1
|
Corrêa S, Basso RM, Cerri FM, de Oliveira‐Filho JP, Araújo JP, Torelli SR, Salán LPCDC, Salán MO, Macedo IZ, Borges AS. Hereditary myotonia in cats associated with a new homozygous missense variant p.Ala331Pro in the muscle chloride channel ClC-1. J Vet Intern Med 2023; 37:2498-2503. [PMID: 37668104 PMCID: PMC10658498 DOI: 10.1111/jvim.16837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
Three-related cats were evaluated for a history of short-strided gait and temporary recumbency after startle. Neurological examination, electromyography (EMG), muscle biopsies, and a chloride voltage-gated channel 1 (CLCN1) molecular study were performed. Clinically, all 3 cats presented myotonia with warm-up phenomenon and myotonic discharges during EMG examination. Muscle biopsies showed normal muscle architecture and variation in the diameter of myofiber size with the presence of numerous hypertrophic fibers. The molecular study revealed a missense variant (c.991G>C, p.Ala331Pro) in exon 9 of the CLCN1 gene, responsible for the first chloride channel extracellular loop. This mutation was screened in 104 control phenotypically normal unrelated cats, and all were wildtype. The alanine at this position is conserved in ClC-1 (chloride channel protein 1) in different species, and 2 mutations at this amino acid position are associated with human myotonia. This is the third CLCN1 mutation described in the literature associated with hereditary myotonia in cats and the first in domestic animals located in an extracellular muscle ClC-1 loop.
Collapse
Affiliation(s)
| | - Roberta Martins Basso
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP)BotucatuSão PauloBrazil
| | - Fabricio Moreira Cerri
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP)BotucatuSão PauloBrazil
| | | | - João Pessoa Araújo
- Institute of Biotechnology (IBTEC), São Paulo State University (UNESP)BotucatuSão PauloBrazil
| | | | | | | | | | - Alexandre Secorun Borges
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP)BotucatuSão PauloBrazil
| |
Collapse
|
2
|
Altamura C, Lucchiari S, Sahbani D, Ulzi G, Comi GP, D'Ambrosio P, Petillo R, Politano L, Vercelli L, Mongini T, Dotti MT, Cardani R, Meola G, Lo Monaco M, Matthews E, Hanna MG, Carratù MR, Conte D, Imbrici P, Desaphy JF. The analysis of myotonia congenita mutations discloses functional clusters of amino acids within the CBS2 domain and the C-terminal peptide of the ClC-1 channel. Hum Mutat 2018; 39:1273-1283. [PMID: 29935101 DOI: 10.1002/humu.23581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/10/2022]
Abstract
Myotonia congenita (MC) is a skeletal-muscle hyperexcitability disorder caused by loss-of-function mutations in the ClC-1 chloride channel. Mutations are scattered over the entire sequence of the channel protein, with more than 30 mutations located in the poorly characterized cytosolic C-terminal domain. In this study, we characterized, through patch clamp, seven ClC-1 mutations identified in patients affected by MC of various severities and located in the C-terminal region. The p.Val829Met, p.Thr832Ile, p.Val851Met, p.Gly859Val, and p.Leu861Pro mutations reside in the CBS2 domain, while p.Pro883Thr and p.Val947Glu are in the C-terminal peptide. We showed that the functional properties of mutant channels correlated with the clinical phenotypes of affected individuals. In addition, we defined clusters of ClC-1 mutations within CBS2 and C-terminal peptide subdomains that share the same functional defect: mutations between 829 and 835 residues and in residue 883 induced an alteration of voltage dependence, mutations between 851 and 859 residues, and in residue 947 induced a reduction of chloride currents, whereas mutations on 861 residue showed no obvious change in ClC-1 function. This study improves our understanding of the mechanisms underlying MC, sheds light on the role of the C-terminal region in ClC-1 function, and provides information to develop new antimyotonic drugs.
