phenotype without any strong other adverse effect.
Collapse
Affiliation(s)
- S Floriot
- INRAE, AgroParisTech, Université Paris-Saclay, GABI, Jouy-en-Josas, 78350, France
| | - A Duchesne
- INRAE, AgroParisTech, Université Paris-Saclay, GABI, Jouy-en-Josas, 78350, France
| | - C Grohs
- INRAE, AgroParisTech, Université Paris-Saclay, GABI, Jouy-en-Josas, 78350, France
| | - C Hozé
- INRAE, AgroParisTech, Université Paris-Saclay, GABI, Jouy-en-Josas, 78350, France.,Allice, Paris, 75595, France
| | | | | | - J L Vilotte
- INRAE, AgroParisTech, Université Paris-Saclay, GABI, Jouy-en-Josas, 78350, France
| | - D Boichard
- INRAE, AgroParisTech, Université Paris-Saclay, GABI, Jouy-en-Josas, 78350, France
| | - S Fritz
- INRAE, AgroParisTech, Université Paris-Saclay, GABI, Jouy-en-Josas, 78350, France.,Allice, Paris, 75595, France
| | - M Boussaha
- INRAE, AgroParisTech, Université Paris-Saclay, GABI, Jouy-en-Josas, 78350, France
| |
Collapse
|
12
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2020; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
13
|
Kushwaha P, Kim S, Foxa GE, Michalski MN, Williams BO, Tomlinson RE, Riddle RC. Frizzled-4 is required for normal bone acquisition despite compensation by Frizzled-8. J Cell Physiol 2020; 235:6673-6683. [PMID: 31985040 DOI: 10.1002/jcp.29563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/10/2020] [Indexed: 12/20/2022]
Abstract
The activation of the Wnt/β-catenin signaling pathway is critical for skeletal development but surprisingly little is known about the requirements for the specific frizzled (Fzd) receptors that recognize Wnt ligands. To define the contributions of individual Fzd proteins to osteoblast function, we profiled the expression of all 10 mammalian receptors during calvarial osteoblast differentiation. Expression of Fzd4 was highly upregulated during in vitro differentiation and therefore targeted for further study. Mice lacking Fzd4 in mature osteoblasts had normal cortical bone structure but reduced cortical tissue mineral density and also exhibited an impairment in the femoral trabecular bone acquisition that was secondary to a defect in the mineralization process. Consistent with this observation, matrix mineralization, markers of osteoblastic differentiation, and the ability of Wnt3a to stimulate the accumulation of β-catenin were reduced in cultures of calvarial osteoblasts deficient for Fzd4. Interestingly, Fzd4-deficient osteoblasts exhibited an increase in the expression of Fzd8 both in vitro and in vivo, which suggests that the two receptors may exhibit overlapping functions. Indeed, ablating a single Fzd8 allele in osteoblast-specific Fzd4 mutants produced a more severe effect on bone acquisition. Taken together, our data indicate that Fzd4 is required for normal bone development and mineralization despite compensation from Fzd8.
Collapse
Affiliation(s)
- Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Soohyun Kim
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gabrielle E Foxa
- Program for Skeletal Disease and Tumor Microenvironment and Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Megan N Michalski
- Program for Skeletal Disease and Tumor Microenvironment and Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Bart O Williams
- Program for Skeletal Disease and Tumor Microenvironment and Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Ryan E Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| |
Collapse
|
14
|
Inoue SI, Takahara S, Yoshikawa T, Niihori T, Yanai K, Matsubara Y, Aoki Y. Activated Braf induces esophageal dilation and gastric epithelial hyperplasia in mice. Hum Mol Genet 2018; 26:4715-4727. [PMID: 28973166 DOI: 10.1093/hmg/ddx354] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022] Open
Abstract
Germline mutations in BRAF are a major cause of cardio-facio-cutaneous (CFC) syndrome, which is characterized by heart defects, characteristic craniofacial dysmorphology and dermatologic abnormalities. Patients with CFC syndrome also commonly show gastrointestinal dysfunction, including feeding and swallowing difficulties and gastroesophageal reflux. We have previously found that knock-in mice expressing a Braf Q241R mutation exhibit CFC syndrome-related phenotypes, such as growth retardation, craniofacial dysmorphisms, congenital heart defects and learning deficits. However, it remains unclear whether BrafQ241R/+ mice exhibit gastrointestinal dysfunction. Here, we report that BrafQ241R/+ mice have neonatal feeding difficulties and esophageal dilation. The esophagus tissues from BrafQ241R/+ mice displayed incomplete replacement of smooth muscle with skeletal muscle and decreased contraction. Furthermore, the BrafQ241R/+ mice showed hyperkeratosis and a thickened muscle layer in the forestomach. Treatment with MEK inhibitors ameliorated the growth retardation, esophageal dilation, hyperkeratosis and thickened muscle layer in the forestomach in BrafQ241R/+ mice. The esophageal dilation with aberrant skeletal-smooth muscle boundary in BrafQ241R/+ mice were recovered after treatment with the histone H3K27 demethylase inhibitor GSK-J4. Our results provide clues to elucidate the pathogenesis and possible treatment of gastrointestinal dysfunction and failure to thrive in patients with CFC syndrome.
Collapse
Affiliation(s)
| | - Shingo Takahara
- Department of Medical Genetics.,Department of Cardiovascular Surgery
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| | | | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| | - Yoichi Matsubara
- Department of Medical Genetics.,National Research Institute for Child Health and Development, Tokyo, Japan
| | | |
Collapse
|
15
|
TSPAN12 Is a Norrin Co-receptor that Amplifies Frizzled4 Ligand Selectivity and Signaling. Cell Rep 2018; 19:2809-2822. [PMID: 28658627 DOI: 10.1016/j.celrep.2017.06.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 03/29/2017] [Accepted: 05/27/2017] [Indexed: 11/23/2022] Open
Abstract
Accessory proteins in Frizzled (FZD) receptor complexes are thought to determine ligand selectivity and signaling amplitude. Genetic evidence indicates that specific combinations of accessory proteins and ligands mediate vascular β-catenin signaling in different CNS structures. In the retina, the tetraspanin TSPAN12 and the ligand norrin (NDP) mediate angiogenesis, and both genes are linked to familial exudative vitreoretinopathy (FEVR), yet the molecular function of TSPAN12 remains poorly understood. Here, we report that TSPAN12 is an essential component of the NDP receptor complex and interacts with FZD4 and NDP via its extracellular loops, consistent with an action as co-receptor that enhances FZD4 ligand selectivity for NDP. FEVR-linked mutations in TSPAN12 prevent the incorporation of TSPAN12 into the NDP receptor complex. In vitro and in Xenopus embryos, TSPAN12 alleviates defects of FZD4 M105V, a mutation that destabilizes the NDP/FZD4 interaction. This study sheds light on the poorly understood function of accessory proteins in FZD signaling.
