1
|
Wang M, Yuan L, Leutgeb S, Leutgeb JK. Mental exploration of future choices during immobility theta oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636313. [PMID: 39975083 PMCID: PMC11838555 DOI: 10.1101/2025.02.03.636313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mental exploration enables flexible evaluation of potential future choices, guiding decision-making without requiring direct real-world iterations. Although the hippocampus is known to be active while imagining the future, the precise mechanisms that support mental exploration of future choices remain unclear. In the hippocampus, the theta rhythm (4-12 Hz) is prevalent during movement and supports memory coding during real-world exploration by organizing neuronal activity patterns into short virtual path segments (theta sequences) around the rat's location. We observed these theta-related neural activity patterns during movement in a hippocampus-dependent working memory task and also, unexpectedly, theta oscillations and theta-related neural activity during immobility. Compared to standard theta sequences during movement, theta sequences during immobility differed in that they occurred at a shifted theta phase and preferentially represented remote locations, in particular the next choice in the working memory task. Coding for future locations was also observed during awake sharp wave ripple, but these short-lasting events occurred rarely and were biased toward frequently visited locations. Therefore, our findings suggest that recurring bouts of theta oscillations during immobility, which are also observed in primates and humans, support the cognitive demands of mental exploration in the hippocampal network and facilitate ongoing predictions of future choices.
Collapse
|
2
|
McHugh SB, Lopes-Dos-Santos V, Castelli M, Gava GP, Thompson SE, Tam SKE, Hartwich K, Perry B, Toth R, Denison T, Sharott A, Dupret D. Offline hippocampal reactivation during dentate spikes supports flexible memory. Neuron 2024; 112:3768-3781.e8. [PMID: 39321790 PMCID: PMC7616703 DOI: 10.1016/j.neuron.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Stabilizing new memories requires coordinated neuronal spiking activity during sleep. Hippocampal sharp-wave ripples (SWRs) in the cornu ammonis (CA) region and dentate spikes (DSs) in the dentate gyrus (DG) are prime candidate network events for supporting this offline process. SWRs have been studied extensively, but the contribution of DSs remains unclear. By combining triple-ensemble (DG-CA3-CA1) recordings and closed-loop optogenetics in mice, we show that, like SWRs, DSs synchronize spiking across DG and CA principal cells to reactivate population-level patterns of neuronal coactivity expressed during prior waking experience. Notably, the population coactivity structure in DSs is more diverse and higher dimensional than that seen during SWRs. Importantly, suppressing DG granule cell spiking selectively during DSs impairs subsequent flexible memory performance during multi-object recognition tasks and associated hippocampal patterns of neuronal coactivity. We conclude that DSs constitute a second offline network event central to hippocampal population dynamics serving memory-guided behavior.
Collapse
Affiliation(s)
- Stephen B McHugh
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Manfredi Castelli
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Giuseppe P Gava
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Sophie E Thompson
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Shu K E Tam
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Katja Hartwich
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Brook Perry
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Robert Toth
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Timothy Denison
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| |
Collapse
|
3
|
Li Z, Wang J, Tang C, Wang P, Ren P, Li S, Yi L, Liu Q, Sun L, Li K, Ding W, Bao H, Yao L, Na M, Luan G, Liang X. Coordinated NREM sleep oscillations among hippocampal subfields modulate synaptic plasticity in humans. Commun Biol 2024; 7:1236. [PMID: 39354050 PMCID: PMC11445409 DOI: 10.1038/s42003-024-06941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
The integration of hippocampal oscillations during non-rapid eye movement (NREM) sleep is crucial for memory consolidation. However, how cardinal sleep oscillations bind across various subfields of the human hippocampus to promote information transfer and synaptic plasticity remains unclear. Using human intracranial recordings from 25 epilepsy patients, we find that hippocampal subfields, including DG/CA3, CA1, and SUB, all exhibit significant delta and spindle power during NREM sleep. The DG/CA3 displays strong coupling between delta and ripple oscillations with all the other hippocampal subfields. In contrast, the regions of CA1 and SUB exhibit more precise coordination, characterized by event-level triple coupling between delta, spindle, and ripple oscillations. Furthermore, we demonstrate that the synaptic plasticity within the hippocampal circuit, as indexed by delta-wave slope, is linearly modulated by spindle power. In contrast, ripples act as a binary switch that triggers a sudden increase in delta-wave slope. Overall, these results suggest that different subfields of the hippocampus regulate one another through diverse layers of sleep oscillation synchronization, collectively facilitating information processing and synaptic plasticity during NREM sleep.
