1
|
Etemadifar M, Alaei SA, Akaishi T, Salari M, Norouzi M, Samadzadeh S, Paul F. Relapse-Independent disease activity in neuromyelitis optica spectrum disorder: A systematic review. Mult Scler Relat Disord 2024; 90:105843. [PMID: 39217808 DOI: 10.1016/j.msard.2024.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Neuromyelitis Optica Spectrum Disorders (NMOSD) is a neuroinflammatory condition characterized by optic neuritis and transverse myelitis. While the current approach to NMOSD focuses on relapse-associated worsening (RAW), recent evidence indicates Relapse-Independent Disease Activity (RIDA) in patients. METHOD Databases including Embase, PubMed, Scopus, and Web of Sciences were systematically searched up to December 2023. No restrictions were applied. Inclusion criteria focused on studies reporting evidence of RIDA in NMOSD patients. Data extraction involved details such as study title, author, participant characteristics, treatment, evaluation methods, positive findings according to RIDA, and prevalence of findings in NMOSD patients. This study is conducted following the PRISMA guidelines with a registered protocol on PROSPERO (ID = CRD42023492352). RESULT Of 802 studies, 38 were included in the systematic review, covering 1881 NMOSD patients. AQP4-IGg status was positive in 90.6 % of the patients. Ocular findings indicative of RIDA were reported in 23 studies, including thinning of GCIPL, RNFL, GCC, and GCL layers, foveal and macular shape and volume abnormalities, vessel loss, and visual evoked potentials (VEPs) abnormalities. MRI findings supporting the RIDA were reported in 13 studies, including new lesion incidence and brain and spinal cord atrophy. Serum and CSF RIDA-supporting findings were reported in five studies, including elevation in sGFAP and sNFL. Biopsies and autopsies suggested inflammatory processes in relapse-free patients in 2 studies. The predominant manifestation of RIDA in NMOSD was identified in the visual system, suggesting the impaired retinal glial cells like Müller cells during the relapse-free period in NMOSD. INTERPRETATION Our systematic review provides valuable insights into RIDA in NMOSD. Establishing guidelines for the diagnosis and treatment of RIDA is crucial. Further studies are needed to provide robust evidence on RIDA in NMOSD patients.
Collapse
Affiliation(s)
- Masoud Etemadifar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyyed-Ali Alaei
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tetsuya Akaishi
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Mehri Salari
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Norouzi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sara Samadzadeh
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany,; Institute of Regional Health Research and, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; The Center for Neurological Research, Department of Neurology Næstved-Slagelse-Ringsted Hospitals, Slagelse, Denmark
| | - Friedemann Paul
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany,; Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; NeuroCure Clinical Research Center, Charite - Universita tsmedizin Berlin, corporate member of Freie Universitat Berlin and Humboldt-Universitat zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Zavvarian MM, Modi AD, Sadat S, Hong J, Fehlings MG. Translational Relevance of Secondary Intracellular Signaling Cascades Following Traumatic Spinal Cord Injury. Int J Mol Sci 2024; 25:5708. [PMID: 38891894 PMCID: PMC11172219 DOI: 10.3390/ijms25115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a life-threatening and life-altering condition that results in debilitating sensorimotor and autonomic impairments. Despite significant advances in the clinical management of traumatic SCI, many patients continue to suffer due to a lack of effective therapies. The initial mechanical injury to the spinal cord results in a series of secondary molecular processes and intracellular signaling cascades in immune, vascular, glial, and neuronal cell populations, which further damage the injured spinal cord. These intracellular cascades present promising translationally relevant targets for therapeutic intervention due to their high ubiquity and conservation across eukaryotic evolution. To date, many therapeutics have shown either direct or indirect involvement of these pathways in improving recovery after SCI. However, the complex, multifaceted, and heterogeneous nature of traumatic SCI requires better elucidation of the underlying secondary intracellular signaling cascades to minimize off-target effects and maximize effectiveness. Recent advances in transcriptional and molecular neuroscience provide a closer characterization of these pathways in the injured spinal cord. This narrative review article aims to survey the MAPK, PI3K-AKT-mTOR, Rho-ROCK, NF-κB, and JAK-STAT signaling cascades, in addition to providing a comprehensive overview of the involvement and therapeutic potential of these secondary intracellular pathways following traumatic SCI.