Collapse
|
16
|
Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev 2018; 70:68-141. [PMID: 29247129 PMCID: PMC6040091 DOI: 10.1124/pr.117.013896] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
WNT signaling is an elaborate and complex collection of signal transduction pathways mediated by multiple signaling molecules. WNT signaling is critically important for developmental processes, including cell proliferation, differentiation and tissue patterning. Little WNT signaling activity is present in the cardiovascular system of healthy adults, but reactivation of the pathway is observed in many pathologies of heart and blood vessels. The high prevalence of these pathologies and their significant contribution to human disease burden has raised interest in WNT signaling as a potential target for therapeutic intervention. In this review, we first will focus on the constituents of the pathway and their regulation and the different signaling routes. Subsequently, the role of WNT signaling in cardiovascular development is addressed, followed by a detailed discussion of its involvement in vascular and cardiac disease. After highlighting the crosstalk between WNT, transforming growth factor-β and angiotensin II signaling, and the emerging role of WNT signaling in the regulation of stem cells, we provide an overview of drugs targeting the pathway at different levels. From the combined studies we conclude that, despite the sometimes conflicting experimental data, a general picture is emerging that excessive stimulation of WNT signaling adversely affects cardiovascular pathology. The rapidly increasing collection of drugs interfering at different levels of WNT signaling will allow the evaluation of therapeutic interventions in the pathway in relevant animal models of cardiovascular diseases and eventually in patients in the near future, translating the outcomes of the many preclinical studies into a clinically relevant context.
Collapse
Affiliation(s)
- Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Evangelos P Daskalopoulos
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Gentian Lluri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Arjun Deb
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| |
Collapse
|
17
|
Ferrari ME, Bernis ME, McLeod F, Podpolny M, Coullery RP, Casadei IM, Salinas PC, Rosso SB. Wnt7b through Frizzled-7 receptor promotes dendrite development by coactivation of CaMKII and JNK. J Cell Sci 2018; 131:jcs.216101. [DOI: 10.1242/jcs.216101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/29/2018] [Indexed: 01/26/2023] Open
Abstract
The formation of complex dendritic arbors is crucial for the assembly of functional networks as abnormal dendrite formation underlies several neurodevelopmental and psychiatric disorders. Many extracellular factors have been postulated as regulators of dendritic growth. Wnt proteins play a critical role in neuronal development and circuit formation. We previously demonstrated that Wnt7b acts through the scaffold protein Dishevelled (Dvl) to modulate dendrite arborization by activating a Wnt non-canonical signalling pathway. Here, we identify the seven-transmembrane Frizzled-7 (Fz7) as the receptor for Wnt7b-mediated dendrite growth and complexity. Importantly, Fz7 is developmentally regulated in the intact hippocampus localised along neurites and at dendritic growth cones, suggesting a role in dendrite formation and maturation. Fz7 loss of function studies demonstrated that Wnt7b requires Fz7 to promote dendritic arborisation. Moreover, in vivo Fz7 loss of function results in dendritic defects in the intact mouse hippocampus. Furthermore, our findings revealed that Wnt7b and Fz7 induce the phosphorylation of CaMKII and JNK, which are required for dendritic development. Here we demonstrate that Wnt7b-Fz7 signals through two Wnt non-canonical pathways to modulate dendritic growth and complexity.
Collapse
Affiliation(s)
- María E. Ferrari
- Laboratorio de Toxicología Experimental. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María E. Bernis
- Departamento de Química Biológica-CIQUIBIC, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba-CONICET, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Faye McLeod
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Marina Podpolny
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Romina P. Coullery
- Laboratorio de Toxicología Experimental. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Inelia M. Casadei
- Laboratorio de Toxicología Experimental. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Patricia C. Salinas
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Silvana B. Rosso
- Laboratorio de Toxicología Experimental. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
18
|
Panagiotou ES, Sanjurjo Soriano C, Poulter JA, Lord EC, Dzulova D, Kondo H, Hiyoshi A, Chung BHY, Chu YWY, Lai CH, Tafoya ME, Karjosukarso D, Collin RW, Topping J, Downey LM, Ali M, Inglehearn CF, Toomes C. Defects in the Cell Signaling Mediator β-Catenin Cause the Retinal Vascular Condition FEVR. Am J Hum Genet 2017; 100:960-968. [PMID: 28575650 DOI: 10.1016/j.ajhg.2017.05.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/03/2017] [Indexed: 12/30/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is an inherited blinding disorder characterized by the abnormal development of the retinal vasculature. The majority of mutations identified in FEVR are found within four genes that encode the receptor complex (FZD4, LRP5, and TSPAN12) and ligand (NDP) of a molecular pathway that controls angiogenesis, the Norrin-β-catenin signaling pathway. However, half of all FEVR-affected case subjects do not harbor mutations in these genes, indicating that further mutated genes remain to be identified. Here we report the identification of mutations in CTNNB1, the gene encoding β-catenin, as a cause of FEVR. We describe heterozygous mutations (c.2142_2157dup [p.His720∗] and c.2128C>T [p.Arg710Cys]) in two dominant FEVR-affected families and a de novo mutation (c.1434_1435insC [p.Glu479Argfs∗18]) in a simplex case subject. Previous studies have reported heterozygous de novo CTNNB1 mutations as a cause of syndromic intellectual disability (ID) and autism spectrum disorder, and somatic mutations are linked to many cancers. However, in this study we show that Mendelian inherited CTNNB1 mutations can cause non-syndromic FEVR and that FEVR can be a part of the syndromic ID phenotype, further establishing the role that β-catenin signaling plays in the development of the retinal vasculature.
Collapse
|
19
|
Zhang Y, Jiang M, Kim E, Lin S, Liu K, Lan X, Que J. Development and stem cells of the esophagus. Semin Cell Dev Biol 2016; 66:25-35. [PMID: 28007661 DOI: 10.1016/j.semcdb.2016.12.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 02/07/2023]
Abstract
The esophagus is derived from the anterior portion of the developmental intermediate foregut, a structure that also gives rise to other organs including the trachea, lung, and stomach. Genetic studies have shown that multiple signaling pathways (e.g. Bmp) and transcription factors (e.g. SOX2) are required for the separation of the esophagus from the neighboring respiratory system. Notably, some of these signaling pathways and transcription factors continue to play essential roles in the subsequent morphogenesis of the esophageal epithelium which undergoes a simple columnar-to-stratified squamous conversion. Reactivation of the relevant signaling pathways has also been associated with pathogenesis of esophageal diseases that affect the epithelium and its stem cells in adults. In this review we will summarize these findings. We will also discuss new data regarding the cell-of-origin for the striated and smooth muscles surrounding the esophagus and how they are differentiated from the mesenchyme during development.