Collapse
Affiliation(s)
- Zhipeng Li
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Jing Wang
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Chongyang Tang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Peng Wang
- Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Peng Ren
- Institute of Science and Technology for Brain-Inspired Intelligence and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Siyang Li
- Zhejiang Lab, Hangzhou, Zhejiang, 311100, China
| | - Liye Yi
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiuyi Liu
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Lili Sun
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Kaizhou Li
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Wencai Ding
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, 150081, Harbin, China
- Department of Neurosurgery, BeijingTiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Guoming Luan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China.
| | - Xia Liang
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China.
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China.
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, 150001, China.
- Research Center for Social Computing and Information Retrieval, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
4
|
Zafra-Puerta L, Iglesias-Cabeza N, Burgos DF, Sciaccaluga M, González-Fernández J, Bellingacci L, Canonichesi J, Sánchez-Martín G, Costa C, Sánchez MP, Serratosa JM. Gene therapy for Lafora disease in the Epm2a -/- mouse model. Mol Ther 2024; 32:2130-2149. [PMID: 38796707 PMCID: PMC11286821 DOI: 10.1016/j.ymthe.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/23/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
Lafora disease is a rare and fatal form of progressive myoclonic epilepsy typically occurring early in adolescence. The disease results from mutations in the EPM2A gene, encoding laforin, or the EPM2B gene, encoding malin. Laforin and malin work together in a complex to control glycogen synthesis and prevent the toxicity produced by misfolded proteins via the ubiquitin-proteasome system. Disruptions in either protein cause alterations in this complex, leading to the formation of Lafora bodies containing abnormal, insoluble, and hyperphosphorylated forms of glycogen. We used the Epm2a-/- knockout mouse model of Lafora disease to apply gene therapy by administering intracerebroventricular injections of a recombinant adeno-associated virus carrying the human EPM2A gene. We evaluated the effects of this treatment through neuropathological studies, behavioral tests, video-electroencephalography, electrophysiological recordings, and proteomic/phosphoproteomic analysis. Gene therapy ameliorated neurological and histopathological alterations, reduced epileptic activity and neuronal hyperexcitability, and decreased the formation of Lafora bodies. Moreover, differential quantitative proteomics and phosphoproteomics revealed beneficial changes in various molecular pathways altered in Lafora disease. Our results represent proof of principle for gene therapy with the coding region of the human EPM2A gene as a treatment for EPM2A-related Lafora disease.
Collapse
Affiliation(s)
- Luis Zafra-Puerta
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, 28029 Madrid, Spain; Fondazione Malattie Rare Mauro Baschirotto BIRD Onlus, Longare (VI), Italy
| | - Nerea Iglesias-Cabeza
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Daniel F Burgos
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, 28029 Madrid, Spain
| | - Miriam Sciaccaluga
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; Fondazione Malattie Rare Mauro Baschirotto BIRD Onlus, Longare (VI), Italy
| | - Juan González-Fernández
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; Departament of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, University of Perugia, 06132 Perugia, Italy
| | - Laura Bellingacci
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Jacopo Canonichesi
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Gema Sánchez-Martín
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Cinzia Costa
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Marina P Sánchez
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| | - José M Serratosa
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| |
Collapse
|
5
|
Laham BJ, Gore IR, Brown CJ, Gould E. Adult-born granule cells modulate CA2 network activity during retrieval of developmental memories of the mother. eLife 2024; 12:RP90600. [PMID: 38833278 PMCID: PMC11149928 DOI: 10.7554/elife.90600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Adult-born granule cells (abGCs) project to the CA2 region of the hippocampus, but it remains unknown how this circuit affects behavioral function. Here, we show that abGC input to the CA2 of adult mice is involved in the retrieval of remote developmental memories of the mother. Ablation of abGCs impaired the ability to discriminate between a caregiving mother and a novel mother, and this ability returned after abGCs were regenerated. Chemogenetic inhibition of projections from abGCs to the CA2 also temporarily prevented the retrieval of remote mother memories. These findings were observed when abGCs were inhibited at 4-6 weeks old, but not when they were inhibited at 10-12 weeks old. We also found that abGCs are necessary for differentiating features of CA2 network activity, including theta-gamma coupling and sharp wave ripples, in response to novel versus familiar social stimuli. Taken together, these findings suggest that abGCs are necessary for neuronal oscillations associated with discriminating between social stimuli, thus enabling retrieval of remote developmental memories of the mother by their adult offspring.