Collapse
Affiliation(s)
- Mohammad-Masoud Zavvarian
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Akshat D. Modi
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Department of Biological Sciences, University of Toronto, Scarborough, ON M1C 1A4, Canada
- Department of Human Biology, University of Toronto, Toronto, ON M5S 3J6, Canada
| | - Sarah Sadat
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - James Hong
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
| | - Michael G. Fehlings
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
3
|
Zhao X, Sun L, Wang J, Xu X, Ni S, Liu M, Hu K. Nose to brain delivery of Astragaloside IV by β-Asarone modified chitosan nanoparticles for multiple sclerosis therapy. Int J Pharm 2023; 644:123351. [PMID: 37640088 DOI: 10.1016/j.ijpharm.2023.123351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/29/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Multiple sclerosis (MS), an autoimmune disease, has been considered an inflammatory disorder of the central nervous system (CNS) with demyelination and axonal damage. Although there are certain first-line therapies to treat MS, their unsatisfactory efficacy is partly due to the limited CNS access after systemic administration. Besides, there is an urgent need to treat MS by enhancing remyelination or neuroprotection, or dampen the activity of microglia. Astragaloside IV (ASI) bears anti-inflammatory, antioxidant, remyelination and neuroprotective activity. While its poor permeability, relatively high molecular weight and low lipophilicity restrict it to reach the brain. Therefore, β-asarone modified ASI loaded chitosan nanoparticles (ASI-βCS-NP) were prepared to enhance the nose-to-brain delivery and therapeutic effects of ASI on EAE mice. The prepared ASI-βCS-NP showed mean size of about 120 nm, and zeta potential from +19 to +25 mV. DiR-βCS-NP was confirmed with good nose-to-brain targeting ability. After intranasal administration, the ASI-βCS-NP significantly reduced behavioral scores, decreased weight loss, suppressed inflammatory infiltration and astrocyte/microglial activation, reduced demyelination and increased remyelination on a mice EAE model. Our findings indicate that ASI-βCS-NP may be a potent treatment for MS after nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Xiao Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Lixue Sun
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Jing Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiaolu Xu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Shuting Ni
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Mei Liu
- Industrial Development Center of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
4
|
McCartan R, Gratkowski A, Browning M, Hahn-Townsend C, Ferguson S, Morin A, Bachmeier C, Pearson A, Brown L, Mullan M, Crawford F, Tzekov R, Mouzon B. Human amnionic progenitor cell secretome mitigates the consequence of traumatic optic neuropathy in a mouse model. Mol Ther Methods Clin Dev 2023; 29:303-318. [PMID: 37359418 PMCID: PMC10285248 DOI: 10.1016/j.omtm.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/12/2023] [Indexed: 06/28/2023]
Abstract
Traumatic optic neuropathy (TON) is a condition in which acute injury to the optic nerve from direct or indirect trauma results in vision loss. The most common cause of TON is indirect injury to the optic nerve caused by concussive forces that are transmitted to the optic nerve. TON occurs in up to 5% of closed-head trauma patients and there is currently no known effective treatment. One potential treatment option for TON is ST266, a cell-free biological solution containing the secretome of amnion-derived multipotent progenitor (AMP) cells. We investigated the efficacy of intranasal ST266 in a mouse model of TON induced by blunt head trauma. Injured mice treated with a 10-day regimen of ST266 showed an improvement in spatial memory and learning, a significant preservation of retinal ganglion cells, and a decrease in neuropathological markers in the optic nerve, optic tract, and dorsal lateral geniculate nucleus. ST266 treatment effectively downregulated the NLRP3 inflammasome-mediated neuroinflammation pathway after blunt trauma. Overall, treatment with ST266 was shown to improve functional and pathological outcomes in a mouse model of TON, warranting future exploration of ST266 as a cell-free therapeutic candidate for testing in all optic neuropathies.