Collapse
Affiliation(s)
- Concetta Altamura
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Sabrina Lucchiari
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Neurology Unit, IRCCS Fondazione Ca' Grande Ospedale Maggiore Policlinico, Milan, Italy
| | - Dalila Sahbani
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Gianna Ulzi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Neurology Unit, IRCCS Fondazione Ca' Grande Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Neurology Unit, IRCCS Fondazione Ca' Grande Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola D'Ambrosio
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Roberta Petillo
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Luisa Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Liliana Vercelli
- Neuromuscular Unit, Department of Neurosciences, Hospital Città della Salute e della Scienza of Torino, University of Torino, Turin, Italy
| | - Tiziana Mongini
- Neuromuscular Unit, Department of Neurosciences, Hospital Città della Salute e della Scienza of Torino, University of Torino, Turin, Italy
| | - Maria Teresa Dotti
- Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, IRCCS Policlinico San Donato, Milan, Italy
| | - Mauro Lo Monaco
- Institute of Neurology, Catholic University of Sacred Heart, Polyclinic Gemelli, Rome, Italy.,MiA Onlus ("Miotonici in Associazione"), Portici, Italy
| | - Emma Matthews
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Maria Rosaria Carratù
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Polyclinic, Bari, Italy
| | - Diana Conte
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Polyclinic, Bari, Italy
| |
Collapse
|
3
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
4
|
Impaired surface membrane insertion of homo- and heterodimeric human muscle chloride channels carrying amino-terminal myotonia-causing mutations. Sci Rep 2015; 5:15382. [PMID: 26502825 PMCID: PMC4621517 DOI: 10.1038/srep15382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/23/2015] [Indexed: 12/03/2022] Open
Abstract
Mutations in the muscle chloride channel gene (CLCN1) cause myotonia congenita, an inherited condition characterized by muscle stiffness upon sudden forceful movement. We here studied the functional consequences of four disease-causing mutations that predict amino acid substitutions Q43R, S70L, Y137D and Q160H. Wild-type (WT) and mutant hClC-1 channels were heterologously expressed as YFP or CFP fusion protein in HEK293T cells and analyzed by whole-cell patch clamp and fluorescence recordings on individual cells. Q43R, Y137D and Q160H, but not S70L reduced macroscopic current amplitudes, but left channel gating and unitary current amplitudes unaffected. We developed a novel assay combining electrophysiological and fluorescence measurements at the single-cell level in order to measure the probability of ion channel surface membrane insertion. With the exception of S70L, all tested mutations significantly reduced the relative number of homodimeric hClC-1 channels in the surface membrane. The strongest effect was seen for Q43R that reduced the surface insertion probability by more than 99% in Q43R homodimeric channels and by 92 ± 3% in heterodimeric WT/Q43R channels compared to homodimeric WT channels. The new method offers a sensitive approach to investigate mutations that were reported to cause channelopathies, but display only minor changes in ion channel function.
Collapse
|
5
|
Stölting G, Fischer M, Fahlke C. CLC channel function and dysfunction in health and disease. Front Physiol 2014; 5:378. [PMID: 25339907 PMCID: PMC4188032 DOI: 10.3389/fphys.2014.00378] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/12/2014] [Indexed: 01/01/2023] Open
Abstract
CLC channels and transporters are expressed in most tissues and fulfill diverse functions. There are four human CLC channels, ClC-1, ClC-2, ClC-Ka, and ClC-Kb, and five CLC transporters, ClC-3 through −7. Some of the CLC channels additionally associate with accessory subunits. Whereas barttin is mandatory for the functional expression of ClC-K, GlialCam is a facultative subunit of ClC-2 which modifies gating and thus increases the functional variability within the CLC family. Isoform-specific ion conduction and gating properties optimize distinct CLC channels for their cellular tasks. ClC-1 preferentially conducts at negative voltages, and the resulting inward rectification provides a large resting chloride conductance without interference with the muscle action potential. Exclusive opening at voltages negative to the chloride reversal potential allows for ClC-2 to regulate intracellular chloride concentrations. ClC-Ka and ClC-Kb are equally suited for inward and outward currents to support transcellular chloride fluxes. Every human CLC channel gene has been linked to a genetic disease, and studying these mutations has provided much information about the physiological roles and the molecular basis of CLC channel function. Mutations in the gene encoding ClC-1 cause myotonia congenita, a disease characterized by sarcolemmal hyperexcitability and muscle stiffness. Loss-of-function of ClC-Kb/barttin channels impairs NaCl resorption in the limb of Henle and causes hyponatriaemia, hypovolemia and hypotension in patients suffering from Bartter syndrome. Mutations in CLCN2 were found in patients with CNS disorders but the functional role of this isoform is still not understood. Recent links between ClC-1 and epilepsy and ClC-Ka and heart failure suggested novel cellular functions of these proteins. This review aims to survey the knowledge about physiological and pathophysiological functions of human CLC channels in the light of recent discoveries from biophysical, physiological, and genetic studies.
