1
|
Berardo A, Bacaglio CR, Báez BB, Sambuelli R, Sheikh KA, Lopez PHH. Blockade of Rho-associated kinase prevents inhibition of axon regeneration of peripheral nerves induced by anti-ganglioside antibodies. Neural Regen Res 2024; 19:895-899. [PMID: 37843226 PMCID: PMC10664126 DOI: 10.4103/1673-5374.382258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 06/08/2023] [Accepted: 07/19/2023] [Indexed: 10/17/2023] Open
Abstract
Anti-ganglioside antibodies are associated with delayed/poor clinical recovery in Guillain-Barrè syndrome, mostly related to halted axon regeneration. Cross-linking of cell surface gangliosides by anti-ganglioside antibodies triggers inhibition of nerve repair in in vitro and in vivo paradigms of axon regeneration. These effects involve the activation of the small GTPase RhoA/ROCK signaling pathways, which negatively modulate growth cone cytoskeleton, similarly to well stablished inhibitors of axon regeneration described so far. The aim of this work was to perform a proof of concept study to demonstrate the effectiveness of Y-27632, a selective pharmacological inhibitor of ROCK, in a mouse model of axon regeneration of peripheral nerves, where the passive immunization with a monoclonal antibody targeting gangliosides GD1a and GT1b was previously reported to exert a potent inhibitory effect on regeneration of both myelinated and unmyelinated fibers. Our results demonstrate a differential sensitivity of myelinated and unmyelinated axons to the pro-regenerative effect of Y-27632. Treatment with a total dosage of 9 mg/kg of Y-27632 resulted in a complete prevention of anti-GD1a/GT1b monoclonal antibody-mediated inhibition of axon regeneration of unmyelinated fibers to skin and the functional recovery of mechanical cutaneous sensitivity. In contrast, the same dose showed toxic effects on the regeneration of myelinated fibers. Interestingly, scale down of the dosage of Y-27632 to 5 mg/kg resulted in a significant although not complete recovery of regenerated myelinated axons exposed to anti-GD1a/GT1b monoclonal antibody in the absence of toxicity in animals exposed to only Y-27632. Overall, these findings confirm the in vivo participation of RhoA/ROCK signaling pathways in the molecular mechanisms associated with the inhibition of axon regeneration induced by anti-GD1a/GT1b monoclonal antibody. Our findings open the possibility of therapeutic pharmacological intervention targeting RhoA/Rock pathway in immune neuropathies associated with the presence of anti-ganglioside antibodies and delayed or incomplete clinical recovery after injury in the peripheral nervous system.
Collapse
Affiliation(s)
- Andrés Berardo
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martin Ferreyra, (INIMEC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cristian R. Bacaglio
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martin Ferreyra, (INIMEC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Biológica-Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Cs. Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Bárbara B. Báez
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martin Ferreyra, (INIMEC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Biológica-Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Cs. Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rubén Sambuelli
- Servicio de Anatomía Patológica, Clínica Universitaria Reina Fabiola, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Kazim A. Sheikh
- Department of Neurology, University of Texas Medical School at Houston, Houston, TX, USA
| | - Pablo H. H. Lopez
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martin Ferreyra, (INIMEC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Biológica-Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Cs. Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
Liu Y, Yu R, Wang X, Chen Y, Yin T, Gao Q, Sun L, Zheng Z. Research progress of the effective active ingredients of Astragalus mongholicus in the treatment of diabetic peripheral neuropathy. Biomed Pharmacother 2024; 173:116350. [PMID: 38430632 DOI: 10.1016/j.biopha.2024.116350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most prevalent consequences of diabetes, with a high incidence and disability rate. The DPN's pathogenesis is extremely complex and yet to be fully understood. Persistent high glucose metabolism, nerve growth factor deficiency, microvascular disease, oxidative stress, peripheral nerve cell apoptosis, immune factors, and other factors have been implicated in the pathogenesis of DPN. Astragalus mongholicus is a commonly used plant used to treat DPN in clinical settings. Its rich chemical components mainly include Astragalus polysaccharide, Astragalus saponins, Astragalus flavones, etc., which play a vital role in the treatment of DPN. This review aimed to summarize the pathogenesis of DPN and the studies on the mechanism of the effective components of Astragalus mongholicus in treating DPN. This is of great significance for the effective use of Chinese herbal medicine and the promotion of its status and influence on the world.
Collapse
Affiliation(s)
- Yulian Liu
- Department of Rehabilitation Medicine,The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Runyuan Yu
- Department of Rehabilitation Medicine,The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Xiaoyu Wang
- Department of Rehabilitation Medicine,The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Yuexia Chen
- Department of Skills Training Center,The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Tao Yin
- Department of Rehabilitation Medicine,The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Qiang Gao
- Department of Rehabilitation Medicine,The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Limin Sun
- Department of Rehabilitation Medicine,The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Zuncheng Zheng
- Department of Rehabilitation Medicine,The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China.