Collapse
Affiliation(s)
- Robyn McCartan
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | - Scott Ferguson
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| | - Alexander Morin
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| | - Corbin Bachmeier
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
- Bay Pines Veterans’ Hospital, Saint Petersburg, FL 33708, USA
| | - Andrew Pearson
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| | - Larry Brown
- Noveome Biotherapeutics, Inc., Pittsburgh, PA 15219, USA
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
| | | | - Benoit Mouzon
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Gómez-Pinedo U, Matías-Guiu JA, Ojeda-Hernandez D, de la Fuente-Martin S, Kamal OMF, Benito-Martin MS, Selma-Calvo B, Montero-Escribano P, Matías-Guiu J. In Vitro Effects of Methylprednisolone over Oligodendroglial Cells: Foresight to Future Cell Therapies. Cells 2023; 12:1515. [PMID: 37296635 PMCID: PMC10252523 DOI: 10.3390/cells12111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The implantation of oligodendrocyte precursor cells may be a useful therapeutic strategy for targeting remyelination. However, it is yet to be established how these cells behave after implantation and whether they retain the capacity to proliferate or differentiate into myelin-forming oligodendrocytes. One essential issue is the creation of administration protocols and determining which factors need to be well established. There is controversy around whether these cells may be implanted simultaneously with corticosteroid treatment, which is widely used in many clinical situations. This study assesses the influence of corticosteroids on the capacity for proliferation and differentiation and the survival of human oligodendroglioma cells. Our findings show that corticosteroids reduce the capacity of these cells to proliferate and to differentiate into oligodendrocytes and decrease cell survival. Thus, their effect does not favour remyelination; this is consistent with the results of studies with rodent cells. In conclusion, protocols for the administration of oligodendrocyte lineage cells with the aim of repopulating oligodendroglial niches or repairing demyelinated axons should not include corticosteroids, given the evidence that the effects of these drugs may undermine the objectives of cell transplantation.
Collapse
Affiliation(s)
- Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
| | - Jordi A. Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.M.-G.); (P.M.-E.)
| | - Denise Ojeda-Hernandez
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
| | - Sarah de la Fuente-Martin
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
| | - Ola Mohamed-Fathy Kamal
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
| | - Maria Soledad Benito-Martin
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
| | - Belen Selma-Calvo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
| | - Paloma Montero-Escribano
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.M.-G.); (P.M.-E.)
| | - Jorge Matías-Guiu
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.M.-G.); (P.M.-E.)
| |
Collapse
|
6
|
The Neuroprotective Effects of Administration of Methylprednisolone in Cardiopulmonary Resuscitation in Experimental Cardiac Arrest Model. Cell Mol Neurobiol 2022:10.1007/s10571-022-01300-w. [DOI: 10.1007/s10571-022-01300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/07/2022] [Indexed: 11/12/2022]
|
7
|
Lai YF, Lin TY, Ho PK, Chen YH, Huang YC, Lu DW. Erythropoietin in Optic Neuropathies: Current Future Strategies for Optic Nerve Protection and Repair. Int J Mol Sci 2022; 23:ijms23137143. [PMID: 35806148 PMCID: PMC9267007 DOI: 10.3390/ijms23137143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Erythropoietin (EPO) is known as a hormone for erythropoiesis in response to anemia and hypoxia. However, the effect of EPO is not only limited to hematopoietic tissue. Several studies have highlighted the neuroprotective function of EPO in extra-hematopoietic tissues, especially the retina. EPO could interact with its heterodimer receptor (EPOR/βcR) to exert its anti-apoptosis, anti-inflammation and anti-oxidation effects in preventing retinal ganglion cells death through different intracellular signaling pathways. In this review, we summarized the available pre-clinical studies of EPO in treating glaucomatous optic neuropathy, optic neuritis, non-arteritic anterior ischemic optic neuropathy and traumatic optic neuropathy. In addition, we explore the future strategies of EPO for optic nerve protection and repair, including advances in EPO derivates, and EPO deliveries. These strategies will lead to a new chapter in the treatment of optic neuropathy.