Collapse
Affiliation(s)
- Blake J Laham
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Isha R Gore
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Casey J Brown
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| |
Collapse
|
6
|
Azimzadeh M, Mohd Azmi MAN, Reisi P, Cheah PS, Ling KH. Step-by-step approach: Stereotaxic surgery for in vivo extracellular field potential recording at the rat Schaffer collateral-CA1 synapse using the eLab system. MethodsX 2024; 12:102544. [PMID: 38283759 PMCID: PMC10820282 DOI: 10.1016/j.mex.2023.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
In vivo extracellular field potential recording is a commonly used technique in modern neuroscience research. The success of long-term electrophysiological recordings often depends on the quality of the implantation surgery. However, there is limited use of visually guided stereotaxic neurosurgery and the application of the eLab/ePulse electrophysiology system in rodent models. This study presents a practical and functional manual guide for surgical electrode implantation in rodent models using the eLab/ePulse electrophysiology system for recording and stimulation purposes to assess neuronal functionality and synaptic plasticity. The evaluation parameters included the input/output function (IO), paired-pulse facilitation or depression (PPF/PPD), long-term potentiation (LTP), and long-term depression (LTD).•Provides a detailed picture-guided procedure for conducting in vivo stereotaxic neurosurgery.•Specifically covers the insertion of hippocampal electrodes and the recording of evoked extracellular field potentials.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Biomedical Sciences Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Mohd Amirul Najwa Mohd Azmi
- Deputy Dean's Office (Research and Internationalization), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing™), Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing™), Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| |
Collapse
|
7
|
Santiago RMM, Lopes-Dos-Santos V, Aery Jones EA, Huang Y, Dupret D, Tort ABL. Waveform-based classification of dentate spikes. Sci Rep 2024; 14:2989. [PMID: 38316828 PMCID: PMC10844627 DOI: 10.1038/s41598-024-53075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/27/2024] [Indexed: 02/07/2024] Open
Abstract
Synchronous excitatory discharges from the entorhinal cortex (EC) to the dentate gyrus (DG) generate fast and prominent patterns in the hilar local field potential (LFP), called dentate spikes (DSs). As sharp-wave ripples in CA1, DSs are more likely to occur in quiet behavioral states, when memory consolidation is thought to take place. However, their functions in mnemonic processes are yet to be elucidated. The classification of DSs into types 1 or 2 is determined by their origin in the lateral or medial EC, as revealed by current source density (CSD) analysis, which requires recordings from linear probes with multiple electrodes spanning the DG layers. To allow the investigation of the functional role of each DS type in recordings obtained from single electrodes and tetrodes, which are abundant in the field, we developed an unsupervised method using Gaussian mixture models to classify such events based on their waveforms. Our classification approach achieved high accuracies (> 80%) when validated in 8 mice with DG laminar profiles. The average CSDs, waveforms, rates, and widths of the DS types obtained through our method closely resembled those derived from the CSD-based classification. As an example of application, we used the technique to analyze single-electrode LFPs from apolipoprotein (apo) E3 and apoE4 knock-in mice. We observed that the latter group, which is a model for Alzheimer's disease, exhibited wider DSs of both types from a young age, with a larger effect size for DS type 2, likely reflecting early pathophysiological alterations in the EC-DG network, such as hyperactivity. In addition to the applicability of the method in expanding the study of DS types, our results show that their waveforms carry information about their origins, suggesting different underlying network dynamics and roles in memory processing.