| |
Collapse
|
3
|
Breville G, Sukockiene E, Vargas MI, Lascano AM. Emerging biomarkers to predict clinical outcomes in Guillain-Barré syndrome. Expert Rev Neurother 2023; 23:1201-1215. [PMID: 37902064 DOI: 10.1080/14737175.2023.2273386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Guillain-Barré syndrome (GBS) is an immune-mediated poly(radiculo)neuropathy with a variable clinical outcome. Identifying patients who are at risk of suffering from long-term disabilities is a great challenge. Biomarkers are useful to confirm diagnosis, monitor disease progression, and predict outcome. AREAS COVERED The authors provide an overview of the diagnostic and prognostic biomarkers for GBS, which are useful for establishing early treatment strategies and follow-up care plans. EXPERT OPINION Detecting patients at risk of developing a severe outcome may improve management of disease progression and limit potential complications. Several clinical factors are associated with poor prognosis: higher age, presence of diarrhea within 4 weeks of symptom onset, rapid and severe weakness progression, dysautonomia, decreased vital capacity and facial, bulbar, and neck weakness. Biological, neurophysiological and imaging measures of unfavorable outcome include multiple anti-ganglioside antibodies elevation, increased serum and CSF neurofilaments light (NfL) and heavy chain, decreased NfL CSF/serum ratio, hypoalbuminemia, nerve conduction study with early signs of demyelination or axonal loss and enlargement of nerve cross-sectional area on ultrasound. Depicting prognostic biomarkers aims at predicting short-term mortality and need for cardio-pulmonary support, long-term patient functional outcome, guiding treatment decisions and monitoring therapeutic responses in future clinical trials.
Collapse
Affiliation(s)
- Gautier Breville
- Neurology Division, Neuroscience Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Egle Sukockiene
- Neurology Division, Neuroscience Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Maria Isabel Vargas
- Neuroradiology Division, University Hospitals of Geneva, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Agustina M Lascano
- Neurology Division, Neuroscience Department, University Hospitals of Geneva, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Shastri A, Al Aiyan A, Kishore U, Farrugia ME. Immune-Mediated Neuropathies: Pathophysiology and Management. Int J Mol Sci 2023; 24:7288. [PMID: 37108447 PMCID: PMC10139406 DOI: 10.3390/ijms24087288] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Dysfunction of the immune system can result in damage of the peripheral nervous system. The immunological mechanisms, which include macrophage infiltration, inflammation and proliferation of Schwann cells, result in variable degrees of demyelination and axonal degeneration. Aetiology is diverse and, in some cases, may be precipitated by infection. Various animal models have contributed and helped to elucidate the pathophysiological mechanisms in acute and chronic inflammatory polyradiculoneuropathies (Guillain-Barre Syndrome and chronic inflammatory demyelinating polyradiculoneuropathy, respectively). The presence of specific anti-glycoconjugate antibodies indicates an underlying process of molecular mimicry and sometimes assists in the classification of these disorders, which often merely supports the clinical diagnosis. Now, the electrophysiological presence of conduction blocks is another important factor in characterizing another subgroup of treatable motor neuropathies (multifocal motor neuropathy with conduction block), which is distinct from Lewis-Sumner syndrome (multifocal acquired demyelinating sensory and motor neuropathy) in its response to treatment modalities as well as electrophysiological features. Furthermore, paraneoplastic neuropathies are also immune-mediated and are the result of an immune reaction to tumour cells that express onconeural antigens and mimic molecules expressed on the surface of neurons. The detection of specific paraneoplastic antibodies often assists the clinician in the investigation of an underlying, sometimes specific, malignancy. This review aims to discuss the immunological and pathophysiological mechanisms that are thought to be crucial in the aetiology of dysimmune neuropathies as well as their individual electrophysiological characteristics, their laboratory features and existing treatment options. Here, we aim to present a balance of discussion from these diverse angles that may be helpful in categorizing disease and establishing prognosis.
Collapse
Affiliation(s)
- Abhishek Shastri
- Central and North West London NHS Foundation Trust, London NW1 3AX, UK
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Uday Kishore
- Department of Veterinary Medicine, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow G51 4TF, UK
| |
Collapse
|
5
|
Harsini S, Rezaei N. Autoimmune diseases. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Shahrizaila N, Lehmann HC, Kuwabara S. Guillain-Barré syndrome. Lancet 2021; 397:1214-1228. [PMID: 33647239 DOI: 10.1016/s0140-6736(21)00517-1] [Citation(s) in RCA: 252] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/07/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Guillain-Barré syndrome is the most common cause of acute flaccid paralysis worldwide. Most patients present with an antecedent illness, most commonly upper respiratory tract infection, before the onset of progressive motor weakness. Several microorganisms have been associated with Guillain-Barré syndrome, most notably Campylobacter jejuni, Zika virus, and in 2020, the severe acute respiratory syndrome coronavirus 2. In C jejuni-related Guillain-Barré syndrome, there is good evidence to support an autoantibody-mediated immune process that is triggered by molecular mimicry between structural components of peripheral nerves and the microorganism. Making a diagnosis of so-called classical Guillain-Barré syndrome is straightforward; however, the existing diagnostic criteria have limitations and can result in some variants of the syndrome being missed. Most patients with Guillain-Barré syndrome do well with immunotherapy, but a substantial proportion are left with disability, and death can occur. Results from the International Guillain-Barré Syndrome Outcome Study suggest that geographical variations exist in Guillain-Barré syndrome, including insufficient access to immunotherapy in low-income countries. There is a need to provide improved access to treatment for all patients with Guillain-Barré syndrome, and to develop effective disease-modifying therapies that can limit the extent of nerve injury. Clinical trials are currently underway to investigate some of the potential therapeutic candidates, including complement inhibitors, which, together with emerging data from large international collaborative studies on the syndrome, will contribute substantially to understanding the many facets of this disease.