Collapse
Affiliation(s)
- Yi-Fen Lai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Ting-Yi Lin
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Pin-Kuan Ho
- School of Dentistry, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Yu-Chuan Huang
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Research and Development, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (Y.-C.H.); (D.-W.L.); Tel.: +886-2-87923100 (Y.-C.H.); +886-2-87927163 (D.-W.L.)
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
- Correspondence: (Y.-C.H.); (D.-W.L.); Tel.: +886-2-87923100 (Y.-C.H.); +886-2-87927163 (D.-W.L.)
| |
Collapse
|
8
|
GAP-43 Induces the Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Retinal Ganglial-Like Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4949206. [PMID: 35495894 PMCID: PMC9050254 DOI: 10.1155/2022/4949206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 11/18/2022]
Abstract
Optic neuritis (ON) is a common neurological disease, and the transplant of retinal ganglion cells (RGCs) has been thought as a promising strategy for improving the injury of the optic nerve system. Bone mesenchymal stem cells (BMSCs) have the potential to differentiate into neural cells. Several studies have indicated that GAP-43 is related with the regeneration of nerve cells, while the effect of GAP-43 on inducing BMSC differentiation remains unclear. In this study, the BMSCs were separated from the rats and identified with flow cytometry assay. The GAP-43 expressed vectors were transfected into the BMSCs, and the biomarkers of RGCs such as PAX6, LHX2, and ATOH7 were used to observe by qRT-PCR. Moreover, the effect of GAP-43-induced BMSCs (G-BMSCs) on ON improvement was also verified with rat models, and the activity of MAPK pathway was measured with western blot. Here, it was found that GAP-43 could obviously promote the differentiation of BMSCs, and increased PAX6, LHX2, ATOH7, BRN3A, and BRN3B were observed in the process of cell differentiation. Moreover, it was also found that G-BMSCs significantly increased the abundances of NFL and NFM in G-BMSCs, and GAP-43 could also enhance the activity of MAPK pathways in BMSCs. Therefore, this study suggested that GAP-43 could induce the differentiation of bone marrow-derived mesenchymal stem cells into retinal ganglial cells.
Collapse
|
9
|
Castoldi V, Marenna S, Huang SC, d'Isa R, Chaabane L, Comi G, Leocani L. Dose-dependent effect of myelin oligodendrocyte glycoprotein on visual function and optic nerve damage in experimental autoimmune encephalomyelitis. J Neurosci Res 2022; 100:855-868. [PMID: 35043454 DOI: 10.1002/jnr.25007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Female Dark Agouti rats were immunized with increasing doses of myelin oligodendrocyte glycoprotein (MOG) to develop experimental autoimmune encephalomyelitis (EAE), a preclinical model of multiple sclerosis. Typical EAE motor impairments were assessed daily and noninvasive visual evoked potentials (VEPs) were recorded at baseline and 5 weeks after immunization, with final histopathology of optic nerves (ONs). Immunized rats exhibited a relapsing-remitting clinical course. Both VEP and histological abnormalities were detected in a MOG dose-dependent gradient. Increasing MOG dosage augmented visual function impairment in EAE, which could be monitored with VEP recording to assess demyelination and axonal loss along ONs.
