1
|
Fabiano M, Oikawa N, Kerksiek A, Furukawa JI, Yagi H, Kato K, Schweizer U, Annaert W, Kang J, Shen J, Lütjohann D, Walter J. Presenilin Deficiency Results in Cellular Cholesterol Accumulation by Impairment of Protein Glycosylation and NPC1 Function. Int J Mol Sci 2024; 25:5417. [PMID: 38791456 PMCID: PMC11121565 DOI: 10.3390/ijms25105417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Presenilin proteins (PS1 and PS2) represent the catalytic subunit of γ-secretase and play a critical role in the generation of the amyloid β (Aβ) peptide and the pathogenesis of Alzheimer disease (AD). However, PS proteins also exert multiple functions beyond Aβ generation. In this study, we examine the individual roles of PS1 and PS2 in cellular cholesterol metabolism. Deletion of PS1 or PS2 in mouse models led to cholesterol accumulation in cerebral neurons. Cholesterol accumulation was also observed in the lysosomes of embryonic fibroblasts from Psen1-knockout (PS1-KO) and Psen2-KO (PS2-KO) mice and was associated with decreased expression of the Niemann-Pick type C1 (NPC1) protein involved in intracellular cholesterol transport in late endosomal/lysosomal compartments. Mass spectrometry and complementary biochemical analyses also revealed abnormal N-glycosylation of NPC1 and several other membrane proteins in PS1-KO and PS2-KO cells. Interestingly, pharmacological inhibition of N-glycosylation resulted in intracellular cholesterol accumulation prominently in lysosomes and decreased NPC1, thereby resembling the changes in PS1-KO and PS2-KO cells. In turn, treatment of PS1-KO and PS2-KO mouse embryonic fibroblasts (MEFs) with the chaperone inducer arimoclomol partially normalized NPC1 expression and rescued lysosomal cholesterol accumulation. Additionally, the intracellular cholesterol accumulation in PS1-KO and PS2-KO MEFs was prevented by overexpression of NPC1. Collectively, these data indicate that a loss of PS function results in impaired protein N-glycosylation, which eventually causes decreased expression of NPC1 and intracellular cholesterol accumulation. This mechanism could contribute to the neurodegeneration observed in PS KO mice and potentially to the pathogenesis of AD.
Collapse
Affiliation(s)
- Marietta Fabiano
- Department of Neurology, Universitätsklinikum Bonn, 53127 Bonn, Germany
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Naoto Oikawa
- Department of Neurology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | - Jun-ichi Furukawa
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
- Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya 466-8550, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Jongkyun Kang
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jie Shen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | - Jochen Walter
- Department of Neurology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| |
Collapse
|
2
|
Catterson JH, Minkley L, Aspe S, Judd-Mole S, Moura S, Dyson MC, Rajasingam A, Woodling NS, Atilano ML, Ahmad M, Durrant CS, Spires-Jones TL, Partridge L. Protein retention in the endoplasmic reticulum rescues Aβ toxicity in Drosophila. Neurobiol Aging 2023; 132:154-174. [PMID: 37837732 PMCID: PMC10940166 DOI: 10.1016/j.neurobiolaging.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/16/2023]
Abstract
Amyloid β (Aβ) accumulation is a hallmark of Alzheimer's disease. In adult Drosophila brains, human Aβ overexpression harms climbing and lifespan. It's uncertain whether Aβ is intrinsically toxic or activates downstream neurodegeneration pathways. Our study uncovers a novel protective role against Aβ toxicity: intra-endoplasmic reticulum (ER) protein accumulation with a focus on laminin and collagen subunits. Despite high Aβ, laminin B1 (LanB1) overexpression robustly counters toxicity, suggesting a potential Aβ resistance mechanism. Other laminin subunits and collagen IV also alleviate Aβ toxicity; combining them with LanB1 augments the effect. Imaging reveals ER retention of LanB1 without altering Aβ secretion. LanB1's rescue function operates independently of the IRE1α/XBP1 ER stress response. ER-targeted GFP overexpression also mitigates Aβ toxicity, highlighting broader ER protein retention advantages. Proof-of-principle tests in murine hippocampal slices using mouse Lamb1 demonstrate ER retention in transduced cells, indicating a conserved mechanism. Though ER protein retention generally harms, it could paradoxically counter neuronal Aβ toxicity, offering a new therapeutic avenue for Alzheimer's disease.
Collapse
Affiliation(s)
- James H Catterson
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Centre for Discovery Brain Sciences, UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, Scotland, UK
| | - Lucy Minkley
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Salomé Aspe
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Sebastian Judd-Mole
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Sofia Moura
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Miranda C Dyson
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Arjunan Rajasingam
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Nathaniel S Woodling
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Magda L Atilano
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Mumtaz Ahmad
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, Scotland, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, Scotland, UK
| | - Linda Partridge
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany.
| |
Collapse
|
3
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
4
|
Sharp FR, DeCarli CS, Jin LW, Zhan X. White matter injury, cholesterol dysmetabolism, and APP/Abeta dysmetabolism interact to produce Alzheimer's disease (AD) neuropathology: A hypothesis and review. Front Aging Neurosci 2023; 15:1096206. [PMID: 36845656 PMCID: PMC9950279 DOI: 10.3389/fnagi.2023.1096206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
We postulate that myelin injury contributes to cholesterol release from myelin and cholesterol dysmetabolism which contributes to Abeta dysmetabolism, and combined with genetic and AD risk factors, leads to increased Abeta and amyloid plaques. Increased Abeta damages myelin to form a vicious injury cycle. Thus, white matter injury, cholesterol dysmetabolism and Abeta dysmetabolism interact to produce or worsen AD neuropathology. The amyloid cascade is the leading hypothesis for the cause of Alzheimer's disease (AD). The failure of clinical trials based on this hypothesis has raised other possibilities. Even with a possible new success (Lecanemab), it is not clear whether this is a cause or a result of the disease. With the discovery in 1993 that the apolipoprotein E type 4 allele (APOE4) was the major risk factor for sporadic, late-onset AD (LOAD), there has been increasing interest in cholesterol in AD since APOE is a major cholesterol transporter. Recent studies show that cholesterol metabolism is intricately involved with Abeta (Aβ)/amyloid transport and metabolism, with cholesterol down-regulating the Aβ LRP1 transporter and upregulating the Aβ RAGE receptor, both of which would increase brain Aβ. Moreover, manipulating cholesterol transport and metabolism in rodent AD models can ameliorate pathology and cognitive deficits, or worsen them depending upon the manipulation. Though white matter (WM) injury has been noted in AD brain since Alzheimer's initial observations, recent studies have shown abnormal white matter in every AD brain. Moreover, there is age-related WM injury in normal individuals that occurs earlier and is worse with the APOE4 genotype. Moreover, WM injury precedes formation of plaques and tangles in human Familial Alzheimer's disease (FAD) and precedes plaque formation in rodent AD models. Restoring WM in rodent AD models improves cognition without affecting AD pathology. Thus, we postulate that the amyloid cascade, cholesterol dysmetabolism and white matter injury interact to produce and/or worsen AD pathology. We further postulate that the primary initiating event could be related to any of the three, with age a major factor for WM injury, diet and APOE4 and other genes a factor for cholesterol dysmetabolism, and FAD and other genes for Abeta dysmetabolism.
Collapse
Affiliation(s)
- Frank R. Sharp
- Department of Neurology, The MIND Institute, University of California at Davis Medical Center, Sacramento, CA, United States
| | | | | | | |
Collapse
|
5
|
Pérez-Villarreal JM, Aviña-Padilla K, Beltrán-López E, Guadrón-Llanos AM, López-Bayghen E, Magaña-Gómez J, Meraz-Ríos MA, Varela-Echavarría A, Angulo-Rojo C. Profiling of circulating chromosome 21-encoded microRNAs, miR-155, and let-7c, in down syndrome. Mol Genet Genomic Med 2022; 10:e1938. [PMID: 35411714 PMCID: PMC9184673 DOI: 10.1002/mgg3.1938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Down syndrome (DS) is the most common chromosomal survival aneuploidy. The increase in DS life expectancy further heightens the risk of dementia, principally early‐onset Alzheimer's disease (AD). AD risk in DS is higher, considering that this population may also develop metabolic diseases such as obesity, dyslipidemias, and diabetes mellitus. The extra genetic material that characterizes DS causes an imbalance in the genetic dosage, including over‐expression of AD's key pathophysiological molecules and the gene expression regulators, the microRNAs (miRNAs). Two miRNAs, chromosome 21‐encoded, miR‐155, and let‐7c, are associated with cognitive impairment and dementia in adults; but, expression dynamics and relationship with clinical variables during the DS's lifespan had remained hitherto unexplored. Methods The anthropometric, clinical, biochemical, and profile expression of circulating miR‐155 and let‐7c were analyzed in a population of 52 control and 50 DS subjects divided into the young group (Aged ≤20 years) and the adult group (Aged ≥21 years). Results The expression changes for miR‐155 were not significant; nevertheless, a negative correlation with HDL‐Cholesterol concentrations was observed. Notably, let‐7c was over‐expressed in DS from young and old ages. Conclusion Overall, our results suggest that let‐7c plays a role from the early stages of DS's cognitive impairment while overexpression of miR‐155 may be related to lipid metabolism changes. Further studies of both miRNAs will shed light on their potential as therapeutic targets to prevent or delay DS's cognitive impairment.