Collapse
Affiliation(s)
- Yongchun Zhang
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA
| | - Ming Jiang
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA
| | - Eugene Kim
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA
| | - Sijie Lin
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA
| | - Kuancan Liu
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA; Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian 350025, PR China
| | - Xiaopeng Lan
- Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian 350025, PR China
| | - Jianwen Que
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA.
| |
Collapse
|
20
|
Bassett EA, Tokarew N, Allemano EA, Mazerolle C, Morin K, Mears AJ, McNeill B, Ringuette R, Campbell C, Smiley S, Pokrajac NT, Dubuc AM, Ramaswamy V, Northcott PA, Remke M, Monnier PP, Potter D, Paes K, Kirkpatrick LL, Coker KJ, Rice DS, Perez-Iratxeta C, Taylor MD, Wallace VA. Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. eLife 2016; 5. [PMID: 27823583 PMCID: PMC5100999 DOI: 10.7554/elife.16764] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/07/2016] [Indexed: 12/25/2022] Open
Abstract
The tumor microenvironment is a critical modulator of carcinogenesis; however, in many tumor types, the influence of the stroma during preneoplastic stages is unknown. Here we explored the relationship between pre-tumor cells and their surrounding stroma in malignant progression of the cerebellar tumor medulloblastoma (MB). We show that activation of the vascular regulatory signalling axis mediated by Norrin (an atypical Wnt)/Frizzled4 (Fzd4) inhibits MB initiation in the Ptch+/− mouse model. Loss of Norrin/Fzd4-mediated signalling in endothelial cells, either genetically or by short-term blockade, increases the frequency of pre-tumor lesions and creates a tumor-permissive microenvironment at the earliest, preneoplastic stages of MB. This pro-tumor stroma, characterized by angiogenic remodelling, is associated with an accelerated transition from preneoplasia to malignancy. These data expose a stromal component that regulates the earliest stages of tumorigenesis in the cerebellum, and a novel role for the Norrin/Fzd4 axis as an endogenous anti-tumor signal in the preneoplastic niche. DOI:http://dx.doi.org/10.7554/eLife.16764.001
Collapse
Affiliation(s)
- Erin A Bassett
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Nicholas Tokarew
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Ema A Allemano
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Chantal Mazerolle
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Katy Morin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Alan J Mears
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Brian McNeill
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Randy Ringuette
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Charles Campbell
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Sheila Smiley
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Neno T Pokrajac
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Adrian M Dubuc
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Developmental and Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Vijay Ramaswamy
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Developmental and Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Paul A Northcott
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Developmental and Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Marc Remke
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Developmental and Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Philippe P Monnier
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - David Potter
- Department of Ophthalmology, Lexicon Pharmaceuticals Inc., The Woodlands, United States
| | - Kim Paes
- Department of Ophthalmology, Lexicon Pharmaceuticals Inc., The Woodlands, United States
| | - Laura L Kirkpatrick
- Department of Ophthalmology, Lexicon Pharmaceuticals Inc., The Woodlands, United States
| | - Kenneth J Coker
- Department of Ophthalmology, Lexicon Pharmaceuticals Inc., The Woodlands, United States
| | - Dennis S Rice
- Department of Ophthalmology, Lexicon Pharmaceuticals Inc., The Woodlands, United States
| | - Carol Perez-Iratxeta
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Michael D Taylor
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Developmental and Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Valerie A Wallace
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Krauss RS, Chihara D, Romer AI. Embracing change: striated-for-smooth muscle replacement in esophagus development. Skelet Muscle 2016; 6:27. [PMID: 27504178 PMCID: PMC4976477 DOI: 10.1186/s13395-016-0099-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022] Open
Abstract
The esophagus functions to transport food from the oropharyngeal region to the stomach via waves of peristalsis and transient relaxation of the lower esophageal sphincter. The gastrointestinal tract, including the esophagus, is ensheathed by the muscularis externa (ME). However, while the ME of the gastrointestinal tract distal to the esophagus is exclusively smooth muscle, the esophageal ME of many vertebrate species comprises a variable amount of striated muscle. The esophageal ME is initially composed only of smooth muscle, but its developmental maturation involves proximal-to-distal replacement of smooth muscle with striated muscle. This fascinating phenomenon raises two important questions: what is the developmental origin of the striated muscle precursor cells, and what are the cellular and morphogenetic mechanisms underlying the process? Studies addressing these questions have provided controversial answers. In this review, we discuss the development of ideas in this area and recent work that has shed light on these issues. A working model has emerged that should permit deeper understanding of the role of ME development and maturation in esophageal disorders and in the functional and evolutionary underpinnings of the variable degree of esophageal striated myogenesis in vertebrate species.
Collapse
Affiliation(s)
- Robert S Krauss
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY 10029 USA
| | - Daisuke Chihara
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY 10029 USA
| | - Anthony I Romer
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY 10029 USA ; Present address: Department of Genetics and Development, Columbia University, 701 West 168th Street, HHSC 1602, New York, NY 10032 USA
| |
Collapse
|
22
|
Ngo MH, Borowska-Fielding J, Heathcote G, Nejat S, Kelly ME, McMaster CR, Robitaille JM. Fzd4 Haploinsufficiency Delays Retinal Revascularization in the Mouse Model of Oxygen Induced Retinopathy. PLoS One 2016; 11:e0158320. [PMID: 27489958 PMCID: PMC4973993 DOI: 10.1371/journal.pone.0158320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022] Open
Abstract
Mutations in genes that code for components of the Norrin-FZD4 ligand-receptor complex cause the inherited childhood blinding disorder familial exudative vitreoretinopathy (FEVR). Statistical evidence from studies of patients at risk for the acquired disease retinopathy of prematurity (ROP) suggest that rare polymorphisms in these same genes increase the risk of developing severe ROP, implying that decreased Norrin-FZD4 activity predisposes patients to more severe ROP. To test this hypothesis, we measured the development and recovery of retinopathy in wild type and Fzd4 heterozygous mice in the absence or presence of ocular ischemic retinopathy (OIR) treatment. Avascular and total retinal vascular areas and patterning were determined, and vessel number and caliber were quantified. In room air, there was a small delay in retinal vascularization in Fzd4 heterozygous mice that resolved as mice reached maturity suggestive of a slight defect in retinal vascular development. Subsequent to OIR treatment there was no difference between wild type and Fzd4 heterozygous mice in the vaso-obliterated area following exposure to high oxygen. Importantly, after return of Fzd4 heterozygous mice to room air subsequent to OIR treatment, there was a substantial delay in retinal revascularization of the avascular area surrounding the optic nerve, as well as delayed vascularization toward the periphery of the retina. Our study demonstrates that a small decrease in Norrin-Fzd4 dependent retinal vascular development lengthens the period during which complications from OIR could occur.
Collapse
Affiliation(s)
- Michael H. Ngo
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | | | - Godfrey Heathcote
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
| | - Sara Nejat
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Melanie E. Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
| | | | - Johane M. Robitaille
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
23
|
Lynch JR, Wang JY. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer. Int J Mol Sci 2016; 17:ijms17050707. [PMID: 27187360 PMCID: PMC4881529 DOI: 10.3390/ijms17050707] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/28/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies.