Collapse
Affiliation(s)
- Nortina Shahrizaila
- Neurology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Helmar C Lehmann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
7
|
Rios R, Jablonka-Shariff A, Broberg C, Snyder-Warwick AK. Macrophage roles in peripheral nervous system injury and pathology: Allies in neuromuscular junction recovery. Mol Cell Neurosci 2021; 111:103590. [PMID: 33422671 DOI: 10.1016/j.mcn.2021.103590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/15/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022] Open
Abstract
Peripheral nerve injuries remain challenging to treat despite extensive research on reparative processes at the injury site. Recent studies have emphasized the importance of immune cells, particularly macrophages, in recovery from nerve injury. Macrophage plasticity enables numerous functions at the injury site. At early time points, macrophages perform inflammatory functions, but at later time points, they adopt pro-regenerative phenotypes to support nerve regeneration. Research has largely been limited, however, to the injury site. The neuromuscular junction (NMJ), the synapse between the nerve terminal and end target muscle, has received comparatively less attention, despite the importance of NMJ reinnervation for motor recovery. Macrophages are present at the NMJ following nerve injury. Moreover, in denervating diseases, such as amyotrophic lateral sclerosis (ALS), macrophages may also play beneficial roles at the NMJ. Evidence of positive macrophages roles at the injury site after peripheral nerve injury and at the NMJ in denervating pathologies suggest that macrophages may promote NMJ reinnervation. In this review, we discuss the intersection of nerve injury and immunity, with a focus on macrophages.
Collapse
Affiliation(s)
- Rachel Rios
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Albina Jablonka-Shariff
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Curtis Broberg
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America.
| |
Collapse
|
8
|
Asthana P, Zhang G, Sheikh KA, Him Eddie Ma C. Heat shock protein is a key therapeutic target for nerve repair in autoimmune peripheral neuropathy and severe peripheral nerve injury. Brain Behav Immun 2021; 91:48-64. [PMID: 32858161 DOI: 10.1016/j.bbi.2020.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
Guillain-Barré syndrome (GBS) is an autoimmune peripheral neuropathy and a common cause of neuromuscular paralysis. Preceding infection induces the production of anti-ganglioside (GD) antibodies attacking its own peripheral nerves. In severe proximal peripheral nerve injuries that require long-distance axon regeneration, motor functional recovery is virtually nonexistent. Damaged axons fail to regrow and reinnervate target muscles. In mice, regenerating axons must reach the target muscle within 35 days (critical period) to reform functional neuromuscular junctions and regain motor function. Successful functional recovery depends on the rate of axon regeneration and debris removal (Wallerian degeneration) after nerve injury. The innate-immune response of the peripheral nervous system to nerve injury such as timing and magnitude of cytokine production is crucial for Wallerian degeneration. In the current study, forced expression of human heat shock protein (hHsp) 27 completely reversed anti-GD-induced inhibitory effects on nerve repair assessed by animal behavioral assays, electrophysiology and histology studies, and the beneficial effect was validated in a second mouse line of hHsp27. The protective effect of hHsp27 on prolonged muscle denervation was examined by performing repeated sciatic nerve crushes to delay regenerating axons from reaching distal muscle from 37 days up to 55 days. Strikingly, hHsp27 was able to extend the critical period of motor functional recovery for up to 55 days and preserve the integrity of axons and mitochondria in distal nerves. Cytokine array analysis demonstrated that a number of key cytokines which are heavily involved in the early phase of innate-immune response of Wallerian degeneration, were found to be upregulated in the sciatic nerve lysates of hHsp27 Tg mice at 1 day postinjury. However, persistent hyperinflammatory mediator changes were found after chronic denervation in sciatic nerves of littermate mice, but remained unchanged in hHsp27 Tg mice. Taken together, the current study provides insight into the development of therapeutic strategies to enhance muscle receptiveness (reinnervation) by accelerating axon regeneration and Wallerian degeneration.
Collapse
Affiliation(s)
- Pallavi Asthana
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Gang Zhang
- Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston TX 77030, USA
| | - Kazim A Sheikh
- Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston TX 77030, USA
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Hong Kong Special Administrative Region; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
9
|
Johnson TP, Nath A. Neurological syndromes driven by postinfectious processes or unrecognized persistent infections. Curr Opin Neurol 2018; 31:318-324. [PMID: 29547402 PMCID: PMC11391419 DOI: 10.1097/wco.0000000000000553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The immune system serves a critical role in protecting the host against various pathogens. However, under circumstances, once triggered by the infectious process, it may be detrimental to the host. This may be as a result of nonspecific immune activation or due to a targeted immune response to a specific host antigen. In this opinion piece, we discuss the underlying mechanisms that lead to such an inflammatory or autoimmune syndrome affecting the nervous system. We examine these hypotheses in the context of recent emerging infections to provide mechanistic insight into the clinical manifestations and rationale for immunomodulatory therapy. RECENT FINDINGS Some pathogens endure longer than previously thought. Persistent infections may continue to drive immune responses resulting in chronic inflammation or development of autoimmune processes, resulting in damage to the nervous system. Patients with genetic susceptibilities in immune regulation may be particularly vulnerable to pathogen driven autoimmune responses. SUMMARY The presence of prolonged pathogens may result in chronic immune stimulations that drives immune-mediated neurologic complications. Understanding the burden and mechanisms of these processes is challenging but important.