Collapse
Affiliation(s)
- Valerio Castoldi
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Marenna
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaele d'Isa
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Linda Chaabane
- INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Giancarlo Comi
- Vita-Salute San Raffaele University, Milan, Italy.,Casa di Cura del Policlinico, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
10
|
Neuroprotective Effects of Novel Treatments on Acute Optic Neuritis—A Meta-Analysis. Biomedicines 2022; 10:biomedicines10010192. [PMID: 35052875 PMCID: PMC8774005 DOI: 10.3390/biomedicines10010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Optic neuritis, inflammation of the optic nerve, can cause visual impairment through retinal nerve fiber layer (RNFL) degeneration. Optical coherence tomography could serve as a sensitive noninvasive tool for measuring RNFL thickness and evaluating the neuroprotective effects of treatment. We conducted a meta-analysis to compare RNFL loss between novel add-on treatments and corticosteroid therapy at least 3 months after acute optic neuritis. The outcome measures were mean differences (MDs) in (1) RNFL thickness compared with the baseline in the affected and unaffected eye and (2) LogMAR visual acuity (VA). Seven studies involving five novel agents (memantine, erythropoietin, interferon-beta, phenytoin, and clemastine) were analyzed. When compared with the baseline RNFL thickness of the affected eye, the neuroprotective effects of novel add-on treatments could not be demonstrated. The difference in visual outcomes was also not significant between the two treatment groups. One study revealed that phenytoin has the potential to alleviate RNFL loss when the baseline thickness of the unaffected eye is considered. Larger randomized controlled trials with suitable outcome measures are warranted to evaluate the neuroprotective effects of novel treatments. Further studies should also tailor therapies to specific patient populations and investigate a more targeted treatment for acute optic neuritis.
Collapse
|
11
|
Traumatic optic neuropathy: a review of current studies. Neurosurg Rev 2022; 45:1895-1913. [PMID: 35034261 DOI: 10.1007/s10143-021-01717-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/26/2021] [Accepted: 12/09/2021] [Indexed: 10/24/2022]
Abstract
Traumatic optic neuropathy (TON) is a serious complication of craniofacial trauma that directly or indirectly damages the optic nerve and can cause severe vision loss. The incidence of TON has been gradually increasing in recent years. Research on the protection and regeneration of the optic nerve after the onset of TON is still at the level of laboratory studies and which is insufficient to support clinical treatment of TON. And, due to without clear guidelines, there is much ambiguity regarding its diagnosis and management. Clinical interventions for TON include observation only, treatment with corticosteroids alone, or optic canal (OC) decompression (with or without steroids). There is controversy in clinical practice concerning which treatment is the best. A review of available studies shows that the visual acuity of patients with TON can be significantly improved after OC decompression surgery (especially endoscopic transnasal/transseptal optic canal decompression (ETOCD)) with or without the use of corticosteroids. And new findings of laboratory studies such as mitochondrial therapy, lipid change studies, and other studies in favor of TON therapy have also been identified. In this review, we discuss the evolving perspective of surgical treatment and experimental study.
Collapse
|
12
|
Zeng P, Du C, Zhang R, Jia D, Jiang F, Fan M, Zhang C. Optical Coherence Tomography Reveals Longitudinal Changes in Retinal Damage Under Different Treatments for Neuromyelitis Optica Spectrum Disorder. Front Neurol 2021; 12:669567. [PMID: 34349719 PMCID: PMC8326361 DOI: 10.3389/fneur.2021.669567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/18/2021] [Indexed: 12/01/2022] Open