Collapse
Affiliation(s)
- Gabriel Stölting
- Institute of Complex Systems-Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich Jülich, Germany
| | - Martin Fischer
- Institut für Neurophysiologie, Medizinische Hochschule Hannover Hannover, Germany
| | - Christoph Fahlke
- Institute of Complex Systems-Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich Jülich, Germany
| |
Collapse
|
6
|
ClC-1 and ClC-2 form hetero-dimeric channels with novel protopore functions. Pflugers Arch 2014; 466:2191-204. [DOI: 10.1007/s00424-014-1490-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 10/25/2022]
|
7
|
Abstract
CLC-0 and cystic fibrosis transmembrane conductance regulator (CFTR) Cl−channels play important roles in Cl−transport across cell membranes. These two proteins belong to, respectively, the CLC and ABC transport protein families whose members encompass both ion channels and transporters. Defective function of members in these two protein families causes various hereditary human diseases. Ion channels and transporters were traditionally viewed as distinct entities in membrane transport physiology, but recent discoveries have blurred the line between these two classes of membrane transport proteins. CLC-0 and CFTR can be considered operationally as ligand-gated channels, though binding of the activating ligands appears to be coupled to an irreversible gating cycle driven by an input of free energy. High-resolution crystallographic structures of bacterial CLC proteins and ABC transporters have led us to a better understanding of the gating properties for CLC and CFTR Cl−channels. Furthermore, the joined force between structural and functional studies of these two protein families has offered a unique opportunity to peek into the evolutionary link between ion channels and transporters. A promising byproduct of this exercise is a deeper mechanistic insight into how different transport proteins work at a fundamental level.
Collapse
|
8
|
Lueck JD, Mankodi A, Swanson MS, Thornton CA, Dirksen RT. Muscle chloride channel dysfunction in two mouse models of myotonic dystrophy. ACTA ACUST UNITED AC 2006; 129:79-94. [PMID: 17158949 PMCID: PMC2151606 DOI: 10.1085/jgp.200609635] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Muscle degeneration and myotonia are clinical hallmarks of myotonic dystrophy type 1 (DM1), a multisystemic disorder caused by a CTG repeat expansion in the 3' untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. Transgenic mice engineered to express mRNA with expanded (CUG)(250) repeats (HSA(LR) mice) exhibit prominent myotonia and altered splicing of muscle chloride channel gene (Clcn1) transcripts. We used whole-cell patch clamp recordings and nonstationary noise analysis to compare and biophysically characterize the magnitude, kinetics, voltage dependence, and single channel properties of the skeletal muscle chloride channel (ClC-1) in individual flexor digitorum brevis (FDB) muscle fibers isolated from 1-3-wk-old wild-type and HSA(LR) mice. The results indicate that peak ClC-1 current density at -140 mV is reduced >70% (-48.5 +/- 3.6 and -14.0 +/- 1.6 pA/pF, respectively) and the kinetics of channel deactivation increased in FDB fibers obtained from 18-20- d-old HSA(LR) mice. Nonstationary noise analysis revealed that the reduction in ClC-1 current density in HSA(LR) FDB fibers results from a large reduction in ClC-1 channel density (170 +/- 21 and 58 +/- 11 channels/pF in control and HSA(LR) fibers, respectively) and a modest decrease in maximal channel open probability(0.91 +/- 0.01 and 0.75 +/- 0.03, respectively). Qualitatively similar results were observed for ClC-1 channel activity in knockout mice for muscleblind-like 1 (Mbnl1(DeltaE3/DeltaE3)), a second murine model of DM1 that exhibits prominent myotonia and altered Clcn1 splicing (Kanadia et al., 2003). These results support a molecular mechanism for myotonia in DM1 in which a reduction in both the number of functional sarcolemmal ClC-1 and maximal channel open probability, as well as an acceleration in the kinetics of channel deactivation, results from CUG repeat-containing mRNA molecules sequestering Mbnl1 proteins required for proper CLCN1 pre-mRNA splicing and chloride channel function.