Collapse
Affiliation(s)
- Tory P Johnson
- Richard T Johnson Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Motamed-Gorji N, Matin N, Tabatabaie O, Pavone P, Romano C, Falsaperla R, Vitaliti G. Biological Drugs in Guillain-Barré Syndrome: An Update. Curr Neuropharmacol 2018; 15:938-950. [PMID: 27964705 PMCID: PMC5652014 DOI: 10.2174/1570159x14666161213114904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 12/25/2022] Open
Abstract
Background: Guillain-Barré Syndrome (GBS) is currently considered the most common global cause of acute flaccid paralysis. Currently, standard therapy for Guillain-Barré Syndrome includes intravenous immunoglobulin or plasma exchange. Despite medical advances regarding these treatments, many treated patients do not reach full recovery. Therefore several biological agents have attracted the attentions from researchers during the last decades, and various studies have investigated their role in Guillain-Barré Syndrome. Objective: The present study aims to address emerging biological approaches to GBS while considering their efficiency and safety in treating the disease. Materials and Methods: An extensive electronic literature search was conducted by two researchers from April 2016 to July 2016. Original articles, clinical trials, systematic reviews (with or without meta-analysis) and case reports were selected. Titles and abstracts of papers were screened by reviewers to determine whether they met the eligibility criteria, and full texts of the selected articles were retrieved. Results: Herein authors focused on the literature data concerning emerging biological therapeutic agents, namely anti-C5 monoclonal antibody (Eculizumab), anti-C1q monoclonal antibody, anti-T cell monoclonal antibody, anti-CD2 monoclonal antibody, anti L-selectin monoclonal antibody, anti-CD20 monoclonal antibody (Rituximab), anti-CD52 monoclonal antibody (Alemtuzumab) and cytokine targets. By far, none of these agents have been approved for the treatment of GBS by FDA. Conclusion: Literature findings represented in current review herald promising results for using these biological targets. Current review represents a summary of what is already in regards and what progress is required to improve the immunotherapeutic approach of treating GBS via future studies.
Collapse
Affiliation(s)
| | - Nassim Matin
- Department of Neurology, Massachusetts General Hospital, Boston, MA. United States
| | - Omidreza Tabatabaie
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA. United States
| | - Piero Pavone
- General Paediatrics Operative Unit, Policlinico-Vittorio Emanuele University Hospital, University of Catania, Catania. Italy
| | - Catia Romano
- General Paediatrics Operative Unit, Policlinico-Vittorio Emanuele University Hospital, University of Catania, Catania. Italy
| | - Raffaele Falsaperla
- General Paediatrics Operative Unit, Policlinico-Vittorio Emanuele University Hospital, University of Catania, Catania. Italy
| | - Giovanna Vitaliti
- General Paediatrics Operative Unit, Policlinico-Vittorio Emanuele University Hospital, University of Catania, Catania. Italy
| |
Collapse
|
11
|
Zhang G, Sheikh KA. Role of Fcγ Receptor Mediated Inflammation in Immune Neuropathies. ACTA ACUST UNITED AC 2017; 8. [PMID: 33178482 PMCID: PMC7654963 DOI: 10.4172/2155-9899.1000490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Gang Zhang
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kazim A Sheikh
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
12
|
Pinto-Díaz CA, Rodríguez Y, Monsalve DM, Acosta-Ampudia Y, Molano-González N, Anaya JM, Ramírez-Santana C. Autoimmunity in Guillain-Barré syndrome associated with Zika virus infection and beyond. Autoimmun Rev 2017; 16:327-334. [PMID: 28216074 DOI: 10.1016/j.autrev.2017.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases share common immunopathogenic mechanisms (i.e., the autoimmune tautology), which explain the clinical similarities among them as well as their familial clustering. Guillain-Barré syndrome (GBS), an autoimmune peripheral neuropathy, has been recently associated with Zika virus (ZIKV) infection. Based on a series of cases, this review article provides a comparative analysis of GBS associated with ZIKV infection, contrasted with the general characteristics of GBS in light of the autoimmune tautology, including gender differences in prevalence, subphenotypes, polyautoimmunity, familial autoimmunity, age at onset, pathophysiology, ecology, genetics, ancestry, and treatment.
Collapse
Affiliation(s)
- Carlos A Pinto-Díaz
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63-C-69, Bogotá, Colombia
| | - Yhojan Rodríguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63-C-69, Bogotá, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63-C-69, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63-C-69, Bogotá, Colombia
| | - Nicolás Molano-González
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63-C-69, Bogotá, Colombia
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63-C-69, Bogotá, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63-C-69, Bogotá, Colombia.