Collapse
Affiliation(s)
- Jesús Manuel Pérez-Villarreal
- Laboratorio de Neurociencias, Centro de Investigación Aplicada a la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Maestría en Ciencias Biomédicas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Laboratorio de Nutrición Molecular, Escuela de Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Katia Aviña-Padilla
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.,Laboratorio de Bioinformática y de Redes Complejas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IRAPUATO), Mexico
| | - Evangelina Beltrán-López
- Laboratorio Edificio Central, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Alma Marlene Guadrón-Llanos
- Laboratorio de Diabetes y comorbilidades, Centro de Investigación Aplicada a la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Esther López-Bayghen
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México City, Mexico
| | - Javier Magaña-Gómez
- Maestría en Ciencias Biomédicas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Laboratorio de Nutrición Molecular, Escuela de Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Marco Antonio Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México City, Mexico
| | | | - Carla Angulo-Rojo
- Laboratorio de Neurociencias, Centro de Investigación Aplicada a la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Centro de Investigación y Docencia en Ciencias de la Salud (CIDOCS), Universidad Autónoma de Sinaloa, Culiacán, Mexico
| |
Collapse
|
6
|
Ullah R, Park TJ, Huang X, Kim MO. Abnormal amyloid beta metabolism in systemic abnormalities and Alzheimer's pathology: Insights and therapeutic approaches from periphery. Ageing Res Rev 2021; 71:101451. [PMID: 34450351 DOI: 10.1016/j.arr.2021.101451] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated, multifactorial neurodegenerative disorder that is incurable. Despite recent success in treatments that partially improve symptomatic relief, they have failed in most clinical trials. Re-holding AD for accurate diagnosis and treatment is widely known as a challenging task. Lack of knowledge of basic molecular pathogenesis might be a possible reason for ineffective AD treatment. Historically, a majority of therapy-based studies have investigated the role of amyloid-β (Aβ peptide) in the central nervous system (CNS), whereas less is known about Aβ peptide in the periphery in AD. In this review, we provide a comprehensive summary of the current understanding of Aβ peptide metabolism (anabolism and catabolism) in the brain and periphery. We show that the abnormal metabolism of Aβ peptide is significantly linked with central-brain and peripheral abnormalities; the interaction between peripheral Aβ peptide metabolism and peripheral abnormalities affects central-brain Aβ peptide metabolism, suggesting the existence of significant communication between these two pathways of Aβ peptide metabolism. This close interaction between the central brain and periphery in abnormal Aβ peptide metabolism plays a key role in the development and progression of AD. In conclusion, we need to obtain a full understanding of the dynamic roles of Aβ peptide at the molecular level in both the brain and periphery in relation to the pathology of AD. This will not only provide new information regarding the complex disease pathology, but also offer potential new clues to improve therapeutic strategies and diagnostic biomarkers for the successful treatment of AD.
Collapse
|
7
|
Abstract
Niemann-Pick disease type C (NP-C) is a severe neurovisceral lipid storage disease that results in the accumulation of unesterified cholesterol in lysosomes or endosomes. The clinical presentations of NP-C are variable which include visceral symptoms, neurologic symptoms and psychiatric symptoms. Psychosis is the most common psychiatric manifestation of NP-C and is indistinguishable from a typical psychosis presentation of schizophrenia. The common psychotic presentations in NP-C include visual hallucinations, delusions, auditory hallucinations and thought disorders. Psychosis symptoms are more common in adult or adolescent-onset forms compared with pediatric-onset forms. The underlying pathophysiology of psychosis in NP-C is most probably due to dysconnectivity particularly between frontotemporal connectivity and subcortical structures. NP-C sometimes is mistaken for schizophrenia which causes delay in treatment due to lack of awareness and literature review. This review aims to summarize the relevant case reports on psychosis symptoms in NP-C and discuss the genetics and pathophysiology underlying the condition.
Collapse
Affiliation(s)
- Leong Tung Ong
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Cariati I, Masuelli L, Bei R, Tancredi V, Frank C, D’Arcangelo G. Neurodegeneration in Niemann-Pick Type C Disease: An Updated Review on Pharmacological and Non-Pharmacological Approaches to Counteract Brain and Cognitive Impairment. Int J Mol Sci 2021; 22:ijms22126600. [PMID: 34202978 PMCID: PMC8234817 DOI: 10.3390/ijms22126600] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
Niemann–Pick type C (NPC) disease is an autosomal recessive storage disorder, characterized by abnormal sequestration of unesterified cholesterol in the late endo-lysosomal system of cells. Progressive neurological deterioration and the onset of symptoms, such as ataxia, seizures, cognitive decline, and severe dementia, are pathognomonic features of the disease. In addition, different pathological similarities, including degeneration of hippocampal and cortical neurons, hyperphosphorylated tau, and neurofibrillary tangle formation, have been identified between NPC disease and other neurodegenerative pathologies. However, the underlying pathophysiological mechanisms are not yet well understood, and even a real cure to counteract neurodegeneration has not been identified. Therefore, the combination of current pharmacological therapies, represented by miglustat and cyclodextrin, and non-pharmacological approaches, such as physical exercise and appropriate diet, could represent a strategy to improve the quality of life of NPC patients. Based on this evidence, in our review we focused on the neurodegenerative aspects of NPC disease, summarizing the current knowledge on the molecular and biochemical mechanisms responsible for cognitive impairment, and suggesting physical exercise and nutritional treatments as additional non-pharmacologic approaches to reduce the progression and neurodegenerative course of NPC disease.
Collapse
Affiliation(s)
- Ida Cariati
- Medical-Surgical Biotechnologies and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
9
|
Understanding and Treating Niemann-Pick Type C Disease: Models Matter. Int J Mol Sci 2020; 21:ijms21238979. [PMID: 33256121 PMCID: PMC7730076 DOI: 10.3390/ijms21238979] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Biomedical research aims to understand the molecular mechanisms causing human diseases and to develop curative therapies. So far, these goals have been achieved for a small fraction of diseases, limiting factors being the availability, validity, and use of experimental models. Niemann–Pick type C (NPC) is a prime example for a disease that lacks a curative therapy despite substantial breakthroughs. This rare, fatal, and autosomal-recessive disorder is caused by defects in NPC1 or NPC2. These ubiquitously expressed proteins help cholesterol exit from the endosomal–lysosomal system. The dysfunction of either causes an aberrant accumulation of lipids with patients presenting a large range of disease onset, neurovisceral symptoms, and life span. Here, we note general aspects of experimental models, we describe the line-up used for NPC-related research and therapy development, and we provide an outlook on future topics.
Collapse
|
10
|
Samant NP, Gupta GL. Novel therapeutic strategies for Alzheimer's disease targeting brain cholesterol homeostasis. Eur J Neurosci 2020; 53:673-686. [PMID: 32852876 DOI: 10.1111/ejn.14949] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia. Aβ plaques and tauopathy are two major concerns associated with AD. Moreover, excessive Aβ accumulation can lead to other nonspecific metabolic brain abnormalities. There are various genetic, environmental, and other risk factors associated with AD. Identification of risk factors and its mechanisms by which these factors impart role in AD pathology would be helpful for the prevention of AD progression. Altered cholesterol homeostasis could be considered as a risk factor for AD progression. Brain cholesterol dysmetabolism is recognized as one of the crucial attributes for AD that affect major hallmarks of AD including neurodegeneration. To fill the gap between altered cholesterol levels in the brain and AD, the researchers started focusing on statins as re-purposing drugs for AD treatment. The various other hypothesis has been suggested due to a lack of beneficial results of statins in clinical trials, such as reduced brain cholesterol could underlie poor cognition. Unfortunately, it is still unclear, whether an increase or decrease in brain cholesterol levels responsible for Alzheimer's disease or not. Presently, scientists believed that managing the level of cholesterol in the brain may help as an alternative treatment strategy for AD. In this review, we focused on the therapeutic strategies for AD by targeting brain cholesterol levels.
Collapse
Affiliation(s)
- Nikita Patil Samant
- Shobhaben Pratapbhai Patel School of Pharmacy & Taechnology Management, SVKM'S NMIMS, Mumbai, India
| | - Girdhari Lal Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Taechnology Management, SVKM'S NMIMS, Mumbai, India
| |
Collapse
|
11
|
Gutierrez E, Lütjohann D, Kerksiek A, Fabiano M, Oikawa N, Kuerschner L, Thiele C, Walter J. Importance of γ-secretase in the regulation of liver X receptor and cellular lipid metabolism. Life Sci Alliance 2020; 3:3/6/e201900521. [PMID: 32354700 PMCID: PMC7195048 DOI: 10.26508/lsa.201900521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Inhibition of the Alzheimer associated γ-secretase impairs the regulation of cellular lipid droplet homeostasis. Presenilins (PS) are the catalytic components of γ-secretase complexes that mediate intramembrane proteolysis. Mutations in the PS genes are a major cause of familial early-onset Alzheimer disease and affect the cleavage of the amyloid precursor protein, thereby altering the production of the amyloid β-peptide. However, multiple additional protein substrates have been identified, suggesting pleiotropic functions of γ-secretase. Here, we demonstrate that inhibition of γ-secretase causes dysregulation of cellular lipid homeostasis, including up-regulation of liver X receptors, and complex changes in the cellular lipid composition. Genetic and pharmacological inhibition of γsecretase leads to strong accumulation of cytoplasmic lipid droplets, associated with increased levels of acylglycerols, but lowered cholesteryl esters. Furthermore, accumulation of lipid droplets was augmented by increasing levels of amyloid precursor protein C-terminal fragments, indicating a critical involvement of this γ-secretase substrate. Together, these data provide a mechanism that functionally connects γ-secretase activity to cellular lipid metabolism. These effects were also observed in human astrocytic cells, indicating an important function of γ-secretase in cells critical for lipid homeostasis in the brain.