Collapse
Affiliation(s)
- John D Lueck
- Department of Physiology and Pharmacology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
The CLC family comprises a group of integral membrane proteins whose major action is to translocate chloride (Cl-) ions across the cell membranes. Recently, the structures of CLC orthologues from two bacterial species, Salmonella typhimurium and Escherichia coli, were solved, providing the first framework for understanding the operating mechanisms of these molecules. However, most of the previous mechanistic understanding of CLC channels came from electrophysiological studies of a branch of the channel family, the muscle-type CLC channels in vertebrate species. These vertebrate CLC channels were predicted to contain two identical but independent pores, and this hypothesis was confirmed by the solved bacterial CLC structures. The opening and closing of the vertebrate CLC channels are also known to couple to the permeant ions via their binding sites in the ion-permeation pathway. The bacterial CLC structures can probably serve as a structural model to explain the gating-permeation coupling mechanism. However, the CLC-ec1 protein in E. coli was most recently shown to be a Cl- -H+ antiporter, but not an ion channel. The molecular basis to explain the difference between vertebrate and bacterial CLCs, especially the distinction between an ion channel and a transporter, remains a challenge in the structure/function studies for the CLC family.
Collapse
Affiliation(s)
- Tsung-Yu Chen
- Center for Neuroscience and Department of Neurology, University of California, Davis, California 95616, USA.
| |
Collapse
|
10
|
Papponen H, Kaisto T, Myllylä VV, Myllylä R, Metsikkö K. Regulated sarcolemmal localization of the muscle-specific ClC-1 chloride channel. Exp Neurol 2005; 191:163-73. [PMID: 15589523 DOI: 10.1016/j.expneurol.2004.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 07/08/2004] [Accepted: 07/12/2004] [Indexed: 12/01/2022]
Abstract
The skeletal muscle-specific ClC-1 is a voltage-gated chloride channel protein. Specific antibodies against ClC-1 revealed in muscle sections a sarcolemmal staining that was absent in the myotonic arrested development of righting response (ADR) mouse muscle. The intensity of the sarcolemmal staining varied from one type of muscle to another and in lateral sections showed a typical mosaic pattern that colocalized with beta-dystroglycan and left the transverse tubule openings clear. Surprisingly, in isolated myofibers, the ClC-1 protein was absent from the sarcolemma. Instead, it localized to intracellular I band areas as soon as the myofibers were isolated. When the isolated myofibers were incubated with the kinase inhibitor staurosporine, the ClC-1 protein shifted back to the sarcolemma. Electric stimulation of the cultivated fibers had a similar effect. Also, myofibers infected with a recombinant Semliki Forest virus (SFV) expressing myc-tagged ClC-1 showed intracellular localization of the protein. The virally expressed mycClC-1 reached the Golgi apparatus but sarcolemmal staining remained nondetectable, and addition of staurosporine into the growth medium recruited the mycClC-1 to the sarcolemma. These data indicate that sarcolemmal targeting of the ClC-1 requires specific signals that are provided by the physiological environment.
Collapse
Affiliation(s)
- H Papponen
- Department of Anatomy and Cell Biology, University of Oulu, PO Box 5000, FIN-90014, Finland
| | | | | | | | | |
Collapse
|
11
|
Abstract
Myotonia congenita is a hereditary chloride channel disorder characterized by delayed relaxation of skeletal muscle (myotonia). It is caused by mutations in the skeletal muscle chloride channel gene CLCN1 on chromosome 7. The phenotypic spectrum of myotonia congenita ranges from mild myotonia disclosed only by clinical examination to severe and disabling myotonia with transient weakness and myopathy. The most severe phenotypes are seen in patients with two mutated alleles. Heterozygotes are often asymptomatic but for some mutations heterozygosity is sufficient to cause pronounced myotonia, although without weakness and myopathy. Thus, the phenotype depends on the mutation type to some extent, but this does not explain the fact that severity varies greatly between heterozygous family members and may even vary with time in the individual patient. In this review, existing knowledge about phenotypic variability is summarized, and the possible contributing factors are discussed.