| |
Collapse
|
13
|
Goldman AS, Schmalstieg EJ, Dreyer CF, Schmalstieg FC, Goldman DA. Franklin Delano Roosevelt's (FDR's) (1882-1945) 1921 neurological disease revisited; the most likely diagnosis remains Guillain-Barré syndrome. JOURNAL OF MEDICAL BIOGRAPHY 2016; 24:452-459. [PMID: 26508622 DOI: 10.1177/0967772015605738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In 2003, we published evidence that the most likely cause of FDR's 1921 neurological disease was Guillain-Barré syndrome. Afterwards, several historians and neurologists stated in their publications that FDR had paralytic poliomyelitis. However, significant criticism of our article or new support for that diagnosis was not revealed. One critic claimed that FDR's cerebrospinal fluid indicated poliomyelitis, but we did not find evidence that a lumbar puncture was performed. The diagnosis of FDR's neurological disease still depends upon documented clinical abnormalities. His age, prolonged symmetric ascending paralysis, transient numbness, protracted dysaesthesia (pain on slight touch), facial paralysis, bladder and bowel dysfunction, and absence of meningismus are typical of Guillain-Barré syndrome and are inconsistent with paralytic poliomyelitis. FDR's prolonged fever was atypical for both diseases. Finally, permanent paralysis, though commoner in paralytic poliomyelitis, is frequent in Guillain-Barré syndrome. Thus, the clinical findings indicate the most likely diagnosis in FDR's case remains Guillain-Barré syndrome.
Collapse
|
14
|
Rozés Salvador V, Heredia F, Berardo A, Palandri A, Wojnacki J, Vivinetto AL, Sheikh KA, Caceres A, Lopez PHH. Anti-glycan antibodies halt axon regeneration in a model of Guillain Barrè Syndrome axonal neuropathy by inducing microtubule disorganization via RhoA-ROCK-dependent inactivation of CRMP-2. Exp Neurol 2016; 278:42-53. [PMID: 26804001 DOI: 10.1016/j.expneurol.2016.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
Several reports have linked the presence of high titers of anti-Gg Abs with delayed recovery/poor prognosis in GBS. In most cases, failure to recover is associated with halted/deficient axon regeneration. Previous work identified that monoclonal and patient-derived anti-Gg Abs can act as inhibitory factors in an animal model of axon regeneration. Further studies using primary dorsal root ganglion neuron (DRGn) cultures demonstrated that anti-Gg Abs can inhibit neurite outgrowth by targeting gangliosides via activation of the small GTPase RhoA and its associated kinase (ROCK), a signaling pathway common to other established inhibitors of axon regeneration. We aimed to study the molecular basis of the inhibitory effect of anti-Gg abs on neurite outgrowth by dissecting the molecular dynamics of growth cones (GC) cytoskeleton in relation to the spatial-temporal analysis of RhoA activity. We now report that axon growth inhibition in DRGn induced by a well characterized mAb targeting gangliosides GD1a/GT1b involves: i) an early RhoA/ROCK-independent collapse of lamellipodia; ii) a RhoA/ROCK-dependent shrinking of filopodia; and iii) alteration of GC microtubule organization/and presumably dynamics via RhoA/ROCK-dependent phosphorylation of CRMP-2 at threonine 555. Our results also show that mAb 1B7 inhibits peripheral axon regeneration in an animal model via phosphorylation/inactivation of CRMP-2 at threonine 555. Overall, our data may help to explain the molecular mechanisms underlying impaired nerve repair in GBS. Future work should define RhoA-independent pathway/s and effectors regulating actin cytoskeleton, thus providing an opportunity for the design of a successful therapy to guarantee an efficient target reinnervation.
Collapse
Affiliation(s)
- Victoria Rozés Salvador
- Laboratory of Neurobiology, Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Argentina
| | - Florencia Heredia
- Laboratory of Neurobiology, Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Argentina
| | - Andrés Berardo
- Laboratory of Neurobiology, Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Argentina
| | - Anabela Palandri
- Laboratory of Neurobiology, Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Argentina
| | - Jose Wojnacki
- Laboratory of Neurobiology, Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Argentina
| | - Ana L Vivinetto
- Laboratory of Neurobiology, Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Argentina
| | - Kazim A Sheikh
- Department of Neurology, University of Texas Medical School at Houston, Houston, USA
| | - Alfredo Caceres
- Laboratory of Neurobiology, Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Argentina
| | - Pablo H H Lopez
- Laboratory of Neurobiology, Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
15
|
Asthana P, Vong JSL, Kumar G, Chang RCC, Zhang G, Sheikh KA, Ma CHE. Dissecting the Role of Anti-ganglioside Antibodies in Guillain-Barré Syndrome: an Animal Model Approach. Mol Neurobiol 2015; 53:4981-91. [PMID: 26374552 DOI: 10.1007/s12035-015-9430-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/07/2015] [Indexed: 12/19/2022]
Abstract
Guillain-Barré syndrome (GBS) is an autoimmune polyneuropathy disease affecting the peripheral nervous system (PNS). Most of the GBS patients experienced neurological symptoms such as paresthesia, weakness, pain, and areflexia. There are also combinations of non-neurological symptoms which include upper respiratory tract infection and diarrhea. One of the major causes of GBS is due largely to the autoantibodies against gangliosides located on the peripheral nerves. Gangliosides are sialic acid-bearing glycosphingolipids consisting of a ceramide lipid anchor with one or more sialic acids attached to a neutral sugar backbone. Molecular mimicry between the outer components of oligosaccharide of gangliosides on nerve membrane and lipo-oligosaccharide of microbes is thought to trigger the autoimmunity. Intra-peritoneal implantation of monoclonal ganglioside antibodies secreting hybridoma into animals induced peripheral neuropathy. Recent studies demonstrated that injection of synthesized anti-ganglioside antibodies raised by hybridoma cells into mice initiates immune response against peripheral nerves, and eventually failure in peripheral nerve regeneration. Accumulating evidences indicate that the conjugation of anti-ganglioside monoclonal antibodies to activating FcγRIII present on the circulating macrophages inhibits axonal regeneration. The activation of RhoA signaling pathways is also involved in neurite outgrowth inhibition. However, the link between these two molecular events remains unresolved and requires further investigation. Development of anti-ganglioside antagonists can serve as targeted therapy for the treatment of GBS and will open a new approach of drug development with maximum efficacy and specificity.