Collapse
Affiliation(s)
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Marietta Fabiano
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Naoto Oikawa
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Lars Kuerschner
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christoph Thiele
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Jochen Walter
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
12
|
Wang C, Zhao F, Shen K, Wang W, Siedlak SL, Lee HG, Phelix CF, Perry G, Shen L, Tang B, Yan R, Zhu X. The sterol regulatory element-binding protein 2 is dysregulated by tau alterations in Alzheimer disease. Brain Pathol 2019; 29:530-543. [PMID: 30515907 DOI: 10.1111/bpa.12691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/28/2018] [Indexed: 01/12/2023] Open
Abstract
Disturbed neuronal cholesterol homeostasis has been observed in Alzheimer disease (AD) and contributes to the pathogenesis of AD. As the master switch of cholesterol biosynthesis, the sterol regulatory element-binding protein 2 (SREBP-2) translocates to the nucleus after cleavage/activation, but its expression and activation have not been studied in AD which is the focus of the current study. We found both a significant decrease in the nuclear translocation of N-terminal SREBP-2 accompanied by a significant accumulation of C-terminal SREBP-2 in NFT-containing pyramidal neurons in AD. N-terminal- SREBP-2 is also found in dystrophic neurites around plaques in AD brain. Western blot confirmed a significantly reduced nuclear translocation of mature SREBP-2 (mSREBP-2) in AD brain. Interestingly, reduced nuclear mSREBP-2 was only found in animal models of tauopathies such as 3XTg AD mice and P301L Tau Tg mice but not in CRND8 APP transgenic mice, suggesting that tau alterations likely are involved in the changes of mSREBP-2 distribution and activation in AD. Altogether, our study demonstrated disturbed SREBP-2 signaling in AD and related models, and proved for the first time that tau alterations contribute to disturbed cholesterol homeostasis in AD likely through modulation of nuclear mSREBP-2 translocation.
Collapse
Affiliation(s)
- Chunyu Wang
- Department of Neurology, The second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Katie Shen
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Wenzhang Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Sandra L Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Hyoung-Gon Lee
- Department of Biology, College of Science, University of Texas at San Antonio, San Antonio, TX
| | - Clyde F Phelix
- Department of Biology, College of Science, University of Texas at San Antonio, San Antonio, TX
| | - George Perry
- Department of Biology, College of Science, University of Texas at San Antonio, San Antonio, TX
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Riqiang Yan
- Department of Neurosciences, University of Connecticut, Farmington, CT
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
13
|
Omar SH, Scott CJ, Hamlin AS, Obied HK. Olive Biophenols Reduces Alzheimer's Pathology in SH-SY5Y Cells and APPswe Mice. Int J Mol Sci 2018; 20:ijms20010125. [PMID: 30598025 PMCID: PMC6337485 DOI: 10.3390/ijms20010125] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a major neurodegenerative disease, associated with the hallmark proteinacious constituent called amyloid beta (Aβ) of senile plaques. Moreover, it is already established that metals (particularly copper, zinc and iron) have a key role in the pathogenesis of AD. In order to reduce the Aβ plaque burden and overcome the side effects from the synthetic inhibitors, the current study was designed to focus on direct inhibition of with or without metal-induced Aβ fibril formation and aggregation by using olive biophenols. Exposure of neuroblastoma (SH-SY5Y) cells with Aβ42 resulted in decrease of cell viability and morphological changes might be due to severe increase in the reactive oxygen species (ROS). The pre-treated SH-SY5Y cells with olive biophenols were able to attenuate cell death caused by Aβ42, copper- Aβ42, and [laevodihydroxyphenylalanine (l-DOPA)] l-DOPA-Aβ42-induced toxicity after 24 h of treatment. Oleuropein, verbascoside and rutin were the major anti-amyloidogenic compounds. Transgenic mice (APPswe/PS1dE9) received 50 mg/kg of oleuropein containing olive leaf extracts (OLE) or control diet from 7 to 23 weeks of age. Treatment mice (OLE) were showed significantly reduced amyloid plaque deposition (p < 0.001) in cortex and hippocampus as compared to control mice. Our findings provide a basis for considering natural and low cost biophenols from olive as a promising candidate drug against AD. Further studies warrant to validate and determine the anti-amyloid mechanism, bioavailability as well as permeability of olive biophenols against blood brain barrier in AD.
Collapse
Affiliation(s)
- Syed Haris Omar
- School of Biomedical Sciences, Faculty of Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Christopher J Scott
- School of Biomedical Sciences, Faculty of Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Adam S Hamlin
- School of Science & Technology, University of New England, Armidale, NSW 2351, Australia.
| | - Hassan K Obied
- School of Biomedical Sciences, Faculty of Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
14
|
Wang G, Bieberich E. Sphingolipids in neurodegeneration (with focus on ceramide and S1P). Adv Biol Regul 2018; 70:51-64. [PMID: 30287225 PMCID: PMC6251739 DOI: 10.1016/j.jbior.2018.09.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 04/14/2023]
Abstract
For many decades, research on sphingolipids associated with neurodegenerative disease focused on alterations in glycosphingolipids, particularly glycosylceramides (cerebrosides), sulfatides, and gangliosides. This seemed quite natural since many of these glycolipids are constituents of myelin and accumulated in lipid storage diseases (sphingolipidoses) resulting from enzyme deficiencies in glycolipid metabolism. With the advent of recognizing ceramide and its derivative, sphingosine-1-phosphate (S1P), as key players in lipid cell signaling and regulation of cell death and survival, research focus shifted toward these two sphingolipids. Ceramide and S1P are invoked in a plethora of cell biological processes participating in neurodegeneration such as ER stress, autophagy, dysregulation of protein and lipid transport, exosome secretion and neurotoxic protein spreading, neuroinflammation, and mitochondrial dysfunction. Hence, it is timely to discuss various functions of ceramide and S1P in neurodegenerative disease and to define sphingolipid metabolism and cell signaling pathways as potential targets for therapy.
Collapse
Affiliation(s)
- Guanghu Wang
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
15
|
Zhou CC, Gao ZY, Wang J, Wu MQ, Hu S, Chen F, Liu JX, Pan H, Yan CH. Lead exposure induces Alzheimers’s disease (AD)-like pathology and disturbes cholesterol metabolism in the young rat brain. Toxicol Lett 2018; 296:173-183. [PMID: 29908845 DOI: 10.1016/j.toxlet.2018.06.1065] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/30/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
|
16
|
DelBove CE, Deng XZ, Zhang Q. The Fate of Nascent APP in Hippocampal Neurons: A Live Cell Imaging Study. ACS Chem Neurosci 2018; 9:2225-2232. [PMID: 29869871 DOI: 10.1021/acschemneuro.8b00226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Amyloid precursor protein (APP) is closely associated with Alzheimer's disease (AD) because its proteolytic products form amyloid plaques and its mutations are linked to familial AD patients. As a membrane protein, APP is involved in neuronal development and plasticity. However, it remains unclear how nascent APP is distributed and transported to designated membrane compartments to execute its diverse functions. Here, we employed a dual-tagged APP fusion protein in combination with a synaptic vesicle marker to study the surface trafficking and cleavage of APP in hippocampal neurons immediately after its synthesis. Using long-term time-lapse imaging, we found that a considerable amount of nascent APP was directly transported to the somatodendritic surface, from which it propagates to distal neurites. Some APP in the plasma membrane was endocytosed and some was cleaved by α-secretase. Hence, we conclude that surface transportation of APP is a major step preceding its proteolytic processing and neuritic distribution.
Collapse
Affiliation(s)
- Claire E. DelBove
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Xian-zhen Deng
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Qi Zhang
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| |
Collapse
|
17
|
Do GWAS and studies of heterozygotes for NPC1 and/or NPC2 explain why NPC disease cases are so rare? J Appl Genet 2018; 59:441-447. [PMID: 30209687 DOI: 10.1007/s13353-018-0465-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
Abstract
Early onset Niemann-Pick C diseases are extremely rare, especially Niemann-Pick C2. Perhaps unusually for autosomal recessive diseases, heterozygotes for mutations in NPC1 manifest many biological variations. NPC2 deficiency has large effects on fertility. These features of NPC1 and NPC2 are reviewed in regard to possible negative selection for heterozygotes carrying null and hypomorphic alleles.
Collapse
|
18
|
Yang G, Yu K, Kubicek J, Labahn J. Expression, purification, and preliminary characterization of human presenilin-2. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Yang H, Wang Y, Kar S. Effects of cholesterol transport inhibitor U18666A on APP metabolism in rat primary astrocytes. Glia 2017; 65:1728-1743. [PMID: 28722194 DOI: 10.1002/glia.23191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Abstract
Amyloid β (Aβ) peptides generated from the amyloid precursor protein (APP) play an important role in the degeneration of neurons and development of Alzheimer's disease (AD). Current evidence indicates that high levels of cholesterol-which increase the risk of developing AD-can influence Aβ production in neurons. However, it remains unclear how altered level/subcellular distribution of cholesterol in astrocytes can influence APP metabolism. In this study, we evaluated the effects of cholesterol transport inhibitor U18666A-a class II amphiphile that triggers redistribution of cholesterol within the endosomal-lysosomal (EL) system-on APP levels and metabolism in rat primary cultured astrocytes. Our results revealed that U18666A increased the levels of the APP holoprotein and its cleaved products (α-/β-/η-CTFs) in cultured astrocytes, without altering the total levels of cholesterol or cell viability. The cellular levels of Aβ1-40 were also found to be markedly increased, while secretory levels of Aβ1-40 were decreased in U18666A-treated astrocytes. We further report a corresponding increase in the activity of the enzymes regulating APP processing, such as α-secretase, β-secretase, and γ-secretase as a consequence of U18666A treatment. Additionally, APP-cleaved products are partly accumulated in the lysosomes following cholesterol sequestration within EL system possibly due to decreased clearance. Interestingly, serum delipidation attenuated enhanced levels of APP and its cleaved products following U18666A treatment. Collectively, these results suggest that cholesterol sequestration within the EL system in astrocytes can influence APP metabolism and the accumulation of APP-cleaved products including Aβ peptides, which can contribute to the development of AD pathology.