Collapse
Affiliation(s)
- Jennifer R Lynch
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jenny Yingzi Wang
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
- Centre for Childhood Cancer Research, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
24
|
Abstract
Frizzled proteins are the principal receptors for the Wnt family of ligands. They mediate canonical Wnt signaling together with Lrp5 and Lrp6 coreceptors. In conjunction with Celsr, Vangl, and a small number of additional membrane and membrane-associated proteins, they also play a central role in tissue polarity/planar cell polarity (PCP) signaling. Targeted mutations in 9 of the 10 mammalian Frizzled genes have revealed their roles in an extraordinarily diverse set of developmental and homeostatic processes, including morphogenetic movements responsible for palate, ventricular septum, ocular furrow, and neural tube closure; survival of thalamic neurons; bone formation; central nervous system (CNS) angiogenesis and blood-brain barrier formation and maintenance; and a wide variety of processes that orient subcellular, cellular, and multicellular structures relative to the body axes. The last group likely reflects the mammalian equivalent of tissue polarity/PCP signaling, as defined in Drosophila, and it includes CNS axon guidance, hair follicle and tongue papilla orientation, and inner ear sensory hair bundle orientation. Frizzled receptors are ubiquitous among multicellular animals and, with other signaling molecules, they very likely evolved to permit the development of the complex tissue architectures that provide multicellular animals with their enormous selective advantage.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Chang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
25
|
Expression of the Wnt Receptor Frizzled-4 in the Human Enteric Nervous System of Infants. Stem Cells Int 2015; 2016:9076823. [PMID: 26697080 PMCID: PMC4677256 DOI: 10.1155/2016/9076823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/12/2015] [Indexed: 12/22/2022] Open
Abstract
The Wnt signalling pathway plays a crucial role in the development of the nervous system. This signalling cascade is initiated upon binding of the secreted Wnt ligand to a member of the family of frizzled receptors. In the present study, we analysed the presence of frizzled-4 in the enteric nervous system of human infants. Frizzled-4 could be identified by immunohistochemistry in a subpopulation of enteric neuronal and glial cells in the small and large intestine. Detection of frizzled-4 in the tunica muscularis by RT-PCR confirmed this receptor's expression on the mRNA level. Interestingly, we observed distinct cell populations that co-expressed frizzled-4 with the intermediate filament protein nestin and the neurotrophin receptor p75NTR, which have been reported to be expressed in neural progenitor cells. Flow cytometry analysis revealed that 60% of p75NTR positive cells of the tunica muscularis were positive for frizzled-4. Additionally, in pathological samples of Hirschsprung's disease, the expression of this Wnt receptor correlated with the number of myenteric ganglion cells and decreased from normoganglionic to aganglionic areas of large intestine. The expression pattern of frizzled-4 indicates that this Wnt receptor could be involved in postnatal development and/or function of the enteric nervous system.
Collapse
|
26
|
Zhou Y, Nathans J. Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling. Dev Cell 2014; 31:248-56. [PMID: 25373781 DOI: 10.1016/j.devcel.2014.08.018] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 06/30/2014] [Accepted: 08/20/2014] [Indexed: 01/12/2023]
Abstract
Canonical Wnt signaling in endothelial cells (ECs) is required for vascularization of the central nervous system (CNS) and for formation and maintenance of barrier properties unique to CNS vasculature. Gpr124 is an orphan member of the adhesion G protein-coupled receptor family that is expressed in ECs and is essential for CNS angiogenesis and barrier formation via an unknown mechanism. Using canonical Wnt signaling assays in cell culture and genetic loss- and gain-of-function experiments in mice, we show that Gpr124 functions as a coactivator of Wnt7a- and Wnt7b-stimulated canonical Wnt signaling via a Frizzled receptor and Lrp coreceptor and that Gpr124-stimulated signaling functions in concert with Norrin/Frizzled4 signaling to control CNS vascular development. These experiments identify Gpr124 as a ligand-specific coactivator of canonical Wnt signaling.
Collapse
Affiliation(s)
- Yulian Zhou
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Noe E, Tabeling C, Doehn JM, Naujoks J, Opitz B, Hippenstiel S, Witzenrath M, Klopfleisch R. Juvenile megaesophagus in PKCα-deficient mice is associated with an increase in the segment of the distal esophagus lined by smooth muscle cells. Ann Anat 2014; 196:365-71. [DOI: 10.1016/j.aanat.2014.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 12/29/2022]
|
28
|
Weiner L, Fu W, Chirico WJ, Brissette JL. Skin as a living coloring book: how epithelial cells create patterns of pigmentation. Pigment Cell Melanoma Res 2014; 27:1014-31. [PMID: 25104547 DOI: 10.1111/pcmr.12301] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/05/2014] [Indexed: 12/23/2022]
Abstract
The pigmentation of mammalian skin and hair develops through the interaction of two basic cell types - pigment donors and recipients. The pigment donors are melanocytes, which produce and distribute melanin through specialized structures. The pigment recipients are epithelial cells, which acquire melanin and put it to use, collectively yielding the pigmentation visible to the eye. This review will focus on the pigment recipients, the historically less understood cell type. These end-users of pigment are now known to exert a specialized control over the patterning of pigmentation, as they identify themselves as melanocyte targets, recruit pigment donors, and stimulate the transfer of melanin. As such, this review will discuss the evidence that the skin is like a coloring book: the pigment recipients create a 'picture,' a blueprint for pigmentation, which is colorless initially but outlines where pigment should be placed. Melanocytes then melanize the recipients and 'color in' the picture.
Collapse
Affiliation(s)
- Lorin Weiner
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | | | | | | |
Collapse
|
29
|
Zhou Y, Wang Y, Tischfield M, Williams J, Smallwood PM, Rattner A, Taketo MM, Nathans J. Canonical WNT signaling components in vascular development and barrier formation. J Clin Invest 2014; 124:3825-46. [PMID: 25083995 DOI: 10.1172/jci76431] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/12/2014] [Indexed: 01/10/2023] Open
Abstract
Canonical WNT signaling is required for proper vascularization of the CNS during embryonic development. Here, we used mice with targeted mutations in genes encoding canonical WNT pathway members to evaluate the exact contribution of these components in CNS vascular development and in specification of the blood-brain barrier (BBB) and blood-retina barrier (BRB). We determined that vasculature in various CNS regions is differentially sensitive to perturbations in canonical WNT signaling. The closely related WNT signaling coreceptors LDL receptor-related protein 5 (LRP5) and LRP6 had redundant functions in brain vascular development and barrier maintenance; however, loss of LRP5 alone dramatically altered development of the retinal vasculature. The BBB in the cerebellum and pons/interpeduncular nuclei was highly sensitive to decrements in canonical WNT signaling, and WNT signaling was required to maintain plasticity of barrier properties in mature CNS vasculature. Brain and retinal vascular defects resulting from ablation of Norrin/Frizzled4 signaling were ameliorated by stabilizing β-catenin, while inhibition of β-catenin-dependent transcription recapitulated the vascular development and barrier defects associated with loss of receptor, coreceptor, or ligand, indicating that Norrin/Frizzled4 signaling acts predominantly through β-catenin-dependent transcriptional regulation. Together, these data strongly support a model in which identical or nearly identical canonical WNT signaling mechanisms mediate neural tube and retinal vascularization and maintain the BBB and BRB.