Abstract
Background: Progressive retinal neuroaxonal damage after acute optic neuritis may occur in neuromyelitis optica spectrum disorder (NMOSD). However, it is unclear if treatments used to prevent attacks influence neurodegeneration. Objectives: We aimed to investigate retinal damage in patients treated with disease-modifying drugs in a longitudinal study. Methods: We retrospectively included 50 patients with aquaporin 4-antibody-seropositive NMOSD. Peripapillary retinal nerve fiber layer (pRNFL) thickness, macular ganglion cell complex (mGCC) thickness, total macular volume (TMV), and optic disc measures were acquired by spectral domain optical coherence tomography in patients treated with tocilizumab, rituximab, and azathioprine. Results: Longitudinally, in eyes with a history of ON (NMOSDON+), we observed annual thinning of mGCC [tocilizumab: −1.77 (−3.44, −0.09) μm, p = 0.041; rituximab: −2.03 (−3.58, −0.48) μm, p = 0.017; azathioprine: −1.79 (−2.22, −1.37) μm, p < 0.001], and pRNFL [tocilizumab: −2.07 (−0.75, −3.39) μm, p = 0.005; rituximab: −2.18 (−0.36, −4.00) μm, p = 0.023; azathioprine: −2.37 (−0.98, −3.75) μm, p = 0.003], reduced TMV [tocilizumab: −0.12 (−0.22, −0.01) mm3, p = 0.028; rituximab: −0.15 (−0.21, −0.08) mm3, p = 0.001; azathioprine: −0.12 (−0.20, −0.04) mm3, p = 0.006], and increased cup area [tocilizumab: 0.08 (−0.01, 0.16) mm2, p = 0.010; rituximab: 0.07 (0.01, 0.12) mm2, p = 0.019; azathioprine: 0.14 (0.02, 0.26) mm2, p = 0.023]. However, we detected no significant differences in annual changes in mGCC, pRNFL, TMV, and cup area between patients with tocilizumab, rituximab, and azathioprine in NMOSDON+ eyes. NMOSDON− eyes did not display mGCC or pRNFL thinning in patients treated with tocilizumab and rituximab. Intriguingly, we observed significant thinning of mGCC in patients treated with azathioprine compared with tocilizumab [−0.84 (−1.50, −0.18) μm vs. −0.19 (−0.87, 0.48) μm, p = 0.012] and rituximab [−0.84 (−1.50, −0.18) μm vs. −0.07 (−1.25, −2.51) μm, p = 0.015] in NMOSDON− eyes. Conclusions: This study demonstrated that retinal ganglion cell loss is independent of ON attacks in NMOSD. Tocilizumab and rituximab may delay mGCC thinning in NMOSDON− eyes compared with azathioprine.
Collapse
Affiliation(s)
- Pei Zeng
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Du
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Dongmei Jia
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Jiang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Moli Fan
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
13
|
Yu J, Huang Y, Wu K, ZhangBao J, Zhou L, Zong Y, Zhou X, Quan C, Wang M. Alterations in the Retinal Vascular Network and Structure in Myelin Oligodendrocyte Glycoprotein Antibody-Associated Optic Neuritis: A Longitudinal OCTA Study. Ocul Immunol Inflamm 2021; 30:1055-1059. [PMID: 33750277 DOI: 10.1080/09273948.2020.1860231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: To investigate the longitudinal microstructural and microvascular changes in patients with myelin oligodendrocyte glycoprotein antibody-associated optic neuritis (MOG-ON) without new attacks.Methods: We included 20 eyes of 12 MOG-ON patients without new attacks during the follow-up and 24 eyes of 12 age- and sex-matched healthy controls.Results: The BCVA, retinal vessels and structure were significantly lower in MOG-ON eyes than in healthy eyes(all P < .05). In MOG-ON eyes, the BCVA (p = .408) and mean deviation (p = .854) were not significantly decreased at the follow-up visit. However, there were small, significant decreases in parafoveal vessel density (p = .026), peripapillary vessel density (p = .008), and RNFL thickness (p = .03), but not GCIPL thickness (p = .107).Conclusions: Ongoing deterioration was observed in RNFL thickness and parafoveal and peripapillary vessel density, but not GCIPL thinning, in MOG-ON eyes without a new attack of ON.