Collapse
Affiliation(s)
- Hongyan Yang
- Department of Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
- Department of Pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yanlin Wang
- Department of Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Satyabrata Kar
- Department of Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
- Department of Medicine, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| |
Collapse
|
20
|
Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K, Xu HE. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 2017; 38:1205-1235. [PMID: 28713158 PMCID: PMC5589967 DOI: 10.1038/aps.2017.28] [Citation(s) in RCA: 1109] [Impact Index Per Article: 138.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
Amyloid beta peptide (Aβ) is produced through the proteolytic processing of a transmembrane protein, amyloid precursor protein (APP), by β- and γ-secretases. Aβ accumulation in the brain is proposed to be an early toxic event in the pathogenesis of Alzheimer's disease, which is the most common form of dementia associated with plaques and tangles in the brain. Currently, it is unclear what the physiological and pathological forms of Aβ are and by what mechanism Aβ causes dementia. Moreover, there are no efficient drugs to stop or reverse the progression of Alzheimer's disease. In this paper, we review the structures, biological functions, and neurotoxicity role of Aβ. We also discuss the potential receptors that interact with Aβ and mediate Aβ intake, clearance, and metabolism. Additionally, we summarize the therapeutic developments and recent advances of different strategies for treating Alzheimer's disease. Finally, we will report on the progress in searching for novel, potentially effective agents as well as selected promising strategies for the treatment of Alzheimer's disease. These prospects include agents acting on Aβ, its receptors and tau protein, such as small molecules, vaccines and antibodies against Aβ; inhibitors or modulators of β- and γ-secretase; Aβ-degrading proteases; tau protein inhibitors and vaccines; amyloid dyes and microRNAs.
Collapse
Affiliation(s)
- Guo-Fang Chen
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting-Hai Xu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Yan
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-Ren Zhou
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Jiang
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - H Eric Xu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
21
|
Yáñez M, Belbin O, Estrada L, Leal N, Contreras P, Lleó A, Burgos P, Zanlungo S, Alvarez A. c-Abl links APP-BACE1 interaction promoting APP amyloidogenic processing in Niemann-Pick type C disease. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2158-2167. [DOI: 10.1016/j.bbadis.2016.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 07/31/2016] [Accepted: 08/19/2016] [Indexed: 11/17/2022]
|
22
|
Woodruff G, Reyna SM, Dunlap M, Van Der Kant R, Callender JA, Young JE, Roberts EA, Goldstein LSB. Defective Transcytosis of APP and Lipoproteins in Human iPSC-Derived Neurons with Familial Alzheimer's Disease Mutations. Cell Rep 2016; 17:759-773. [PMID: 27732852 PMCID: PMC5796664 DOI: 10.1016/j.celrep.2016.09.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 07/22/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022] Open
Abstract
We investigated early phenotypes caused by familial Alzheimer's disease (fAD) mutations in isogenic human iPSC-derived neurons. Analysis of neurons carrying fAD PS1 or APP mutations introduced using genome editing technology at the endogenous loci revealed that fAD mutant neurons had previously unreported defects in the recycling state of endocytosis and soma-to-axon transcytosis of APP and lipoproteins. The endocytosis reduction could be rescued through treatment with a β-secretase inhibitor. Our data suggest that accumulation of β-CTFs of APP, but not Aβ, slow vesicle formation from an endocytic recycling compartment marked by the transcytotic GTPase Rab11. We confirm previous results that endocytosis is affected in AD and extend these to uncover a neuron-specific defect. Decreased lipoprotein endocytosis and transcytosis to the axon suggest that a neuron-specific impairment in endocytic axonal delivery of lipoproteins and other key materials might compromise synaptic maintenance in fAD.
Collapse
Affiliation(s)
- Grace Woodruff
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sol M Reyna
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mariah Dunlap
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rik Van Der Kant
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Julia A Callender
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica E Young
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth A Roberts
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Carroll CM, Li YM. Physiological and pathological roles of the γ-secretase complex. Brain Res Bull 2016; 126:199-206. [PMID: 27133790 DOI: 10.1016/j.brainresbull.2016.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 12/27/2022]
Abstract
Gamma-secretase (GS) is an enzyme complex that cleaves numerous substrates, and it is best known for cleaving amyloid precursor protein (APP) to form amyloid-beta (Aβ) peptides. Aberrant cleavage of APP can lead to Alzheimer's disease, so much research has been done to better understand GS structure and function in hopes of developing therapeutics for Alzheimer's. Therefore, most of the attention in this field has been focused on developing modulators that reduce pathogenic forms of Aβ while leaving Notch and other GS substrates intact, but GS provides multiple avenues of modulation that could improve AD pathology. GS has complex regulation, through its essential subunits and other associated proteins, providing other targets for AD drugs. Therapeutics can also alter GS trafficking and thereby improve cognition, or move beyond Aβ entirely, effecting Notch and neural stem cells. GS also cleaves substrates that affect synaptic morphology and function, presenting another window by which GS modulation could improve AD pathology. Taken together, GS presents a unique cross road for neural processes and an ideal target for AD therapeutics.
Collapse
Affiliation(s)
- Courtney M Carroll
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, NY, United States; Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, NY, United States.
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, NY, United States; Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, NY, United States; Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, NY, United States
| |
Collapse
|
24
|
Piedrahita D, Castro-Alvarez JF, Boudreau RL, Villegas-Lanau A, Kosik KS, Gallego-Gomez JC, Cardona-Gómez GP. β-Secretase 1's Targeting Reduces Hyperphosphorilated Tau, Implying Autophagy Actors in 3xTg-AD Mice. Front Cell Neurosci 2016; 9:498. [PMID: 26778963 PMCID: PMC4705306 DOI: 10.3389/fncel.2015.00498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/11/2015] [Indexed: 01/08/2023] Open
Abstract
β-site APP cleaving enzyme 1 (BACE1) initiates APP cleavage, which has been reported to be an inducer of tau pathology by altering proteasome functions in Alzheimer’s disease (AD). However, the exact relationship between BACE1 and PHF (Paired Helical Filaments) formation is not clear. In this study, we confirm that BACE1 and Hsc70 are upregulated in the brains of AD patients, and we demonstrate that both proteins show enhanced expression in lipid rafts from AD-affected triple transgenic mouse brains. BACE1 targeting increased Hsc70 levels in the membrane and cytoplasm fractions and downregulated Hsp90 and CHIP in the nucleus in the hippocampi of 3xTg-AD mice. However, these observations occurred in a proteasome-independent manner in vitro. The BACE1miR-induced reduction of soluble hyperphosphorylated tau was associated with a decrease in MAPK activity. However, the BACE1 RNAi-mediated reduction of hyperphosphorylated tau was only blocked by 3-MA (3-methyladenine) in vitro, and it resulted in the increase of Hsc70 and LAMP2 in lipid rafts from hippocampi of 3xTg-AD mice, and upregulation of survival and homeostasis signaling. In summary, our findings suggest that BACE1 silencing neuroprotects reducing soluble hyperphosphorylated tau, modulating certain autophagy-related proteins in aged 3xTg-AD mice.
Collapse
Affiliation(s)
- Diego Piedrahita
- Cellular and Molecular Neurobiology Area, Viral Vector Core and Gene Therapy, University of Antioquia Medellin, Antioquia, Colombia
| | - John Fredy Castro-Alvarez
- Cellular and Molecular Neurobiology Area, Viral Vector Core and Gene Therapy, University of Antioquia Medellin, Antioquia, Colombia
| | | | - Andres Villegas-Lanau
- Neurobank, Neuroscience Group of Antioquia, Faculty of Medicine, SIU, University of Antioquia Medellín, Colombia
| | - Kenneth S Kosik
- Department of Molecular Cellular Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara Santa Barbara, CA, USA
| | - Juan Carlos Gallego-Gomez
- Cellular and Molecular Neurobiology Area, Viral Vector Core and Gene Therapy, University of Antioquia Medellin, Antioquia, Colombia
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Viral Vector Core and Gene Therapy, University of Antioquia Medellin, Antioquia, Colombia
| |
Collapse
|
25
|
Maulik M, Peake K, Chung J, Wang Y, Vance JE, Kar S. APP overexpression in the absence of NPC1 exacerbates metabolism of amyloidogenic proteins of Alzheimer's disease. Hum Mol Genet 2015; 24:7132-50. [PMID: 26433932 DOI: 10.1093/hmg/ddv413] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/28/2015] [Indexed: 12/21/2022] Open
Abstract
Amyloid-β (Aβ) peptides originating from β-amyloid precursor protein (APP) are critical in Alzheimer's disease (AD). Cellular cholesterol levels/distribution can regulate production and clearance of Aβ peptides, albeit with contradictory outcomes. To better understand the relationship between cholesterol homeostasis and APP/Aβ metabolism, we have recently generated a bigenic ANPC mouse line overexpressing mutant human APP in the absence of Niemann-Pick type C-1 protein required for intracellular cholesterol transport. Using this unique bigenic ANPC mice and complementary stable N2a cells, we have examined the functional consequences of cellular cholesterol sequestration in the endosomal-lysosomal system, a major site of Aβ production, on APP/Aβ metabolism and its relation to neuronal viability. Levels of APP C-terminal fragments (α-CTF/β-CTF) and Aβ peptides, but not APP mRNA/protein or soluble APPα/APPβ, were increased in ANPC mouse brains and N2a-ANPC cells. These changes were accompanied by reduced clearance of peptides and an increased level/activity of γ-secretase, suggesting that accumulation of APP-CTFs is due to decreased turnover, whereas increased Aβ levels may result from a combination of increased production and decreased turnover. APP-CTFs and Aβ peptides were localized primarily in early-/late-endosomes and to some extent in lysosomes/autophagosomes. Cholesterol sequestration impaired endocytic-autophagic-lysosomal, but not proteasomal, clearance of APP-CTFs/Aβ peptides. Moreover, markers of oxidative stress were increased in vulnerable brain regions of ANPC mice and enhanced β-CTF/Aβ levels increased susceptibility of N2a-ANPC cells to H2O2-induced toxicity. Collectively, our results show that cellular cholesterol sequestration plays a key role in APP/Aβ metabolism and increasing neuronal vulnerability to oxidative stress in AD-related pathology.