Collapse
|
30
|
Zeilbeck LF, Müller B, Knobloch V, Tamm ER, Ohlmann A. Differential angiogenic properties of lithium chloride in vitro and in vivo. PLoS One 2014; 9:e95546. [PMID: 24751879 PMCID: PMC3994089 DOI: 10.1371/journal.pone.0095546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 03/28/2014] [Indexed: 01/30/2023] Open
Abstract
Wnt/β-catenin signaling induced by the Norrin/Frizzled-4 pathway has been shown to improve capillary repair following oxygen induced retinopathy (OIR) in the mouse, a model for retinopathy of prematurity. Here we investigated if treatment with the monovalent cation lithium that has been shown to augment Wnt/β-catenin signaling in vitro and in vivo has similar effects. In cultured human microvascular endothelial cells, LiCl as well as SB 216763, another small molecule that activates Wnt/β-catenin signaling, induced proliferation, survival and migration, which are all common parameters for angiogenic properties in vitro. Moreover, treatment with both agents caused an increase in the levels of β-catenin and their translocation to nuclei while quercetin, an inhibitor of Wnt/β-catenin signaling, completely blocked the effects of LiCl on proliferation. In mice with OIR, intraperitonal or intravitreal treatment with LiCl markedly increased the retinal levels of β-catenin, but did not improve capillary repair. In contrast, repair was significantly improved following intravitreal treatment with Norrin. The effects of LiCl on HDMEC in vitro have minor relevance for OIR in vivo, and the influence of the Norrin/Frizzled-4 pathway on capillary repair in OIR is not reproducible upon enhancing Wnt/β-catenin signaling by LiCl treatment strongly indicating the presence of additional and essential mechanisms.
Collapse
Affiliation(s)
- Ludwig F. Zeilbeck
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Birgit Müller
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Verena Knobloch
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Ernst R. Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Andreas Ohlmann
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
31
|
Shastry BS. Genetics of familial exudative vitreoretinopathy and its implications for management. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.12.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Dell'acqua Cassão B, de Rezende DT, Silva LC, Herbella FAM. Esophageal dysmotility in gillespie syndrome. J Neurogastroenterol Motil 2013; 19:538-9. [PMID: 24199016 PMCID: PMC3816190 DOI: 10.5056/jnm.2013.19.4.538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 11/20/2022] Open
Affiliation(s)
- Bruna Dell'acqua Cassão
- Department of Surgery, Escola Paulista de Medicina, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
33
|
Romer AI, Singh J, Rattan S, Krauss RS. Smooth muscle fascicular reorientation is required for esophageal morphogenesis and dependent on Cdo. ACTA ACUST UNITED AC 2013; 201:309-23. [PMID: 23569214 PMCID: PMC3628509 DOI: 10.1083/jcb.201301005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cdo-deficient mice have defects in smooth muscle fascicular reorientation during esophageal morphogenesis, resulting in structural and functional defects including an aberrantly proximal skeletal–smooth muscle boundary and achalasia. Postnatal maturation of esophageal musculature involves proximal-to-distal replacement of smooth muscle with skeletal muscle by elusive mechanisms. We report that this process is impaired in mice lacking the cell surface receptor Cdo and identify the underlying developmental mechanism. A myogenic transition zone containing proliferative skeletal muscle precursor cells migrated in a proximal–distal direction, leaving differentiated myofibers in its wake. Distal to the transition zone, smooth muscle fascicles underwent a morphogenetic process whereby they changed their orientation relative to each other and to the lumen. Consequently, a path was cleared for the transition zone, and smooth muscle ultimately occupied only the distal-most esophagus; there was no loss of smooth muscle. Cdo−/− mice were specifically defective in fascicular reorientation, resulting in an aberrantly proximal skeletal–smooth muscle boundary. Furthermore, Cdo−/− mice displayed megaesophagus and achalasia, and their lower esophageal sphincter was resistant to nitric oxide–induced relaxation, suggesting a developmental linkage between patterning and sphincter function. Collectively, these results illuminate mechanisms of esophageal morphogenesis and motility disorders.
Collapse
Affiliation(s)
- Anthony I Romer
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
34
|
Munnamalai V, Fekete DM. Wnt signaling during cochlear development. Semin Cell Dev Biol 2013; 24:480-9. [PMID: 23548730 DOI: 10.1016/j.semcdb.2013.03.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/30/2013] [Accepted: 03/21/2013] [Indexed: 02/07/2023]
Abstract
Wnt signaling is a hallmark of all embryonic development with multiple roles at multiple developmental time points. Wnt signaling is also important in the development of several organs, one of which is the inner ear, where it participates in otic specification, the formation of vestibular structures, and the development of the cochlea. In particular, we focus on Wnt signaling in the auditory organ, the cochlea. Attempting to dissect the multiple Wnt signaling pathways in the mammalian cochlea is a challenging task due to limited expression data, particularly at proliferating stages. To offer predictions about Wnt activity, we compare cochlear development with that of other biological systems such as Xenopus retina, brain, cancer cells and osteoblasts. Wnts are likely to regulate development through crosstalk with other signaling pathways, particularly Notch and FGF, leading to changes in the expression of Sox2 and proneural (pro-hair cell) genes. In this review we have consolidated the known signaling pathways in the cochlea with known developmental roles of Wnts from other systems to generate a potential timeline of cochlear development.
Collapse
Affiliation(s)
- Vidhya Munnamalai
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, USA.
| | | |
Collapse
|
35
|
Maupin KA, Droscha CJ, Williams BO. A Comprehensive Overview of Skeletal Phenotypes Associated with Alterations in Wnt/β-catenin Signaling in Humans and Mice. Bone Res 2013; 1:27-71. [PMID: 26273492 DOI: 10.4248/br201301004] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/20/2013] [Indexed: 12/23/2022] Open
Abstract
The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining roles for Wnt signaling in skeletal development during the 1990s, interest in the pathway rose exponentially when three key papers were published in 2001-2002. One report found that loss of the Wnt co-receptor, Low-density lipoprotein related protein-5 (LRP5), was the underlying genetic cause of the syndrome Osteoporosis pseudoglioma (OPPG). OPPG is characterized by early-onset osteoporosis causing increased susceptibility to debilitating fractures. Shortly thereafter, two groups reported that individuals carrying a specific point mutation in LRP5 (G171V) develop high-bone mass. Subsequent to this, the causative mechanisms for these observations heightened the need to understand the mechanisms by which Wnt signaling controlled bone development and homeostasis and encouraged significant investment from biotechnology and pharmaceutical companies to develop methods to activate Wnt signaling to increase bone mass to treat osteoporosis and other bone disease. In this review, we will briefly summarize the cellular mechanisms underlying Wnt signaling and discuss the observations related to OPPG and the high-bone mass disorders that heightened the appreciation of the role of Wnt signaling in normal bone development and homeostasis. We will then present a comprehensive overview of the core components of the pathway with an emphasis on the phenotypes associated with mice carrying genetically engineered mutations in these genes and clinical observations that further link alterations in the pathway to changes in human bone.