Collapse
Affiliation(s)
- Rodrigo M M Santiago
- Computational Neurophysiology Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Emily A Aery Jones
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Adriano B L Tort
- Computational Neurophysiology Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil
| |
Collapse
|
8
|
Santiago RM, Lopes-dos-Santos V, Jones EAA, Huang Y, Dupret D, Tort AB. Waveform-based classification of dentate spikes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563826. [PMID: 37961150 PMCID: PMC10634814 DOI: 10.1101/2023.10.24.563826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synchronous excitatory discharges from the entorhinal cortex (EC) to the dentate gyrus (DG) generate fast and prominent patterns in the hilar local field potential (LFP), called dentate spikes (DSs). As sharp-wave ripples in CA1, DSs are more likely to occur in quiet behavioral states, when memory consolidation is thought to take place. However, their functions in mnemonic processes are yet to be elucidated. The classification of DSs into types 1 or 2 is determined by their origin in the lateral or medial EC, as revealed by current source density (CSD) analysis, which requires recordings from linear probes with multiple electrodes spanning the DG layers. To allow the investigation of the functional role of each DS type in recordings obtained from single electrodes and tetrodes, which are abundant in the field, we developed an unsupervised method using Gaussian mixture models to classify such events based on their waveforms. Our classification approach achieved high accuracies (> 80%) when validated in 8 mice with DG laminar profiles. The average CSDs, waveforms, rates, and widths of the DS types obtained through our method closely resembled those derived from the CSD-based classification. As an example of application, we used the technique to analyze single-electrode LFPs from apolipoprotein (apo) E3 and apoE4 knock-in mice. We observed that the latter group, which is a model for Alzheimer's disease, exhibited wider DSs of both types from a young age, with a larger effect size for DS type 2, likely reflecting early pathophysiological alterations in the EC-DG network, such as hyperactivity. In addition to the applicability of the method in expanding the study of DS types, our results show that their waveforms carry information about their origins, suggesting different underlying network dynamics and roles in memory processing.
Collapse
Affiliation(s)
- Rodrigo M.M. Santiago
- Computational Neurophysiology Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil
| | - Vítor Lopes-dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Emily A. Aery Jones
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Adriano B.L. Tort
- Computational Neurophysiology Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil
| |
Collapse
|
9
|
Hassonizadeh Falahieh K, Sarkaki A, Edalatmanesh M, Gharib Naseri MK, Farbood Y. Ellagic acid alleviates motor, cognitive and hippocampal electrical activity deficits in the male rats with 2-vessel occlusion cerebral ischemia/reperfusion. AVICENNA JOURNAL OF PHYTOMEDICINE 2023; 13:651-664. [PMID: 38106628 PMCID: PMC10719720 DOI: 10.22038/ajp.2023.22787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 12/19/2023]
Abstract
Objective Cerebral ischemia/reperfusion (I/R) has been known as a major cause of inability and mortality worldwide. Ellagic acid (EA) has many pharmacological effects including antioxidant, antithrombotic and neurorestoration activities. The aim of this study was evaluation of the effects of EA on motor and cognitive behaviors, hippocampal local field potential (LFP), brain oxidative stress in male rats with cerebral 2-vessel occlusion ischemia/reperfusion (2VO I/R). Materials and Methods Forty-eight male Wistar rats (250-300 g) were assigned into six groups. 1) The Sham: rats were treated with DMSO10%/normal saline as solvent of EA 3 times daily for 1 week; 2) I/R+Veh; I/R rats received vehicle; 3-5) EA-treated groups: I/R rats received 50, 75, or 100 mg/kg EA; and 6) Cont+EA100: intact rats received EA. The cerebral 2VO I/R was made by the bilateral common carotid arteries closing for 20 min followed by reperfusion. The behavioral tests and hippocampal LFP recording were performed after treatment with EA. The oxidative stress parameters were assayed by special ELISA kits. Results Cerebral 2VO I/R significantly decreased motor coordination, memory and hippocampal LFP and significantly increased oxidative stress. Treatment with EA improved all I/R complications. Conclusion The current findings showed that treatment of I/R rats with EA could reverse cognitive and motor functions, and improve the LFP and oxidative stress markers. So, effects of EA on cognitive and motor function may at least in part, be due to its antioxidative actions.