Collapse
Affiliation(s)
- Pallavi Asthana
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong, People's Republic of China
| | - Joaquim Si Long Vong
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong, People's Republic of China
| | - Gajendra Kumar
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong, People's Republic of China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | - Gang Zhang
- Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Kazim A Sheikh
- Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Chi Him Eddie Ma
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong, People's Republic of China. .,Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Tat Chee Avenue, Hong Kong, People's Republic of China. .,State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Hong Kong, People's Republic of China.
| |
Collapse
|
16
|
Anti-Ganglioside Antibodies Induce Nodal and Axonal Injury via Fcγ Receptor-Mediated Inflammation. J Neurosci 2015; 35:6770-85. [PMID: 25926454 DOI: 10.1523/jneurosci.4926-14.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Guillain-Barré syndrome (GBS) is a postinfectious autoimmune neuropathy and anti-ganglioside antibodies (Abs) are strongly associated with this disorder. Several studies have implied that specific anti-ganglioside Abs induce neuropathy in patients with axonal forms of GBS. To study the mechanisms of anti-ganglioside Abs-induced neuropathy, we established a new passive transfer mouse model by L5 spinal nerve transection (L5SNT; modified Chung's model) and systemic administration of anti-ganglioside Abs. L5SNT causes degeneration of a small proportion of fibers that constitute sciatic nerve and its branches, but importantly breaks the blood-nerve barrier, which allows access to circulating Abs and inflammatory cells. Our studies indicate that, in this mouse model, anti-ganglioside Abs induce sequential nodal and axonal injury of intact myelinated nerve fibers, recapitulating pathologic features of human disease. Notably, our results showed that immune complex formation and the activating Fc gamma receptors (FcγRs) were involved in the anti-ganglioside Abs-mediated nodal and axonal injury in this model. These studies provide new evidence that the activating FcγRs-mediated inflammation plays a critical role in anti-ganglioside Abs-induced neuropathy (injury to intact nerve fibers) in GBS.
Collapse
|
17
|
Yi Wong AH, Yuki N. Miller Fisher syndrome is a nodo-paranodopathy, but not a myelinopathy. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.14.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Miller Fisher syndrome, characterized by ophthalmoplegia, ataxia and areflexia, is a variant of Guillain–Barré syndrome. There have been controversies over the electrophysiological studies of Miller Fisher syndrome, as both demyelinating and axonal changes have been reported. In recent years, reversible conduction failure has been reported in patients with Miller Fisher syndrome with the use of serial nerve conduction studies. The similarity between Miller Fisher syndrome and axonal Guillain–Barré syndrome has led to the suggestion of a common autoimmune mechanism at the nodes and paranodes.
Collapse
Affiliation(s)
- Anna Hiu Yi Wong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nobuhiro Yuki
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
18
|
|
19
|
Neu3 sialidase-mediated ganglioside conversion is necessary for axon regeneration and is blocked in CNS axons. J Neurosci 2014; 34:2477-92. [PMID: 24523539 DOI: 10.1523/jneurosci.4432-13.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PNS axons have a high intrinsic regenerative ability, whereas most CNS axons show little regenerative response. We show that activation of Neu3 sialidase, also known as Neuraminidase-3, causing conversion of GD1a and GT1b to GM1 ganglioside, is an essential step in regeneration occurring in PNS (sensory) but not CNS (retinal) axons in adult rat. In PNS axons, axotomy activates Neu3 sialidase, increasing the ratio of GM1/GD1a and GM1/GT1b gangliosides immediately after injury in vitro and in vivo. No change in the GM1/GD1a ratio after axotomy was observed in retinal axons (in vitro and in vivo), despite the presence of Neu3 sialidase. Externally applied sialidase converted GD1a ganglioside to GM1 and rescued axon regeneration in CNS axons and in PNS axons after Neu3 sialidase blockade. Neu3 sialidase activation in DRGs is initiated by an influx of extracellular calcium, activating P38MAPK and then Neu3 sialidase. Ganglioside conversion by Neu3 sialidase further activates the ERK pathway. In CNS axons, P38MAPK and Neu3 sialidase were not activated by axotomy.
Collapse
|
20
|
Zhang G, Bogdanova N, Gao T, Song JJ, Cragg MS, Glennie MJ, Sheikh KA. Fcγ receptor-mediated inflammation inhibits axon regeneration. PLoS One 2014; 9:e88703. [PMID: 24523933 PMCID: PMC3921223 DOI: 10.1371/journal.pone.0088703] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/10/2014] [Indexed: 01/03/2023] Open
Abstract
Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Nataliia Bogdanova
- Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Tong Gao
- Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Julia J. Song
- Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Mark S. Cragg
- Antibody and Vaccine Group, Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Martin J. Glennie
- Antibody and Vaccine Group, Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Kazim A. Sheikh
- Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, United States of America
| |
Collapse
|
21
|
Shahrizaila N, Yuki N. Antiganglioside antibodies in Guillain–Barré syndrome and its related conditions. Expert Rev Neurother 2014; 11:1305-13. [DOI: 10.1586/ern.11.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Lehmann HC, Hughes RAC, Kieseier BC, Hartung HP. Recent developments and future directions in Guillain-Barré syndrome. J Peripher Nerv Syst 2013; 17 Suppl 3:57-70. [PMID: 23279434 DOI: 10.1111/j.1529-8027.2012.00433.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Guillain-Barré syndrome (GBS) encompasses a spectrum of acquired neuropathic conditions characterized by inflammatory demyelinating or axonal peripheral neuropathy with acute onset. Clinical and experimental studies in the past years have led to substantial progress in epidemiology, pathogenesis of GBS variants, and identification of prognostic factors relevant to treatment. In this review we provide an overview and critical assessment of the most recent developments and future directions in GBS research.