Collapse
Affiliation(s)
- Kevin A Maupin
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Casey J Droscha
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Bart O Williams
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| |
Collapse
|
36
|
Wang Y, Rattner A, Zhou Y, Williams J, Smallwood PM, Nathans J. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 2013; 151:1332-44. [PMID: 23217714 DOI: 10.1016/j.cell.2012.10.042] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 08/27/2012] [Accepted: 10/25/2012] [Indexed: 11/15/2022]
Abstract
Norrin/Frizzled4 (Fz4) signaling activates the canonical Wnt pathway to control retinal vascular development. Using genetically engineered mice, we show that precocious Norrin production leads to premature retinal vascular invasion and delayed Norrin production leads to characteristic defects in intraretinal vascular architecture. In genetic mosaics, wild-type endothelial cells (ECs) instruct neighboring Fz4(-/-) ECs to produce an architecturally normal mosaic vasculature, a cell nonautonomous effect. However, over the ensuing weeks, Fz4(-/-) ECs are selectively eliminated from the mosaic vasculature, implying the existence of a quality control program that targets defective ECs. In the adult retina and cerebellum, gain or loss of Norrin/Fz4 signaling results in a cell-autonomous gain or loss, respectively, of blood retina barrier and blood brain barrier function, indicating an ongoing requirement for Frizzled signaling in barrier maintenance and substantial plasticity in mature CNS vascular structure.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
37
|
Stiegel E, Say EAT, Carter BC, Thomas MJ, Shields CL. Simultaneous fzd4 and lrp5 mutation in autosomal dominant familial exudative vitreoretinopathy. Retin Cases Brief Rep 2013; 7:26-28. [PMID: 25390515 DOI: 10.1097/icb.0b013e31827537eb] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
PURPOSE The purpose of this study was to report simultaneous mutations of FZD4 and LRP5 genes associated with autosomal dominant familial exudative vitreoretinopathy in members of one family. METHODS Case report. RESULTS A 16-month-old white boy with a 6-month history of leukocoria was referred for possible retinoblastoma. On examination, the left eye displayed extensive white vitreoretinal fibrosis filling the entire vitreous cavity up to the lens and with additional dystrophic calcification and iris neovascularization. The right eye showed temporal peripheral fibrovascular ridge. Fluorescein angiography showed 360° of peripheral nonperfusion with leakage from the fibrovascular ridge of the right eye and diffuse leakage from the massive vitreoretinal fibrosis and iris neovascularization of the left eye, consistent with familial exudative vitreoretinopathy. Laser photocoagulation of the avascular areas of the right eye was performed with disease stabilization. Clinical examination and genetic testing of the family members demonstrated that the proband and a male sibling had similar clinical findings and simultaneous mutations in the FZD4 and LRP5 genes. Both affected patients had normal bone mineral dual-energy X-ray absorptiometry. CONCLUSION Familial exudative vitreoretinopathy is a retinal vascular disorder usually caused by a single mutation. Rarely, multiple simultaneous mutations can occur and, in this case, result in classic ophthalmic phenotypic and known risk for bone disorders.
Collapse
Affiliation(s)
- Evan Stiegel
- *Ocular Oncology Service, Wills Eye Institute, Thomas Jefferson University, Philadelphia, Pennsylvania †Department of Ophthalmology ‡Division of Pediatric Genetics, University of Virginia, Charlottesville, Virginia
| | | | | | | | | |
Collapse
|
38
|
Juriloff DM, Harris MJ. A consideration of the evidence that genetic defects in planar cell polarity contribute to the etiology of human neural tube defects. ACTA ACUST UNITED AC 2012; 94:824-40. [PMID: 23024041 DOI: 10.1002/bdra.23079] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/21/2012] [Accepted: 08/03/2012] [Indexed: 01/12/2023]
Abstract
A variety of human birth defects originate in failure of closure of the embryonic neural tube. The genetic cause of the most common nonsyndromic defects, spina bifida (SB) or anencephaly, is considered to be combinations of variants at multiple genes. The genes contributing to the etiology of neural tube closure defects (NTDs) are unknown. Mutations in planar cell polarity (PCP) genes in mice cause a variety of defects including the NTD, craniorachischisis, and sometimes SB or exencephaly (EX); they also demonstrate the role of digenic combinations of PCP mutants in NTDs. Recent studies have sought rare predicted-to-be-deleterious alterations (putative mutations) in coding sequence of PCP genes in human cases with various anomalies of the neural tube. This review summarizes the cumulative results of these studies according to a framework based on the embryopathogenesis of NTDs, and considers some of the insights from the approaches used and the limitations. Rare putative mutations in the PCP genes VANGL2, SCRIB, DACT1, and CELSR1 cumulatively contributed to over 20% of cases with craniorachischisis, a rare defect; no contributing variants were found for PRICKLE1 or PTK7. PCP rare putative mutations had a weaker role in myelomeningocele (SB), being found in approximately 6% of cases and cumulated across CELSR1, FUZ, FZD6, PRICKLE1, VANGL1, and VANGL2. These results demonstrate that PCP gene alterations contribute to the etiology of human NTDs. We recommend that future research should explore other types of PCP gene variant such as regulatory mutations and low frequency (1 to 5%) deleterious polymorphisms.
Collapse
Affiliation(s)
- Diana M Juriloff
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
39
|
Constitutive overexpression of Norrin activates Wnt/β-catenin and endothelin-2 signaling to protect photoreceptors from light damage. Neurobiol Dis 2012; 50:1-12. [PMID: 23009755 DOI: 10.1016/j.nbd.2012.09.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/12/2012] [Accepted: 09/15/2012] [Indexed: 11/23/2022] Open
Abstract
Norrin is a retinal signaling molecule which is expressed in Müller glia and binds to Frizzled-4 to activate canonical Wnt/β-catenin signaling. Norrin is part of an essential signaling system that controls the formation of retinal capillaries during development. To evaluate neuroprotective properties of Norrin independently from its function during retinal angiogenesis, we generated transgenic mice (Rpe65-Norrin) that constitutively express Norrin in the retinal pigmented epithelium. Substantial amounts of Norrin were secreted into the outer retina, which triggered retinal Wnt/β-catenin signaling in conjunction with an increase in the expression of endothelin-2 (EDN2), endothelin receptor B (EDNRB), and glial fibrillary acidic protein (GFAP). Photoreceptors of Norrin-overexpressing mice were significantly less vulnerable to light-induced damage compared to their wild-type littermates. Following light damage, we observed less apoptotic death of photoreceptors and a better retinal function than in controls. The protective effects were abolished if either Wnt/β-catenin or EDN2 signaling was blocked by intravitreal injection of Dickkopf-1 or BQ788, respectively. Light-damaged retinae from transgenic mice contained higher amounts of brain-derived neurotrophic factor (BDNF) and pAkt than those of wild-type littermates. We conclude that constitutive overexpression of Norrin protects photoreceptors from light damage, an effect that is mediated by Wnt/β-catenin and EDN2 signaling and involves neurotrophic activities of BDNF. The findings suggest that Norrin and its associated signaling pathways have strong potentials to attenuate photoreceptor death following injury.
Collapse
|
40
|
Abstract
The WNT signal transduction cascade controls myriad biological phenomena throughout development and adult life of all animals. In parallel, aberrant Wnt signaling underlies a wide range of pathologies in humans. In this Review, we provide an update of the core Wnt/β-catenin signaling pathway, discuss how its various components contribute to disease, and pose outstanding questions to be addressed in the future.
Collapse
Affiliation(s)
- Hans Clevers
- Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands.
| | | |
Collapse
|
41
|
Varela-Nallar L, Ramirez VT, Gonzalez-Billault C, Inestrosa NC. Frizzled receptors in neurons: from growth cones to the synapse. Cytoskeleton (Hoboken) 2012; 69:528-34. [PMID: 22407911 DOI: 10.1002/cm.21022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/26/2012] [Accepted: 02/21/2012] [Indexed: 11/05/2022]
Abstract
The Wnt signaling pathway has been implicated in several different aspects of neural development and function, including dendrite morphogenesis, axonal growth and guidance, synaptogenesis and synaptic plasticity. Here, we studied several Frizzled Wnt receptors and determined their differential expression during hippocampal development. In cultured hippocampal neurons, the cellular distributions of Frizzleds vary greatly, some of them being localized at neurites, growth cones or synaptic sites. These findings suggest that the Wnt signaling pathway might be temporally and spatially fine tuned during the development of neuronal circuits through specific Frizzled receptors.