Collapse
Affiliation(s)
- Jian Yu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yongheng Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,Department of Ophthalmology, Kiang Wu Hospital, Macau Special Administration Region, People's Republic of China
| | - Kaicheng Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jingzi ZhangBao
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Zong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xujiao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Chao Quan
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Min Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
14
|
Lin TH, Zhan J, Song C, Wallendorf M, Sun P, Niu X, Yang R, Cross AH, Song SK. Diffusion Basis Spectrum Imaging Detects Axonal Loss After Transient Dexamethasone Treatment in Optic Neuritis Mice. Front Neurosci 2021; 14:592063. [PMID: 33551721 PMCID: PMC7862582 DOI: 10.3389/fnins.2020.592063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/28/2020] [Indexed: 11/24/2022] Open
Abstract
Optic neuritis is a frequent first symptom of multiple sclerosis (MS) for which corticosteroids are a widely employed treatment option. The Optic Neuritis Treatment Trial (ONTT) reported that corticosteroid treatment does not improve long-term visual acuity, although the evolution of underlying pathologies is unclear. In this study, we employed non-invasive diffusion basis spectrum imaging (DBSI)-derived fiber volume to quantify 11% axonal loss 2 months after corticosteroid treatment (vs. baseline) in experimental autoimmune encephalomyelitis mouse optic nerves affected by optic neuritis. Longitudinal DBSI was performed at baseline (before immunization), after a 2-week corticosteroid treatment period, and 1 and 2 months after treatment, followed by histological validation of neuropathology. Pathological metrics employed to assess the optic nerve revealed axonal protection and anti-inflammatory effects of dexamethasone treatment that were transient. Two months after treatment, axonal injury and loss were indistinguishable between PBS- and dexamethasone-treated optic nerves, similar to results of the human ONTT. Our findings in mice further support that corticosteroid treatment alone is not sufficient to prevent eventual axonal loss in ON, and strongly support the potential of DBSI as an in vivo imaging outcome measure to assess optic nerve pathology.
Collapse
Affiliation(s)
- Tsen-Hsuan Lin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jie Zhan
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Radiology, The First Affiliated Hospital, Nanchang University, Jiangxi, China
| | - Chunyu Song
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Michael Wallendorf
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Peng Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Xuan Niu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ruimeng Yang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
15
|
Khan RS, Ross AG, Willett K, Dine K, Banas R, Brown LR, Shindler KS. Amnion-Derived Multipotent Progenitor Cells Suppress Experimental Optic Neuritis and Myelitis. Neurotherapeutics 2021; 18:448-459. [PMID: 33067748 PMCID: PMC8116466 DOI: 10.1007/s13311-020-00949-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
The human amnion has been used for decades in wound healing, particularly burns. Amnion epithelial cells (AECs) have been the focus of extensive research based on their possible pluripotent differentiation ability. A novel, cultured cell population derived from AECs, termed human amnion-derived multipotent progenitor (AMP) cells, secrete numerous cytokines and growth factors that enhance tissue regeneration and reduce inflammation. This AMP cell secretome, termed ST266, is a unique biological solution that accumulates in eyes and optic nerves following intranasal delivery, resulting in selective suppression of optic neuritis in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis, but not myelitis at the administered dose. We tested the hypothesis that systemic AMP cell administration could suppress both optic neuritis and myelitis in EAE. Intravenous and intraperitoneal administration of AMP cells significantly reduced ascending paralysis and attenuated visual dysfunction in EAE mice. AMP cell treatment increased retinal ganglion cell (RGC) survival and decreased optic nerve inflammation, with variable improvement in optic nerve demyelination and spinal cord inflammation and demyelination. Results show systemic AMP cell administration inhibits RGC loss and visual dysfunction similar to previously demonstrated effects of intranasally delivered ST266. Importantly, AMP cells also promote neuroprotective effects in EAE spinal cords, marked by reduced paralysis. Protective effects of systemically administered AMP cells suggest they may serve as a potential novel treatment for multiple sclerosis.
Collapse
Affiliation(s)
- Reas S Khan
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmara G Ross
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Keirnan Willett
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly Dine
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rick Banas
- Noveome Biotherapeutics, Inc., Pittsburgh, PA, USA
| | | | - Kenneth S Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA.
- F.M. Kirby Center for Molecular Ophthalmology, Department of Ophthalmology, University of Pennsylvania Scheie Eye Institute, Stellar-Chance Laboratories, 3rd Floor, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Abstract
Optic neuritis (ON) is an inflammatory attack of the optic nerve that leads to visual disability. It is the most common optic neuropathy affecting healthy young adults, most commonly women aged 20-45 years. It can be idiopathic and monophasic or as part of a neurologic disease such as multiple sclerosis with recurrence and cumulative damage. Currently, there is no therapy to repair the damage from optic neuritis. Animal models are an essential tool for the understanding of the pathogenesis of optic neuritis and for the development of potential treatment strategies. Experimental autoimmune encephalomyelitis (EAE) is the most commonly used experimental rodent model for human autoimmune inflammatory demyelinating diseases of the central nervous system (CNS). In this review, we discuss the latest rodent models regarding optic neuritis, focusing on EAE model, and on its recent achievements and developments.