Collapse
Affiliation(s)
- Khadijeh Hassonizadeh Falahieh
- Department of Physiology, College of Sciences, Science and Research Branch, Islamic Azad University, Fars, Iran
- Department of Physiology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Alireza Sarkaki
- Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Mohammadamin Edalatmanesh
- Department of Physiology, College of Sciences, Science and Research Branch, Islamic Azad University, Fars, Iran
- Department of Physiology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Mohammad Kazem Gharib Naseri
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| |
Collapse
|
10
|
Quigley LD, Pendry R, Mendoza ML, Pfeiffer BE, Volk LJ. Experience alters hippocampal and cortical network communication via a KIBRA-dependent mechanism. Cell Rep 2023; 42:112662. [PMID: 37347662 PMCID: PMC10592482 DOI: 10.1016/j.celrep.2023.112662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 04/11/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023] Open
Abstract
Synaptic plasticity is hypothesized to underlie "replay" of salient experience during hippocampal sharp-wave/ripple (SWR)-based ensemble activity and to facilitate systems-level memory consolidation coordinated by SWRs and cortical sleep spindles. It remains unclear how molecular changes at synapses contribute to experience-induced modification of network function. The synaptic protein KIBRA regulates plasticity and memory. To determine the impact of KIBRA-regulated plasticity on circuit dynamics, we recorded in vivo neural activity from wild-type (WT) mice and littermates lacking KIBRA and examined circuit function before, during, and after novel experience. In WT mice, experience altered population activity and oscillatory dynamics in a manner consistent with incorporation of new information content in replay and enhanced hippocampal-cortical communication. While baseline SWR features were normal in KIBRA conditional knockout (cKO) mice, experience-dependent alterations in SWRs were absent. Furthermore, intra-hippocampal and hippocampal-cortical communication during SWRs was disrupted following KIBRA deletion. These results indicate molecular mechanisms that underlie network-level adaptations to experience.
Collapse
Affiliation(s)
- Lilyana D Quigley
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert Pendry
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew L Mendoza
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brad E Pfeiffer
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA; Peter O' Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lenora J Volk
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA; Peter O' Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
11
|
Zhou Z, Norimoto H. Sleep sharp wave ripple and its functions in memory and synaptic plasticity. Neurosci Res 2023; 189:20-28. [PMID: 37045494 DOI: 10.1016/j.neures.2023.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 04/14/2023]
Abstract
Memory is one of the fundamental cognitive functions of brain. The formation and consolidation of memory depend on the hippocampus and sleep. Sharp wave ripple (SWR) is an electrophysiological event which is most frequently observed in the hippocampus during sleep. It represents a highly synchronized neuronal activity pattern which modulates numerous brain regions including the neocortex, subcortical areas, and the hippocampus itself. In this review, we discuss how SWRs link experiences to memories and what happens in the hippocampus and other brain regions during sleep by focusing on synaptic plasticity.