Collapse
Affiliation(s)
- Mahua Maulik
- Centre for Prions and Protein Folding Diseases, Centre for Neuroscience, Department of Medicine, and
| | | | - JiYun Chung
- Centre for Prions and Protein Folding Diseases, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2M8, Canada
| | - Yanlin Wang
- Centre for Prions and Protein Folding Diseases, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2M8, Canada
| | | | - Satyabrata Kar
- Centre for Prions and Protein Folding Diseases, Centre for Neuroscience, Department of Medicine, and Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2M8, Canada
| |
Collapse
|
26
|
Avila-Muñoz E, Arias C. Cholesterol-induced astrocyte activation is associated with increased amyloid precursor protein expression and processing. Glia 2015; 63:2010-2022. [PMID: 26096015 DOI: 10.1002/glia.22874] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 05/22/2015] [Accepted: 06/01/2015] [Indexed: 11/05/2022]
Abstract
Cholesterol is essential for maintaining lipid raft integrity and has been regarded as a crucial regulatory factor for amyloidogenesis in Alzheimer's disease (AD). The vast majority of studies on amyloid precursor protein (APP) metabolism and amyloid β-protein (Aβ) production have focused on neurons. The role of astrocytes remains largely unexplored, despite the presence of activated astrocytes in the brains of most patients with AD and in transgenic models of the disease. The role of cholesterol in Aβ production has been thoroughly studied in neurons and attributed to the participation of lipid rafts in APP metabolism. Thus, in this study, we analyzed the effect of cholesterol loading in astrocytes and analyzed the expression and processing of APP. We found that cholesterol exposure induced astrocyte activation, increased APP content, and enhanced the interaction of APP with BACE-1. These effects were associated with an enrichment of ganglioside GM1-cholesterol patches in the astrocyte membrane and with increased ROS production. GLIA 2015;63:2010-2022.
Collapse
Affiliation(s)
- Evangelina Avila-Muñoz
- Departamento De Medicina Genómica Y Toxicología Ambiental, Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México, D.F., México
| | - Clorinda Arias
- Departamento De Medicina Genómica Y Toxicología Ambiental, Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México, D.F., México
| |
Collapse
|
27
|
Grouleff J, Irudayam SJ, Skeby KK, Schiøtt B. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1783-95. [PMID: 25839353 DOI: 10.1016/j.bbamem.2015.03.029] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
Abstract
The plasma membrane, which encapsulates human cells, is composed of a complex mixture of lipids and embedded proteins. Emerging knowledge points towards the lipids as having a regulating role in protein function. Furthermore, insight from protein crystallography has revealed several different types of lipids intimately bound to membrane proteins and peptides, hereby possibly pointing to a site of action for the observed regulation. Cholesterol is among the lipid membrane constituents most often observed to be co-crystallized with membrane proteins, and the cholesterol levels in cell membranes have been found to play an essential role in health and disease. Remarkably little is known about the mechanism of lipid regulation of membrane protein function in health as well as in disease. Herein, we review molecular dynamics simulation studies aimed at investigating the effect of cholesterol on membrane protein and peptide properties. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Julie Grouleff
- Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Sheeba Jem Irudayam
- Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Katrine K Skeby
- Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Birgit Schiøtt
- Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.
| |
Collapse
|
28
|
Malnar M, Hecimovic S, Mattsson N, Zetterberg H. Bidirectional links between Alzheimer's disease and Niemann-Pick type C disease. Neurobiol Dis 2014; 72 Pt A:37-47. [PMID: 24907492 DOI: 10.1016/j.nbd.2014.05.033] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/17/2014] [Accepted: 05/27/2014] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) and Niemann-Pick type C (NPC) disease are progressive neurodegenerative diseases with very different epidemiology and etiology. AD is a common cause of dementia with a complex polyfactorial etiology, including both genetic and environmental risk factors, while NPC is a very rare autosomal recessive disease. However, the diseases share some disease-related molecular pathways, including abnormal cholesterol metabolism, and involvement of amyloid-β (Aβ) and tau pathology. Here we review recent studies on these pathological traits, focusing on studies of Aβ and tau pathology in NPC, and the importance of the NPC1 gene in AD. Further studies of similarities and differences between AD and NPC may be useful to increase the understanding of both these devastating neurological diseases.
Collapse
Affiliation(s)
- Martina Malnar
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Silva Hecimovic
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia.
| | - Niklas Mattsson
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Gothenburg, Sweden; Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Gothenburg, Sweden; UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
29
|
GGA1 overexpression attenuates amyloidogenic processing of the amyloid precursor protein in Niemann-Pick type C cells. Biochem Biophys Res Commun 2014; 450:160-5. [PMID: 24866237 DOI: 10.1016/j.bbrc.2014.05.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/19/2014] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) and a rare inherited disorder of cholesterol transport, Niemann-Pick type C (NPC) share several similarities including aberrant APP processing and increased Aβ production. Previously, we have shown that the AD-like phenotype in NPC model cells involves cholesterol-dependent enhanced APP cleavage by β-secretase and accumulation of both APP and BACE1 within endocytic compartments. Since retrograde transport of BACE1 from endocytic compartments to the trans-Golgi network (TGN) is regulated by the Golgi-localized γ-ear containing ADP ribosylation factor-binding protein 1 (GGA1), we analyzed in this work a potential role of GGA1 in the AD-like phenotype of NPC1-null cells. Overexpression of GGA1 caused a shift in APP processing towards the non-amyloidogenic pathway by increasing the localization of APP at the cell surface. However, the observed effect appear to be independent on the subcellular localization and phosphorylation state of BACE1. These findings show that the AD-like phenotype of NPC model cells can be partly reverted by promoting a non-amyloidogenic processing of APP through the upregulation of GGA1 supporting its preventive role against AD.
Collapse
|
30
|
Sun JH, Yu JT, Tan L. The Role of Cholesterol Metabolism in Alzheimer’s Disease. Mol Neurobiol 2014; 51:947-65. [DOI: 10.1007/s12035-014-8749-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/07/2014] [Indexed: 12/25/2022]
|
31
|
Wong BX, Hung YH, Bush AI, Duce JA. Metals and cholesterol: two sides of the same coin in Alzheimer's disease pathology. Front Aging Neurosci 2014; 6:91. [PMID: 24860500 PMCID: PMC4030154 DOI: 10.3389/fnagi.2014.00091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/28/2014] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease. It begins years prior to the onset of clinical symptoms, such as memory loss and cognitive decline. Pathological hallmarks of AD include the accumulation of β-amyloid in plaques and hyperphosphorylated tau in neurofibrillary tangles. Copper, iron, and zinc are abnormally accumulated and distributed in the aging brain. These metal ions can adversely contribute to the progression of AD. Dysregulation of cholesterol metabolism has also been implicated in the development of AD pathology. To date, large bodies of research have been carried out independently to elucidate the role of metals or cholesterol on AD pathology. Interestingly, metals and cholesterol affect parallel molecular and biochemical pathways involved in AD pathology. The possible links between metal dyshomeostasis and altered brain cholesterol metabolism in AD are reviewed.
Collapse
Affiliation(s)
- Bruce X Wong
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - Ya Hui Hung
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - Ashley I Bush
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - James A Duce
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia ; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leeds, North Yorkshire, UK
| |
Collapse
|
32
|
Kuypers FA. Hemoglobin S Polymerization and Red Cell Membrane Changes. Hematol Oncol Clin North Am 2014; 28:155-79. [DOI: 10.1016/j.hoc.2013.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Wang W, Mutka AL, Zmrzljak UP, Rozman D, Tanila H, Gylling H, Remes AM, Huttunen HJ, Ikonen E. Amyloid precursor protein α- and β-cleaved ectodomains exert opposing control of cholesterol homeostasis via SREBP2. FASEB J 2013; 28:849-60. [PMID: 24249638 DOI: 10.1096/fj.13-239301] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Amyloid precursor protein (APP) is ubiquitously expressed. Studies in neuronal cells have implicated APP or its fragments as negative regulators of cholesterol metabolism. In the current study, APP acted, via its α-cleavage, as a positive regulator of sterol regulatory element-binding protein-2 (SREBP2) signaling in human astrocytic cells (U251MG), hepatic cells (HepG2), and primary fibroblasts, leading to an approximate 30% increase in SRE-dependent gene expression and, consequently, enhanced cholesterol biosynthesis and LDL receptor levels. This effect was mediated via the secretory ectodomain APPsα. The β-cleaved ectodomain, in turn, repressed SRE-dependent gene expression by up to ∼ 30%. This resulted in decreased cholesterol synthesis and LDL receptor content, establishing a physiological feedback loop in cholesterol-loaded cells, where APP undergoes preferential β-cleavage. Patients with familial Alzheimer's disease had decreased circulating lathosterol, reflecting hepatic cholesterol synthesis, and their fibroblasts had reduced LDL receptor content, which was alleviated by decreasing β-cleavage. These results show that APP regulates cholesterol metabolism in cells relevant for whole-body cholesterol balance and reveal that APP α- and β-cleavages produce opposing paracrine regulators of SREBP2 signaling.