Collapse
Affiliation(s)
- Lorena Varela-Nallar
- Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
42
|
Norrin: molecular and functional properties of an angiogenic and neuroprotective growth factor. Prog Retin Eye Res 2012; 31:243-57. [PMID: 22387751 DOI: 10.1016/j.preteyeres.2012.02.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 01/08/2023]
Abstract
Norrin is a secreted signaling molecule with structural and functional characteristics of an autocrine and/or paracrine acting growth factor. In the eye, Norrin is constitutively expressed in Müller cells. Norrin specifically binds to Frizzled-4 receptors and activates the canonical Wnt/β-catenin signaling pathway that is profoundly enhanced when Tspan12 is present at the Norrin/Frizzled-4 receptor complex. In the absence of Norrin or Frizzled-4, intraretinal capillaries are not formed during developmental angiogenesis. As a result there is considerable evidence that Norrin and Frizzled-4 are part of an essential signaling system that controls the formation of the retinal vasculature during eye development. Intriguingly, Norrin promotes vessel regrowth and induces the formation of intraretinal capillaries following oxygen-induced retinopathy in mice, an animal model of retinopathy of prematurity. Moreover, Norrin has pronounced neuroprotective properties on retinal ganglion cells (RGC) with the distinct potential to decrease the damaging effects of excitotoxic NMDA-induced RGC injury. The neuroprotective effects of Norrin similarly involve an activation of Wnt/β-catenin signaling and the subsequent induction of neuroprotective growth factor synthesis in Müller cells, such as that of fibroblast growth factor-2 (FGF2) or ciliary neurotrophic factor (CNTF). Overall, Norrin and the molecules involved in its signaling pathway appear to be promising targets to develop strategies that induce intraretinal vessel formation in patients suffering from ischemic retinopathies, or that increase RGC survival in glaucoma.
Collapse
|
43
|
Chen J, Stahl A, Krah NM, Seaward MR, Dennison RJ, Sapieha P, Hua J, Hatton CJ, Juan AM, Aderman CM, Willett KL, Guerin KI, Mammoto A, Campbell M, Smith LEH. Wnt signaling mediates pathological vascular growth in proliferative retinopathy. Circulation 2011; 124:1871-81. [PMID: 21969016 PMCID: PMC3326389 DOI: 10.1161/circulationaha.111.040337] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Ischemic proliferative retinopathy, characterized by pathological retinal neovascularization, is a major cause of blindness in working-age adults and children. Defining the molecular pathways distinguishing pathological neovascularization from normal vessels is critical to controlling these blinding diseases with targeted therapy. Because mutations in Wnt signaling cause defective retinal vasculature in humans with some characteristics of the pathological vessels in retinopathy, we investigated the potential role of Wnt signaling in pathological retinal vascular growth in proliferative retinopathy. METHODS AND RESULTS In this study, we show that Wnt receptors (Frizzled4 and low-density lipoprotein receptor-related protein5 [Lrp5]) and activity are significantly increased in pathological neovascularization in a mouse model of oxygen-induced proliferative retinopathy. Loss of Wnt coreceptor Lrp5 and downstream signaling molecule dishevelled2 significantly decreases the formation of pathological retinal neovascularization in retinopathy. Loss of Lrp5 also affects retinal angiogenesis during development and formation of the blood-retinal barrier, which is linked to significant downregulation of tight junction protein claudin5 in Lrp5(-/-) vessels. Blocking claudin5 significantly suppresses Wnt pathway-driven endothelial cell sprouting in vitro and developmental and pathological vascular growth in retinopathy in vivo. CONCLUSIONS These results demonstrate an important role of Wnt signaling in pathological vascular development in retinopathy and show a novel function of Cln5 in promoting angiogenesis.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Endothelium, Vascular/growth & development
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Frizzled Receptors/biosynthesis
- Frizzled Receptors/physiology
- Humans
- Low Density Lipoprotein Receptor-Related Protein-5/biosynthesis
- Low Density Lipoprotein Receptor-Related Protein-5/physiology
- Lysosomal Membrane Proteins
- Membrane Glycoproteins/biosynthesis
- Mice
- Mice, Knockout
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Receptors, Wnt/biosynthesis
- Receptors, Wnt/physiology
- Retina/growth & development
- Retina/pathology
- Retina/physiology
- Wnt Signaling Pathway/physiology
Collapse
Affiliation(s)
- Jing Chen
- Department of Ophthalmology, Harvard Medical School/Children's Hospital Boston, Boston MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ye X, Wang Y, Rattner A, Nathans J. Genetic mosaic analysis reveals a major role for frizzled 4 and frizzled 8 in controlling ureteric growth in the developing kidney. Development 2011; 138:1161-72. [PMID: 21343368 DOI: 10.1242/dev.057620] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The developing mammalian kidney is an attractive system in which to study the control of organ growth. Targeted mutations in the Wnt receptors frizzled (Fz) 4 and Fz8 lead to reduced ureteric bud growth and a reduction in kidney size, a phenotype previously reported for loss of Wnt11. In cell culture, Fz4 and Fz8 can mediate noncanonical signaling stimulated by Wnt11, but only Fz4 mediates Wnt11-stimulated canonical signaling. In genetically mosaic mouse ureteric buds, competition between phenotypically mutant Fz4(-/-) or Fz4(-/-);Fz8(-/-) cells and adjacent phenotypically wild-type Fz4(+/-) or Fz4(+/-);Fz8(-/-) cells results in under-representation of the mutant cells to an extent far greater than would be predicted from the size reduction of homogeneously mutant kidneys. This discrepancy presumably reflects the compensatory action of a network of growth regulatory systems that minimize developmental perturbations. The present work represents the first description of a kidney phenotype referable to one or more Wnt receptors and demonstrates a general strategy for revealing the contribution of an individual growth regulatory pathway when it is part of a larger homeostatic network.
Collapse
Affiliation(s)
- Xin Ye
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
45
|
Schulte G. International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol Rev 2011; 62:632-67. [PMID: 21079039 DOI: 10.1124/pr.110.002931] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The receptor class Frizzled, which has recently been categorized as a separate group of G protein-coupled receptors by the International Union of Basic and Clinical Pharmacology, consists of 10 Frizzleds (FZD(1-10)) and Smoothened (SMO). The FZDs are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, whereas SMO is indirectly activated by the Hedgehog (HH) family of proteins acting on the transmembrane protein Patched (PTCH). Recent years have seen major advances in our knowledge about these seven-transmembrane-spanning proteins, including: receptor function, molecular mechanisms of signal transduction, and the receptor's role in embryonic patterning, physiology, cancer, and other diseases. Despite intense efforts, many question marks and challenges remain in mapping receptor-ligand interaction, signaling routes, mechanisms of specificity and how these molecular details underlie disease and also the receptor's important role in physiology. This review therefore focuses on the molecular aspects of WNT/FZD and HH/SMO signaling discussing receptor structure, mechanisms of signal transduction, accessory proteins, receptor dynamics, and the possibility of targeting these signaling pathways pharmacologically.