Collapse
Affiliation(s)
- Eskild Colding-Jørgensen
- Department of Clinical Neurophysiology 19, Glostrup Hospital, University of Copenhagen DK-2600 Glostrup, Denmark.
| |
Collapse
|
12
|
Hebeisen S, Biela A, Giese B, Müller-Newen G, Hidalgo P, Fahlke C. The Role of the Carboxyl Terminus in ClC Chloride Channel Function. J Biol Chem 2004; 279:13140-7. [PMID: 14718533 DOI: 10.1074/jbc.m312649200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human muscle chloride channel ClC-1 has a 398-amino acid carboxyl-terminal domain that resides in the cytoplasm and contains two CBS (cystathionine-beta-synthase) domains. To examine the role of this region, we studied various carboxyl-terminal truncations by heterologous expression in mammalian cells, whole-cell patch clamp recording, and confocal imaging. Channel constructs lacking parts of the distal CBS domain, CBS2, did not produce functional channels, whereas deletion of CBS1 was tolerated. ClC channels are dimeric proteins with two ion conduction pathways (protopores). In heterodimeric channels consisting of one wild type subunit and one subunit in which the carboxyl terminus was completely deleted, only the wild type protopore was functional, indicating that the carboxyl terminus supports the function of the protopore. All carboxyl-terminal-truncated mutant channels fused to yellow fluorescent protein were translated and the majority inserted into the plasma membrane as revealed by confocal microscopy. Fusion proteins of cyan fluorescent protein linked to various fragments of the carboxyl terminus formed soluble proteins that could be redistributed to the surface membrane through binding to certain truncated channel subunits. Stable binding only occurs between carboxyl-terminal fragments of a single subunit, not between carboxyl termini of different subunits and not between carboxyl-terminal and transmembrane domains. However, an interaction with transmembrane domains can modify the binding properties of particular carboxyl-terminal proteins. Our results demonstrate that the carboxyl terminus of ClC-1 is not necessary for intracellular trafficking but is critical for channel function. Carboxyl termini fold independently and modify individual protopores of the double-barreled channel.
Collapse
Affiliation(s)
- Simon Hebeisen
- Institutes of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Grunnet M, Jespersen T, Colding-Jørgensen E, Schwartz M, Klaerke DA, Vissing J, Olesen SP, Dunø M. Characterization of two new dominant ClC-1 channel mutations associated with myotonia. Muscle Nerve 2003; 28:722-32. [PMID: 14639587 DOI: 10.1002/mus.10501] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Voltage-gated ClC-1 chloride channels encoded by the CLCN1 gene have a major role in setting the membrane potential in skeletal muscle. More than 60 CLCN1 mutations have been associated with myotonia congenita. These mutations are traditionally classified as recessive (Becker's disease) or dominant (Thomsen's disease). In this study, we have electrophysiologically characterized two new dominant ClC-1 mutations, thereby elucidating the observed phenotype in patients. The two ClC-1 mutants M128V and E193K were identified, and the DNA was isolated from patients and subsequently expressed in Xenopus laevis oocytes for electrophysiological characterization. Both ClC-1 mutants, M128V and E193K, showed a large rightward shift in the current-voltage relationship. In addition, the activation kinetics were slowed in the ClC-1 M128V mutant, as compared to the wild-type ClC-1. Interestingly, ClC-1 E193K revealed a change in reversal potential compared to wild-type channels. This finding supports the notion that the E193 amino acid is an important determinant in the selectivity filter of the human ClC-1 channel. The electrophysiological behavior of both mutants demonstrates a severe reduction in ClC-1 channel conductance under physiologically relevant membrane potentials. These studies thereby explain the molecular background for the observed myotonia in patients.
Collapse
Affiliation(s)
- Morten Grunnet
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Scola RH, Iwamoto FM, Camargo CH, Arruda WO, Werneck LC. Myotonia congenita and myoadenylate deaminase deficiency: case report. ARQUIVOS DE NEURO-PSIQUIATRIA 2003; 61:262-4. [PMID: 12806508 DOI: 10.1590/s0004-282x2003000200019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Approximately 1-2% of the population has a deficiency of the enzyme myoadenylate deaminase. Early reports suggested that patients with myoadenylate deaminase deficiency had various forms of myalgia, and exercise intolerance. However, a deficiency of the enzyme has been described in many conditions, including myopathies, neuropathies, and motor neuron disease. We report a patient with clinical diagnosis of myotonia congenita and absent myoadenylate deaminase reaction on the muscle biopsy. This is the first description of myoadenilate deaminase deficiency with myotonia congenita. Myoadenylate deaminase deficiency is the most common enzymatic deficit of muscle, and the association with other neuromuscular diseases is coincidental.
Collapse
Affiliation(s)
- Rosana Herminia Scola
- Division of Neurology and Neuromuscular Disorders, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | | | | | | | | |
Collapse
|