Collapse
Affiliation(s)
- Wei Wang
- 2Institute of Biomedicine, Haartmaninkatu 8, FI-00014 University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gunawardena S, Yang G, Goldstein LSB. Presenilin controls kinesin-1 and dynein function during APP-vesicle transport in vivo. Hum Mol Genet 2013; 22:3828-43. [PMID: 23710041 DOI: 10.1093/hmg/ddt237] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neurons and other cells require intracellular transport of essential components for viability and function. Previous work has shown that while net amyloid precursor protein (APP) transport is generally anterograde, individual vesicles containing APP move bi-directionally. This discrepancy highlights our poor understanding of the in vivo regulation of APP-vesicle transport. Here, we show that reduction of presenilin (PS) or suppression of gamma-secretase activity substantially increases anterograde and retrograde velocities for APP vesicles. Strikingly, PS deficiency has no effect on an unrelated cargo vesicle class containing synaptotagmin, which is powered by a different kinesin motor. Increased velocities caused by PS or gamma-secretase reduction require functional kinesin-1 and dynein motors. Together, our findings suggest that a normal function of PS is to repress kinesin-1 and dynein motor activity during axonal transport of APP vesicles. Furthermore, our data suggest that axonal transport defects induced by loss of PS-mediated regulatory effects on APP-vesicle motility could be a major cause of neuronal and synaptic defects observed in Alzheimer's Disease (AD) pathogenesis. Thus, perturbations of APP/PS transport could contribute to early neuropathology observed in AD, and highlight a potential novel therapeutic pathway for early intervention, prior to neuronal loss and clinical manifestation of disease.
Collapse
|
35
|
Barbero-Camps E, Fernández A, Martínez L, Fernández-Checa JC, Colell A. APP/PS1 mice overexpressing SREBP-2 exhibit combined Aβ accumulation and tau pathology underlying Alzheimer's disease. Hum Mol Genet 2013; 22:3460-76. [PMID: 23648430 DOI: 10.1093/hmg/ddt201] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Current evidence indicates that excess brain cholesterol regulates amyloid-β (Aβ) deposition, which in turn can regulate cholesterol homeostasis. Moreover, Aβ neurotoxicity is potentiated, in part, by mitochondrial glutathione (mGSH) depletion. To better understand the relationship between alterations in cholesterol homeostasis and Alzheimer's disease (AD), we generated a triple transgenic mice featuring sterol regulatory element-binding protein-2 (SREBP-2) overexpression in combination with APPswe/PS1ΔE9 mutations (APP/PS1) to examine key biochemical and functional characteristics of AD. Unlike APP/PS1 mice, APP/PS1/SREBP-2 mice exhibited early mitochondrial cholesterol loading and mGSH depletion. Moreover, β-secretase activation and Aβ accumulation, correlating with oxidative damage and neuroinflammation, were accelerated in APP/PS1/SREBP-2 mice compared with APP/PS1 mice. Triple transgenic mice displayed increased synaptotoxicity reflected by loss of synaptophysin and neuronal death, resulting in early object-recognition memory impairment associated with deficits in spatial memory. Interestingly, tau pathology was present in APP/PS1/SREBP-2 mice, manifested by increased tau hyperphosphorylation and cleavage, activation of tau kinases and neurofibrillary tangle (NFT) formation without expression of mutated tau. Importantly, in vivo treatment with the cell permeable GSH ethyl ester, which restored mGSH levels in APP/PS1/SREBP-2 mice, partially prevented the activation of tau kinases, reduced abnormal tau aggregation and Aβ deposition, resulting in attenuated synaptic degeneration. Taken together, these results show that cholesterol-mediated mGSH depletion is a key event in AD progression, accelerating the onset of key neuropathological hallmarks of the disease. Thus, therapeutic approaches to recover mGSH may represent a relevant strategy in the treatment of AD.
Collapse
|
36
|
Sodhi RK, Singh N. Liver X receptors: emerging therapeutic targets for Alzheimer's disease. Pharmacol Res 2013; 72:45-51. [PMID: 23542729 DOI: 10.1016/j.phrs.2013.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/11/2013] [Accepted: 03/21/2013] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder, typified by the pathological accumulation of ß-amyloid peptides (Aß) and neurofibrillary tangles within the brain, culminating to cognitive impairment. Epidemiological and biochemical data have suggested a link between cholesterol content, APP (amyloid precursor protein) processing, Aß, inflammation and AD. The intricacy of the disease presents considerable challenges for the development of newer therapeutic agents. Liver X receptors (LXRa and LXRß) are oxysterol activated nuclear receptors that play essential role in lipid and glucose homeostasis, steroidogenesis and inflammatory responses. LXR signalling impacts the development of AD pathology through multiple pathways. Reports indicate that genetic loss of either lxra or lxrß in APP/PS1 transgenic mice results in increased amyloid plaque load. Studies also suggest that ligand activation of LXRs in Tg2576 mice enhanced, the expression of genes linked with cholesterol efflux e.g. apoe, abca-1, down regulated APP processing and Aß production with significant improvement in memory functions. LXR agonists have also depicted to inhibit neuroinflammation through modulation of microglial phagocytosis and by repressing the expression of cox2, mcp1 and iNos in glial cells. This review summarizes in brief the biology of LXRs, with an emphasis on their probable pathophysiological mechanisms that may elicit the defending role of these receptors in brains of AD patients.
Collapse
Affiliation(s)
- Rupinder K Sodhi
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala 147002, Punjab, India
| | | |
Collapse
|
37
|
Castello MA, Soriano S. Rational heterodoxy: cholesterol reformation of the amyloid doctrine. Ageing Res Rev 2013; 12:282-8. [PMID: 22771381 DOI: 10.1016/j.arr.2012.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/28/2012] [Indexed: 01/09/2023]
Abstract
According to the amyloid cascade hypothesis, accumulation of the amyloid peptide Aβ, derived by proteolytic processing from the amyloid precursor protein (APP), is the key pathogenic trigger in Alzheimer's disease (AD). This view has led researchers for more than two decades and continues to be the most influential model of neurodegeneration. Nevertheless, close scrutiny of the current evidence does not support a central pathogenic role for Aβ in late-onset AD. Furthermore, the amyloid cascade hypothesis lacks a theoretical foundation from which the physiological generation of Aβ can be understood, and therapeutic approaches based on its premises have failed. We present an alternative model of neurodegeneration, in which sustained cholesterol-associated neuronal distress is the most likely pathogenic trigger in late-onset AD, directly causing oxidative stress, inflammation and tau hyperphosphorylation. In this scenario, Aβ generation is part of an APP-driven adaptive response to the initial cholesterol distress, and its accumulation is neither central to, nor a requirement for, the initiation of the disease. Our model provides a theoretical framework that places APP as a regulator of cholesterol homeostasis, accounts for the generation of Aβ in both healthy and demented brains, and provides suitable targets for therapeutic intervention.
Collapse
|
38
|
Mattsson N, Olsson M, Gustavsson MK, Kosicek M, Malnar M, Månsson JE, Blomqvist M, Gobom J, Andreasson U, Brinkmalm G, Vite C, Hecimovic S, Hastings C, Blennow K, Zetterberg H, Portelius E. Amyloid-β metabolism in Niemann-Pick C disease models and patients. Metab Brain Dis 2012; 27:573-85. [PMID: 22935999 DOI: 10.1007/s11011-012-9332-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/13/2012] [Indexed: 11/30/2022]
Abstract
Niemann-Pick type C (NPC) is a progressive neurodegenerative lysosomal disease with altered cellular lipid trafficking. The metabolism of amyloid-β (Aβ) - previously mainly studied in Alzheimer's disease - has been suggested to be altered in NPC. Here we aimed to perform a detailed characterization of metabolic products from the amyloid precursor protein (APP) in NPC models and patients. We used multiple analytical technologies, including immunoassays and immunoprecipitation followed by mass spectrometry (IP-MS) to characterize Aβ peptides and soluble APP fragments (sAPP-α/β) in cell media from pharmacologically (U18666A) and genetically (NPC1 ( -/- ) ) induced NPC cell models, and cerebrospinal fluid (CSF) from NPC cats and human patients. The pattern of Aβ peptides and sAPP-α/β fragments in cell media was differently affected by NPC-phenotype induced by U18666A treatment and by NPC1 ( -/- ) genotype. U18666A treatment increased the secreted media levels of sAPP-α, AβX-40 and AβX-42 and reduced the levels of sAPP-β, Aβ1-40 and Aβ1-42, while IP-MS showed increased relative levels of Aβ5-38 and Aβ5-40 in response to treatment. NPC1 ( -/- ) cells had reduced media levels of sAPP-α and Aβ1-16, and increased levels of sAPP-β. NPC cats had altered CSF distribution of Aβ peptides compared with normal cats. Cats treated with the potential disease-modifying compound 2-hydroxypropyl-β-cyclodextrin had increased relative levels of short Aβ peptides including Aβ1-16 compared with untreated cats. NPC patients receiving β-cyclodextrin had reduced levels over time of CSF Aβ1-42, AβX-38, AβX-40, AβX-42 and sAPP-β, as well as reduced levels of the axonal damage markers tau and phosphorylated tau. We conclude that NPC models have altered Aβ metabolism, but with differences across experimental systems, suggesting that NPC1-loss of function, such as in NPC1 ( -/- ) cells, or NPC1-dysfunction, seen in NPC patients and cats as well as in U18666A-treated cells, may cause subtle but different effects on APP degradation pathways. The preliminary findings from NPC cats suggest that treatment with cyclodextrin may have an impact on APP processing pathways. CSF Aβ, sAPP and tau biomarkers were dynamically altered over time in human NPC patients.