Collapse
Affiliation(s)
- Gunnar Schulte
- Section of Receptor Biology & Signaling, Dept. of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
46
|
Callihan P, Mumaw J, Machacek DW, Stice SL, Hooks SB. Regulation of stem cell pluripotency and differentiation by G protein coupled receptors. Pharmacol Ther 2010; 129:290-306. [PMID: 21073897 DOI: 10.1016/j.pharmthera.2010.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 01/25/2023]
Abstract
Stem cell-based therapeutics have the potential to effectively treat many terminal and debilitating human diseases, but the mechanisms by which their growth and differentiation are regulated are incompletely defined. Recent data from multiple systems suggest major roles for G protein coupled receptor (GPCR) pathways in regulating stem cell function in vivo and in vitro. The goal of this review is to illustrate common ground between the growing field of stem cell therapeutics and the long-established field of G protein coupled receptor signaling. Herein, we briefly introduce basic stem cell biology and discuss how several conserved pathways regulate pluripotency and differentiation in mouse and human stem cells. We further discuss general mechanisms by which GPCR signaling may impact these pluripotency and differentiation pathways, and summarize specific examples of receptors from each of the major GPCR subfamilies that have been shown to regulate stem cell function. Finally, we discuss possible therapeutic implications of GPCR regulation of stem cell function.
Collapse
Affiliation(s)
- Phillip Callihan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | | | | | | | | |
Collapse
|
47
|
Ye X, Smallwood P, Nathans J. Expression of the Norrie disease gene (Ndp) in developing and adult mouse eye, ear, and brain. Gene Expr Patterns 2010; 11:151-5. [PMID: 21055480 DOI: 10.1016/j.gep.2010.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/25/2010] [Accepted: 10/27/2010] [Indexed: 01/24/2023]
Abstract
The Norrie disease gene (Ndp) codes for a secreted protein, Norrin, that activates canonical Wnt signaling by binding to its receptor, Frizzled-4. This signaling system is required for normal vascular development in the retina and for vascular survival in the cochlea. In mammals, the pattern of Ndp expression beyond the retina is poorly defined due to the low abundance of Norrin mRNA and protein. Here, we characterize Ndp expression during mouse development by studying a knock-in mouse that carries the coding sequence of human placental alkaline phosphatase (AP) inserted at the Ndp locus (Ndp(AP)). In the CNS, Ndp(AP) expression is apparent by E10.5 and is dynamic and complex. The anatomically delimited regions of Ndp(AP) expression observed prenatally in the CNS are replaced postnatally by widespread expression in astrocytes in the forebrain and midbrain, Bergman glia in the cerebellum, and Müller glia in the retina. In the developing and adult cochlea, Ndp(AP) expression is closely associated with two densely vascularized regions, the stria vascularis and a capillary plexus between the organ of Corti and the spiral ganglion. These observations suggest the possibility that Norrin may have developmental and/or homeostatic functions beyond the retina and cochlea.
Collapse
Affiliation(s)
- Xin Ye
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
48
|
Zhou W, Zhang Y, Li Y, Wei YS, Liu G, Liu DP, Pleasure SJ, Xie W, Zhao C. A transgenic Cre mouse line for the study of cortical and hippocampal development. Genesis 2010; 48:343-50. [PMID: 20143346 DOI: 10.1002/dvg.20611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Wnt signaling regulates cortical and hippocampal development. In a previous study we found that a particular Wnt receptor, Frizzled9 (Fzd9), was selectively expressed in both the developing and adult hippocampus. Taking advantage of the specificity of this promoter, we generated a transgenic cre mouse line using the putative control elements of the Fzd9 gene. In the Fzd9-cre mice, Cre is mainly detected in the developing cortex and hippocampus and is confined to the CA fields and dentate gyrus in adults. Furthermore, by crossing the Fzd9-cre mouse with the ROSA26 reporter line, we examined the activity of Cre and found that it has very high recombination efficiency. Thus, this mouse line will likely prove to be a useful tool for studying cortical and hippocampal development via activation or inactivation of interesting genes.
Collapse
Affiliation(s)
- Wei Zhou
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Institute of Life Science, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Maskey D, Pradhan J, Kim HJ, Park KS, Ahn SC, Kim MJ. Immunohistochemical localization of calbindin D28-k, parvalbumin, and calretinin in the cerebellar cortex of the circling mouse. Neurosci Lett 2010; 483:132-6. [PMID: 20691752 DOI: 10.1016/j.neulet.2010.07.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/27/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
Abstract
The spontaneous mutant circling mouse has an autosomal recessive pattern of inheritance and is an animal model for deafness, which is characterized by circling, head tossing, and hyperactivity. Since the main pathology in circling mice lies in the organ of Corti, most studies on deaf mice have focused on auditory brain stem nuclei. No studies regarding behavior-related CNS changes in circling mice have been reported. The major center of sensory input for modulation of motor activity is best-studied in the cerebellum. Considering the importance of calcium homeostasis in numerous processes, calcium-binding proteins (CaBPs), such as calbindin D-28k (CB), parvalbumin (PV), and calretinin (CR), may play crucial roles in preserving cerebellar coordinated motor function. Thus, the distribution of CB, PV, and CR was determined in the cerebellum using immunohistochemical methods to compare immunoreactivity (IR) of CaBPs between wild-type (+/+), heterozygous (+/cir), and homozygous (cir/cir) mice. The IR of CB and PV was predominantly observed in the Purkinje cell layer of all three genotypes. Compared with the +/+ genotype, the relative mean density of CB and PV IR in the Purkinje cell layer and CR IR in the granular layer was significantly decreased in the cir/cir genotype. Changes in calcium homeostasis in parallel fiber/Purkinje cell synapses could diminish cerebellar control of motor coordination. A number of deficiencies among the CaBPs lead to distinct alterations in brain physiology, which may affect normal behavior.
Collapse
Affiliation(s)
- Dhiraj Maskey
- Department of Anatomy, Dankook University, Cheonan-si, Chungnam, South Korea
| | | | | | | | | | | |
Collapse
|
50
|
Ye X, Wang Y, Nathans J. The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease. Trends Mol Med 2010; 16:417-25. [PMID: 20688566 DOI: 10.1016/j.molmed.2010.07.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/09/2010] [Accepted: 07/09/2010] [Indexed: 01/22/2023]
Abstract
Disorders of retinal vascular growth and function are responsible for vision loss in a variety of diseases, including diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity and retinal artery or vein occlusion. Over the past decade, a new signaling pathway that controls retinal vascular development has emerged from the study of inherited disorders - in both humans and mice - that are characterized by retinal hypovascularization. This pathway utilizes a glial-derived extracellular ligand, Norrin, that acts on a transmembrane receptor, Frizzled4, a coreceptor, Lrp5, and an auxiliary membrane protein, Tspan12, on the surface of developing endothelial cells. The resulting signal controls a transcriptional program that regulates endothelial growth and maturation. It will be of great interest to determine whether modulating this pathway could represent a therapeutic approach to human retinal vascular disease.
Collapse
Affiliation(s)
- Xin Ye
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|