Collapse
Affiliation(s)
- Helmar C Lehmann
- Department of Neurology, Heinrich-Heine-University, Medical School, Moorenstrasse 5, Düsseldorf, Germany
| | | | | | | |
Collapse
|
23
|
Geuna S, Gnavi S, Perroteau I, Tos P, Battiston B. Tissue Engineering and Peripheral Nerve Reconstruction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:35-57. [DOI: 10.1016/b978-0-12-410499-0.00002-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Oehler E, Le Hénaff O, Ghawche F. Manifestations neurologiques de la dengue. Presse Med 2012; 41:e547-52. [DOI: 10.1016/j.lpm.2012.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/16/2012] [Accepted: 03/06/2012] [Indexed: 11/17/2022] Open
|
25
|
Therapeutics to promote CNS repair: a natural human neuron-binding IgM regulates membrane-raft dynamics and improves motility in a mouse model of multiple sclerosis. J Clin Immunol 2012; 33 Suppl 1:S50-6. [PMID: 22990667 DOI: 10.1007/s10875-012-9795-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
Abstract
We have discovered a role for natural autoantibodies in central nervous system repair, remyelination and axon protection. These natural human antibodies are of the immunoglobulin M (IgM) isotype, and they bind to the surface of neural cells. The epitope of the antibody includes sialic acid because treatment with sialidase disrupts the binding. A fully human recombinant form of one of these IgMs, rHIgM12, has the same properties as the serum-derived IgM. rHIgM12 enhanced polarized axonal outgrowth from primary neurons when presented as a substrate in vitro and improved motor functions in chronically Theiler's virus-infected SJL mice, a model of MS. rHIgM12 bound to neuronal surfaces and induced cholesterol and ganglioside (GM1) clustering, indicating that rHIgM12 functions through a mechanism of axonal membrane stabilization. Our work demonstrates that a natural human neuron-binding IgM can regulate membrane domain dynamics. This antibody has the potential to improve neurologic disease.
Collapse
|
26
|
Affiliation(s)
- Nobuhiro Yuki
- Department of Medicine, National University of Singapore, Singapore.
| | | |
Collapse
|
27
|
Zhang G, Lehmann HC, Bogdanova N, Gao T, Zhang J, Sheikh KA. Erythropoietin enhances nerve repair in anti-ganglioside antibody-mediated models of immune neuropathy. PLoS One 2011; 6:e27067. [PMID: 22046448 PMCID: PMC3203932 DOI: 10.1371/journal.pone.0027067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 10/09/2011] [Indexed: 12/02/2022] Open
Abstract
Guillain-Barré syndrome (GBS) is a monophasic immune neuropathic disorder in which a significant proportion of patients have incomplete recovery. The patients with incomplete recovery almost always have some degree of failure of axon regeneration and target reinnervation. Anti-ganglioside antibodies (Abs) are the most commonly recognized autoimmune markers in all forms of GBS and specific Abs are associated with the slow/poor recovery. We recently demonstrated that specific anti-ganglioside Abs inhibit axonal regeneration and nerve repair in preclinical models by activation of small GTPase RhoA and its downstream effectors. The objective of this study was to determine whether erythropoietin (EPO), a pleiotropic cytokine with neuroprotective and neurotrophic properties, enhances nerve regeneration in preclinical cell culture and animal models of autoimmune neuropathy/nerve repair generated with monoclonal and patient derived Abs. Primary neuronal cultures and a standardized sciatic crush nerve model were used to assess the efficacy of EPO in reversing inhibitory effects of anti-ganglioside Abs on nerve repair. We found that EPO completely reversed the inhibitory effects of anti-ganglioside Abs on axon regeneration in cell culture models and significantly improved nerve regeneration/repair in an animal model. Moreover, EPO-induced proregenerative effects in nerve cells are through EPO receptors and Janus kinase 2/Signal transducer and activator of transcription 5 pathway and not via early direct modulation of small GTPase RhoA. These preclinical studies indicate that EPO is a viable candidate drug to develop further for neuroprotection and enhancing nerve repair in patients with GBS.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Helmar C. Lehmann
- Department of Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nataliia Bogdanova
- Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Tong Gao
- Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Jiangyang Zhang
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kazim A. Sheikh
- Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Sheikh KA. Autoantobodies activate small GTPase RhoA to modulate neurite outgrowth. Small GTPases 2011; 2:233-238. [PMID: 22145097 DOI: 10.4161/sgtp.2.4.17115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/18/2011] [Accepted: 07/05/2011] [Indexed: 11/19/2022] Open
Abstract
This review illustrates an example of adaptive immune responses (auto-antibodies) modulating growth/repair behavior of neurons in the disease context of Guillain-Barré syndrome (GBS), which is a prototypic autoimmune, acute monophasic disorder of the peripheral nerves that is the commonest cause of acute flaccid paralysis worldwide. Anti-ganglioside antibodies (Abs) are the most commonly recognized autoimmune markers in all forms of GBS and these Abs are associated with poor recovery. Extent of axonal injury and failure of axonal regeneration are critical determinants of recovery after GBS. In this clinical context, our group examined the hypothesis that anti-ganglioside Abs adversely affect axon regeneration after peripheral nerve injury. We show that anti-ganglioside Abs inhibit axon regeneration in preclinical cell culture and animal models. This inhibition is mediated by activation of small GTPase RhoA and its downstream effector Rho kinase (ROCK) by modulation of growth cone extension and associated neurite elongation in neuronal cultures. Our studies suggest that RhoA and ROCK are potential targets for development of novel therapeutic strategies to enhance nerve repair.