Collapse
Affiliation(s)
- Niklas Mattsson
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy, University of Gothenburg, Mölndal, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
von Einem B, Weber P, Wagner M, Malnar M, Kosicek M, Hecimovic S, von Arnim CAF, Schneckenburger H. Cholesterol-dependent energy transfer between fluorescent proteins-insights into protein proximity of APP and BACE1 in different membranes in Niemann-Pick type C disease cells. Int J Mol Sci 2012; 13:15801-12. [PMID: 23443094 PMCID: PMC3546662 DOI: 10.3390/ijms131215801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 12/27/2022] Open
Abstract
Förster resonance energy transfer (FRET) -based techniques have recently been applied to study the interactions between β-site APP-cleaving enzyme-GFP (BACE1-GFP) and amyloid precursor protein-mRFP (APP-mRFP) in U373 glioblastoma cells. In this context, the role of APP-BACE1 proximity in Alzheimer’s disease (AD) pathogenesis has been discussed. FRET was found to depend on intracellular cholesterol levels and associated alterations in membrane stiffness. Here, NPC1 null cells (CHO-NPC1−/−), exhibiting increased cholesterol levels and disturbed cholesterol transport similar to that observed in Niemann-Pick type C disease (NPC), were used to analyze the influence of altered cholesterol levels on APP-BACE1 proximity. Fluorescence lifetime measurements of whole CHO-wild type (WT) and CHO-NPC1−/− cells (EPI-illumination microscopy), as well as their plasma membranes (total internal reflection fluorescence microscopy, TIRFM), were performed. Additionally, generalized polarization (GP) measurements of CHO-WT and CHO-NPC1−/− cells incubated with the fluorescence marker laurdan were performed to determine membrane stiffness of plasma- and intracellular-membranes. CHO-NPC1−/− cells showed higher membrane stiffness at intracellular- but not plasma-membranes, equivalent to cholesterol accumulation in late endosomes/lysosomes. Along with higher membrane stiffness, the FRET efficiency between BACE1-GFP and APP-mRFP was reduced at intracellular membranes, but not within the plasma membrane of CHO-NPC1−/−. Our data show that FRET combined with TIRF is a powerful technique to determine protein proximity and membrane fluidity in cellular models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Bjoern von Einem
- Department of Experimental Neurology, Ulm University, Helmholtz Str. 8/1, 89081 Ulm, Germany; E-Mails: (B.E.); (C.A.F.A.)
| | - Petra Weber
- Institut für Angewandte Forschung, Hochschule Aalen, Anton-Huber Str. 21, 73430 Aalen, Germany; E-Mails: (P.W.); (M.W.)
| | - Michael Wagner
- Institut für Angewandte Forschung, Hochschule Aalen, Anton-Huber Str. 21, 73430 Aalen, Germany; E-Mails: (P.W.); (M.W.)
| | - Martina Malnar
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; E-Mails: (M.M.); (M.K.); (S.H.)
| | - Marko Kosicek
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; E-Mails: (M.M.); (M.K.); (S.H.)
| | - Silva Hecimovic
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; E-Mails: (M.M.); (M.K.); (S.H.)
| | - Christine A. F. von Arnim
- Department of Experimental Neurology, Ulm University, Helmholtz Str. 8/1, 89081 Ulm, Germany; E-Mails: (B.E.); (C.A.F.A.)
| | - Herbert Schneckenburger
- Institut für Angewandte Forschung, Hochschule Aalen, Anton-Huber Str. 21, 73430 Aalen, Germany; E-Mails: (P.W.); (M.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-7361-576-3401
| |
Collapse
|
40
|
Vance JE. Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis Model Mech 2012; 5:746-55. [PMID: 23065638 PMCID: PMC3484857 DOI: 10.1242/dmm.010124] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dysregulation of cholesterol homeostasis in the brain is increasingly being linked to chronic neurodegenerative disorders, including Alzheimer’s disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD), Niemann-Pick type C (NPC) disease and Smith-Lemli Opitz syndrome (SLOS). However, the molecular mechanisms underlying the correlation between altered cholesterol metabolism and the neurological deficits are, for the most part, not clear. NPC disease and SLOS are caused by mutations in genes involved in the biosynthesis or intracellular trafficking of cholesterol, respectively. However, the types of neurological impairments, and the areas of the brain that are most affected, differ between these diseases. Some, but not all, studies indicate that high levels of plasma cholesterol correlate with increased risk of developing AD. Moreover, inheritance of the E4 isoform of apolipoprotein E (APOE), a cholesterol-carrying protein, markedly increases the risk of developing AD. Whether or not treatment of AD with statins is beneficial remains controversial, and any benefit of statin treatment might be due to anti-inflammatory properties of the drug. Cholesterol balance is also altered in HD and PD, although no causal link between dysregulated cholesterol homeostasis and neurodegeneration has been established. Some important considerations for treatment of neurodegenerative diseases are the impermeability of the blood-brain barrier to many therapeutic agents and difficulties in reversing brain damage that has already occurred. This article focuses on how cholesterol balance in the brain is altered in several neurodegenerative diseases, and discusses some commonalities and differences among the diseases.
Collapse
Affiliation(s)
- Jean E Vance
- Group on the Molecular and Cell Biology of Lipids and Department of Medicine, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
41
|
van Echten-Deckert G, Walter J. Sphingolipids: Critical players in Alzheimer’s disease. Prog Lipid Res 2012; 51:378-93. [DOI: 10.1016/j.plipres.2012.07.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/06/2012] [Indexed: 12/20/2022]
|
42
|
Maulik M, Westaway D, Jhamandas JH, Kar S. Role of cholesterol in APP metabolism and its significance in Alzheimer's disease pathogenesis. Mol Neurobiol 2012; 47:37-63. [PMID: 22983915 DOI: 10.1007/s12035-012-8337-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/19/2012] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a complex multifactorial neurodegenerative disorder believed to be initiated by accumulation of amyloid β (Aβ)-related peptides derived from proteolytic processing of amyloid precursor protein (APP). Research over the past two decades provided a mechanistic link between cholesterol and AD pathogenesis. Genetic polymorphisms in genes regulating the pivotal points in cholesterol metabolism have been suggested to enhance the risk of developing AD. Altered neuronal membrane cholesterol level and/or subcellular distribution have been implicated in aberrant formation, aggregation, toxicity, and degradation of Aβ-related peptides. However, the results are somewhat contradictory and we still do not have a complete understanding on how cholesterol can influence AD pathogenesis. In this review, we summarize our current understanding on the role of cholesterol in regulating the production/function of Aβ-related peptides and also examine the therapeutic potential of regulating cholesterol homeostasis in the treatment of AD pathology.
Collapse
Affiliation(s)
- M Maulik
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | | | | | | |
Collapse
|
43
|
Rogers I, Kerr F, Martinez P, Hardy J, Lovestone S, Partridge L. Ageing increases vulnerability to aβ42 toxicity in Drosophila. PLoS One 2012; 7:e40569. [PMID: 22808195 PMCID: PMC3395685 DOI: 10.1371/journal.pone.0040569] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 06/10/2012] [Indexed: 11/24/2022] Open
Abstract
Age is the major risk factor for many neurodegenerative diseases, including Alzheimer's Disease (AD), for reasons that are not clear. The association could indicate that the duration or degree of exposure to toxic proteins is important for pathology, or that age itself increases susceptibility to protein toxicity. Using an inducible Drosophila model of AD, we investigated these possibilities by varying the expression of an Aβ42 transgene in neurons at different adult ages and measuring the effects on Aβ42 levels and associated pathological phenotypes. Acute induction of Arctic Aβ42 in young adult flies resulted in rapid expression and clearance of mRNA and soluble Arctic Aβ42 protein, but in irreversible expression of insoluble Arctic Aβ42 peptide. Arctic Aβ42 peptide levels accumulated with longer durations of induction, and this led to a dose-dependent reduction in negative geotaxis and lifespan. For a standardised level of mRNA expression, older flies had higher levels of Arctic Aβ42 peptide and associated toxicity, and this correlated with an age-dependent reduction in proteasome activity. Equalising Aβ42 protein at different ages shortened lifespan in correlation with the duration of exposure to the peptide, suggesting that Aβ42 expression accumulates damage over time. However, the relative reduction in lifespan compared to controls was greater in flies first exposed to the peptide at older ages, suggesting that ageing itself also increases susceptibility to Aβ42 toxicity. Indeed older flies were more vulnerable to chronic Aβ42 toxicity even with a much lower lifetime exposure to the peptide. Finally, the persistence of insoluble Aβ42 in both young and old induced flies suggests that aggregated forms of the peptide cause toxicity in later life. Our results suggest that reduced protein turnover, increased duration of exposure and increased vulnerability to protein toxicity at later ages in combination could explain the late age-of-onset of neurodegenerative phenotypes.