Collapse
Affiliation(s)
- Zhiwen Zhou
- Graduate School of Medicine, Hokkaido University, West 7 North 15 Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Hiroaki Norimoto
- Graduate School of Medicine, Hokkaido University, West 7 North 15 Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| |
Collapse
|
12
|
Kitchigina V, Shubina L. Oscillations in the dentate gyrus as a tool for the performance of the hippocampal functions: Healthy and epileptic brain. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110759. [PMID: 37003419 DOI: 10.1016/j.pnpbp.2023.110759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The dentate gyrus (DG) is part of the hippocampal formation and is essential for important cognitive processes such as navigation and memory. The oscillatory activity of the DG network is believed to play a critical role in cognition. DG circuits generate theta, beta, and gamma rhythms, which participate in the specific information processing performed by DG neurons. In the temporal lobe epilepsy (TLE), cognitive abilities are impaired, which may be due to drastic alterations in the DG structure and network activity during epileptogenesis. The theta rhythm and theta coherence are especially vulnerable in dentate circuits; disturbances in DG theta oscillations and their coherence may be responsible for general cognitive impairments observed during epileptogenesis. Some researchers suggested that the vulnerability of DG mossy cells is a key factor in the genesis of TLE, but others did not support this hypothesis. The aim of the review is not only to present the current state of the art in this field of research but to help pave the way for future investigations by highlighting the gaps in our knowledge to completely appreciate the role of DG rhythms in brain functions. Disturbances in oscillatory activity of the DG during TLE development may be a diagnostic marker in the treatment of this disease.
Collapse
Affiliation(s)
- Valentina Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia.
| | - Liubov Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
13
|
Raven F, Aton SJ. The Engram's Dark Horse: How Interneurons Regulate State-Dependent Memory Processing and Plasticity. Front Neural Circuits 2021; 15:750541. [PMID: 34588960 PMCID: PMC8473837 DOI: 10.3389/fncir.2021.750541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
Brain states such as arousal and sleep play critical roles in memory encoding, storage, and recall. Recent studies have highlighted the role of engram neurons-populations of neurons activated during learning-in subsequent memory consolidation and recall. These engram populations are generally assumed to be glutamatergic, and the vast majority of data regarding the function of engram neurons have focused on glutamatergic pyramidal or granule cell populations in either the hippocampus, amygdala, or neocortex. Recent data suggest that sleep and wake states differentially regulate the activity and temporal dynamics of engram neurons. Two potential mechanisms for this regulation are either via direct regulation of glutamatergic engram neuron excitability and firing, or via state-dependent effects on interneuron populations-which in turn modulate the activity of glutamatergic engram neurons. Here, we will discuss recent findings related to the roles of interneurons in state-regulated memory processes and synaptic plasticity, and the potential therapeutic implications of understanding these mechanisms.
Collapse
Affiliation(s)
| | - Sara J. Aton
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Pofahl M, Nikbakht N, Haubrich AN, Nguyen T, Masala N, Distler F, Braganza O, Macke JH, Ewell LA, Golcuk K, Beck H. Synchronous activity patterns in the dentate gyrus during immobility. eLife 2021; 10:65786. [PMID: 33709911 PMCID: PMC7987346 DOI: 10.7554/elife.65786] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/11/2021] [Indexed: 01/25/2023] Open
Abstract
The hippocampal dentate gyrus is an important relay conveying sensory information from the entorhinal cortex to the hippocampus proper. During exploration, the dentate gyrus has been proposed to act as a pattern separator. However, the dentate gyrus also shows structured activity during immobility and sleep. The properties of these activity patterns at cellular resolution, and their role in hippocampal-dependent memory processes have remained unclear. Using dual-color in vivo two-photon Ca2+ imaging, we show that in immobile mice dentate granule cells generate sparse, synchronized activity patterns associated with entorhinal cortex activation. These population events are structured and modified by changes in the environment; and they incorporate place- and speed cells. Importantly, they are more similar than expected by chance to population patterns evoked during self-motion. Using optogenetic inhibition, we show that granule cell activity is not only required during exploration, but also during immobility in order to form dentate gyrus-dependent spatial memories.
Collapse
Affiliation(s)
- Martin Pofahl
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Negar Nikbakht
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - André N Haubrich
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Theresa Nguyen
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Nicola Masala
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Fabian Distler
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Oliver Braganza
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Jakob H Macke
- Machine Learning in Science, Cluster of Excellence "Machine Learning", University of Tübingen, Germany & Department Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Laura A Ewell
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Kurtulus Golcuk
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Heinz Beck
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V, Bonn, Germany
| |
Collapse
|