Collapse
Affiliation(s)
- Kazim A Sheikh
- Department of Neurology; University of Texas Medical School at Houston; Houston, TX USA
| |
Collapse
|
29
|
Wenzel K, Rajakumar A, Haase H, Geusens N, Hubner N, Schulz H, Brewer J, Roberts L, Hubel CA, Herse F, Hering L, Qadri F, Lindschau C, Wallukat G, Pijnenborg R, Heidecke H, Riemekasten G, Luft FC, Muller DN, Lamarca B, Dechend R. Angiotensin II type 1 receptor antibodies and increased angiotensin II sensitivity in pregnant rats. Hypertension 2011; 58:77-84. [PMID: 21576625 DOI: 10.1161/hypertensionaha.111.171348] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pregnant women who subsequently develop preeclampsia are highly sensitive to infused angiotensin (Ang) II; the sensitivity persists postpartum. Activating autoantibodies against the Ang II type 1 (AT(1)) receptor are present in preeclampsia. In vitro and in vivo data suggest that they could be involved in the disease process. We generated and purified activating antibodies against the AT(1) receptor (AT(1)-AB) by immunizing rabbits against the AFHYESQ epitope of the second extracellular loop, which is the binding epitope of endogenous activating autoantibodies against AT(1) from patients with preeclampsia. We then purified AT(1)-AB using affinity chromatography with the AFHYESQ peptide. We were able to detect AT(1)-AB both by ELISA and a functional bioassay. We then passively transferred AT(1)-AB into pregnant rats, alone or combined with Ang II. AT(1)-AB activated protein kinase C-α and extracellular-related kinase 1/2. Passive transfer of AT(1)-AB alone or Ang II (435 ng/kg per minute) infused alone did not induce a preeclampsia-like syndrome in pregnant rats. However, the combination (AT(1)-AB plus Ang II) induced hypertension, proteinuria, intrauterine growth retardation, and arteriolosclerosis in the uteroplacental unit. We next performed gene-array profiling of the uteroplacental unit and found that hypoxia-inducible factor 1α was upregulated by Ang II plus AT(1)-AB, which we then confirmed by Western blotting in villous explants. Furthermore, endothelin 1 was upregulated in endothelial cells by Ang II plus AT(1)-AB. We show that AT(1)-AB induces Ang II sensitivity. Our mechanistic study supports the existence of an "autoimmune-activating receptor" that could contribute to Ang II sensitivity and possible to preeclampsia.
Collapse
|
30
|
Shahrizaila N, Yuki N. The role of immunotherapy in Guillain-Barré syndrome: understanding the mechanism of action. Expert Opin Pharmacother 2011; 12:1551-60. [DOI: 10.1517/14656566.2011.564160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Anti-ganglioside antibody-mediated activation of RhoA induces inhibition of neurite outgrowth. J Neurosci 2011; 31:1664-75. [PMID: 21289175 DOI: 10.1523/jneurosci.3829-10.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Anti-ganglioside antibodies (Abs) are strongly associated with axonal forms of Guillain Barré syndrome (GBS). Some studies indicate that these Abs, including those with GD1a reactivity, are associated with poor prognosis and/or incomplete recovery. We recently demonstrated that a disease-relevant anti-ganglioside Ab with GD1a reactivity inhibits axon regeneration after PNS injury in an animal model (Lehmann et al., 2007). An implication of these findings is that anti-GD1a Abs can mediate inhibition of axon regeneration and limit recovery in some patients with GBS. The downstream inhibitory intracellular signaling that mediates anti-ganglioside Ab-induced axon inhibition remains unclear. In the current study, we show that disease-relevant and GBS patient's anti-ganglioside Abs can inhibit neurite outgrowth in dissociated primary neuronal cultures. Activation of small GTPase RhoA and its key downstream effector Rho kinase (ROCK) are critical mediators of growth cone and neurite outgrowth inhibition. Therefore, we examined the role of these intracellular signaling molecules in our primary neuronal cultures by molecular and pharmacologic approaches. Our results show that the Ab-mediated inhibition of neurite outgrowth involves the activation of RhoA and ROCK pathway and this activation is through the engagement of specific cell-surface gangliosides by Abs. In summary, these studies directly link patient autoantibodies to an intracellular inhibitory signaling pathway involved in anti-ganglioside Ab-mediated inhibition of neurite outgrowth.
Collapse
|