Collapse
Affiliation(s)
- Iain Rogers
- Institute of Healthy Ageing and GEE, University College London, London, United Kingdom
| | - Fiona Kerr
- Institute of Healthy Ageing and GEE, University College London, London, United Kingdom
| | - Pedro Martinez
- Institute of Healthy Ageing and GEE, University College London, London, United Kingdom
| | - John Hardy
- Institute of Neurology, University College London, London, United Kingdom
| | - Simon Lovestone
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Linda Partridge
- Institute of Healthy Ageing and GEE, University College London, London, United Kingdom
- Max Planck Institute for Biology of Ageing, Köln, Germany
- * E-mail: (LP)
| |
Collapse
|
44
|
Ong QR, Lim ML, Chua CC, Cheung NS, Wong BS. Impaired insulin signaling in an animal model of Niemann-Pick Type C disease. Biochem Biophys Res Commun 2012; 424:482-7. [PMID: 22776200 DOI: 10.1016/j.bbrc.2012.06.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 06/26/2012] [Indexed: 01/22/2023]
Abstract
Studies have shown similarities between the histopathological characteristics of NPC and Alzheimer's disease (AD) including amyloid and tau pathologies. While dysfunction in insulin signaling was widely detected in AD brain, the function of insulin signaling proteins has not been examined in NPC disease. In this study, we have examined the expression and phosphorylation of proteins linked to the insulin signaling pathway in the brain of 9 weeks old NPC(nih) mice. Our results showed lower expression of insulin receptor substrate 2 (IRS2) in the NPC(nih) mice, and insulin receptor substrate 1 (IRS1) expression was almost non-detectable in this NPC mouse model. This reduction was associated with the loss of expression for the regulatory p85 subunit of phosphatidylinositol 3-kinase (p85/PI3K). Interestingly, the impairment was observed to link to a greater reduction of Akt phosphorylation at residue T308 than S473. This aberrant Akt phosphorylation could be contributing to lower GSK3β phosphorylation detected in the NPC(nih) mouse brain. To our knowledge, this is the first report documenting impaired insulin signaling in the brain of a NPC mouse model.
Collapse
Affiliation(s)
- Qi-Rui Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
45
|
Posse de Chaves E. Reciprocal regulation of cholesterol and beta amyloid at the subcellular level in Alzheimer's disease. Can J Physiol Pharmacol 2012; 90:753-64. [PMID: 22626060 DOI: 10.1139/y2012-076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the discovery that apolipoprotein E, a cholesterol transport protein, is a major risk factor for Alzheimer's disease (AD) development, there has been a remarkable interest in understanding the many facets of the relationship between cholesterol and AD. Several lines of evidence have demonstrated the importance of cholesterol in amyloid beta peptide (Aβ) production and metabolism, as well as the involvement of Aβ in cholesterol homeostasis. The emerging picture is complex and still incomplete. This review discusses findings that indicate that a reciprocal regulation exists between Aβ and cholesterol at the subcellular level. The pathological impact of such regulation is highlighted.
Collapse
Affiliation(s)
- Elena Posse de Chaves
- Department of Pharmacology, 9-31 Medical Sciences Building, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
46
|
Cholesterol-depletion corrects APP and BACE1 misstrafficking in NPC1-deficient cells. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1270-83. [PMID: 22551668 DOI: 10.1016/j.bbadis.2012.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 12/25/2022]
Abstract
Cholesterol accumulation in Niemann-Pick type C disease (NPC) causes increased levels of the amyloid-precursor-protein C-terminal fragments (APP-CTFs) and intracellular amyloid-β peptide (Aβ), the two central molecules in Alzheimer's disease (AD) pathogenesis. We previously reported that cholesterol accumulation in NPC-cells leads to cholesterol-dependent increased APP processing by β-secretase (BACE1) and decreased APP expression at the cell surface (Malnar et al. Biochim Biophys Acta. 1802 (2010) 682-691.). We hypothesized that increased formation of APP-CTFs and Aβ in NPC disease is due to cholesterol-mediated altered endocytic trafficking of APP and/or BACE1. Here, we show that APP endocytosis is prerequisite for enhanced Aβ levels in NPC-cells. Moreover, we observed that NPC cells show cholesterol dependent sequestration and colocalization of APP and BACE1 within enlarged early/recycling endosomes which can lead to increased β-secretase processing of APP. We demonstrated that increased endocytic localization of APP in NPC-cells is likely due to both its increased internalization and its decreased recycling to the cell surface. Our findings suggest that increased cholesterol levels, such as in NPC disease and sporadic AD, may be the upstream effector that drives amyloidogenic APP processing characteristic for Alzheimer's disease by altering endocytic trafficking of APP and BACE1.
Collapse
|
47
|
Abstract
Alzheimer disease (AD) is an age-related neurodegenerative disorder that manifests as a progressive loss of memory and deterioration of higher cognitive functions. Alzheimer disease is characterized by accumulation in the brain of the β-amyloid peptide generated by β- and γ-secretase processing of amyloid precursor protein. Epidemiological studies have linked elevated plasma cholesterol and lipoprotein levels in midlife with AD development. Cholesterol-fed animal models exhibit neuropathologic features of AD including accumulation of β-amyloid peptide. Specific isoforms of the cholesterol transporter apolipoprotein E are associated with susceptibility to AD. Although multiple lines of evidence indicate a role for cholesterol in AD, the exact impact and mechanisms involved remain largely unknown. This review summarizes the current state of our knowledge of the influence of cholesterol and lipid pathways in AD pathogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Allison B Reiss
- Winthrop Research Institute, Department of Medicine, Winthrop University Hospital, Mineola, NY 11501, USA.
| | | |
Collapse
|
48
|
Yao J, Brinton RD. Estrogen regulation of mitochondrial bioenergetics: implications for prevention of Alzheimer's disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 64:327-71. [PMID: 22840752 PMCID: PMC3970844 DOI: 10.1016/b978-0-12-394816-8.00010-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with a complex and progressive pathological phenotype characterized first by hypometabolism and impaired mitochondrial bioenergetics followed by pathological burden. Increasing evidence indicates an antecedent and potentially causal role of mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress in AD pathogenesis. Compromised aerobic glycolysis pathway coupled with oxidative stress is first accompanied by a shift toward a ketogenic pathway that eventually progresses into fatty acid oxidation (FAO) pathways and leads to white matter degeneration and overproduction and mitochondrial accumulation of β-amyloid. Estrogen-induced signaling pathways converge upon the mitochondria to enhance mitochondrial function and to sustain aerobic glycolysis coupled with citric acid cycle-driven oxidative phosphorylation to potentiate ATP (Adenosine triphosphate) generation. In addition to potentiated mitochondrial bioenergetics, estrogen also enhances neural survival and health through maintenance of calcium homeostasis, promotion of antioxidant defense against free radicals, efficient cholesterol trafficking, and beta amyloid clearance. Significantly, the convergence of E2 mechanisms of action onto mitochondria is also a potential point of vulnerability when activated in diseased neurons that exacerbates degeneration through increased load on dysregulated calcium homeostasis. The "healthy cell bias of estrogen action" hypothesis examines the role that regulating mitochondrial function and bioenergetics play in promoting neural health and the mechanistic crossroads that lead to divergent outcomes following estrogen exposure. As the continuum of neurological health progresses from healthy to unhealthy, so too do the benefits of estrogen or hormone therapy.
Collapse
Affiliation(s)
- Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
49
|
Michaki V, Guix FX, Vennekens K, Munck S, Dingwall C, Davis JB, Townsend DM, Tew KD, Feiguin F, De Strooper B, Dotti CG, Wahle T. Down-regulation of the ATP-binding cassette transporter 2 (Abca2) reduces amyloid-β production by altering Nicastrin maturation and intracellular localization. J Biol Chem 2011; 287:1100-11. [PMID: 22086926 DOI: 10.1074/jbc.m111.288258] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clinical, pharmacological, biochemical, and genetic evidence support the notion that alteration of cholesterol homeostasis strongly predisposes to Alzheimer disease (AD). The ATP-binding cassette transporter-2 (Abca2), which plays a role in intracellular sterol trafficking, has been genetically linked to AD. It is unclear how these two processes are related. Here we demonstrate that down-regulation of Abca2 in mammalian cells leads to decreased amyloid-β (Aβ) generation. In vitro studies revealed altered γ-secretase complex formation in Abca2 knock-out cells due to the altered levels, post-translational modification, and subcellular localization of Nicastrin. Reduced Abca2 levels in mammalian cells in vitro, in Drosophila melanogaster and in mice resulted in altered γ-secretase processing of APP, and thus Aβ generation, without affecting Notch cleavage.
Collapse
Affiliation(s)
- Vasiliki Michaki
- Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, KU Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yao J, Rettberg JR, Klosinski LP, Cadenas E, Brinton RD. Shift in brain metabolism in late onset Alzheimer's disease: implications for biomarkers and therapeutic interventions. Mol Aspects Med 2011; 32:247-57. [PMID: 22024249 DOI: 10.1016/j.mam.2011.10.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/11/2011] [Indexed: 01/23/2023]
Abstract
Alzheimer's is a neurodegenerative disease with a complex and progressive pathological phenotype characterized first by hypometabolism and impaired mitochondrial bioenergetics followed by pathological burden. Increasing evidence indicates an antecedent and potentially causal role of mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress in AD pathogenesis. Compromised mitochondrial bioenergetics lead to over-production of and mitochondrial accumulation of β-amyloid, which is coupled with oxidative stress. Collectively, this results in a shift in brain metabolic profile from glucose-driven bioenergetics towards a compensatory, but less efficient, ketogenic pathway. We propose that the compensatory shift from a primarily aerobic glycolysis pathway to a ketogenic/fatty acid β-oxidation pathway eventually leads to white matter degeneration. The essential role of mitochondrial bioenergetics and the unique trajectory of compensatory metabolic adaptations in brain enable a bioenergetic-centric strategy for development of biomarkers. From a therapeutic perspective, this trajectory of alterations in brain metabolic capacity enables disease-stage specific strategies to target brain metabolism for disease prevention and treatment. A combination of nutraceutical and pharmaceutical interventions that enhance glucose-driven metabolic activity and potentiate mitochondrial bioenergetic function could prevent the antecedent decline in brain glucose metabolism, promote healthy aging and prevent AD. Alternatively, during the prodromal incipient phase of AD, sustained activation of ketogenic metabolic pathways coupled with supplementation of the alternative fuel source, ketone bodies, could sustain mitochondrial bioenergetic function to prevent or delay further progression of the disease.
Collapse
Affiliation(s)
- Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, United States
| | | | | | | | | |
Collapse
|