Collapse
Affiliation(s)
- Yael Redler
- Department of Neuro-Ophthalmology, Massachusetts Eye & Ear Infirmary/Harvard Medical School, Boston, MA, United States
| | - Michael Levy
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Yıldız A, Şehitoğlu MH, Karaboğa İ, Arıkan S. Ozone treatment for high-dose systemic Steroid-Induced retinal injury. Cutan Ocul Toxicol 2020; 39:274-280. [PMID: 32619116 DOI: 10.1080/15569527.2020.1790590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/13/2020] [Accepted: 06/27/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the effect of high-dose systemic steroids on retinal tissues and the effectiveness of ozone (O3) therapy. METHODS Twenty-four New Zealand white rabbits were divided into three groups of eight. Group 1 was accepted as the control group, Group 2 received intramuscular 20 mg/kg methylprednisolone acetate and Group 3 received 14 sessions of ozone treatment in addition to methylprednisolone acetate. The subjects were sacrificed on the 30th day. Retinal tissues were removed. Superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), total antioxidant status (TAS) and total oxidant status (TOS) levels were evaluated for tissue biochemistry and serum ischaemic modified albumin (IMA), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) levels were evaluated with the ELISA method. Haematoxylin-eosin staining and TUNEL evaluation for apoptosis were evaluated as histopathological methods. RESULTS In the treatment group, antioxidant parameters of TAS, SOD and CAT were higher, oxidative and ischaemic parameters of MDA, TOS and IMA were lower, inflammatory parameters of IL-6 and TNF-α were lower, retinal thickness was better and apoptosis amount was lower. CONCLUSION Apoptosis increases in retinal tissues due to high dose systemic steroid administration and the retina becomes thinner. With biochemical examination, oxidation parameters increased while antioxidant parameters decreased. Both histopathological and biochemical parameters improved significantly with ozone treatment.
Collapse
Affiliation(s)
- Aydın Yıldız
- Department of Ophthalmology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Müşerref Hilal Şehitoğlu
- Department of Medical Biochemistry, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - İhsan Karaboğa
- Department of Emergency and Disaster Management, Health School, Namık Kemal University, Tekirdağ, Turkey
| | - Sedat Arıkan
- Department of Ophthalmology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
18
|
Nikkhah H, Golalipour M, Doozandeh A, Pakravan M, Yaseri M, Esfandiari H. The effect of systemic erythropoietin and oral prednisolone on recent-onset non-arteritic anterior ischemic optic neuropathy: a randomized clinical trial. Graefes Arch Clin Exp Ophthalmol 2020; 258:2291-2297. [DOI: 10.1007/s00417-020-04781-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/12/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
|
19
|
Assessing the anterior visual pathway in optic neuritis: recent experimental and clinical aspects. Curr Opin Neurol 2020; 32:346-357. [PMID: 30694926 DOI: 10.1097/wco.0000000000000675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Multiple sclerosis (MS) and related autoimmune disorders of the central nervous system such as neuromyelitis optica spectrum disorders (NMOSD) are characterized by chronic disability resulting from autoimmune neuroinflammation, with demyelination, astrocyte damage, impaired axonal transmission and neuroaxonal loss. Novel therapeutics stopping or reversing the progression of disability are still urgently warranted. This review addresses research on optic neuritis in preclinical experimental models and their translation to clinical trials. RECENT FINDINGS Optic neuritis can be used as paradigm for an MS relapse which can serve to evaluate the efficacy of novel therapeutics in clinical trials with a reasonable duration and cohort size. The advantage is the linear structure of the visual pathway allowing the assessment of visual function and retinal structure as highly sensitive outcome parameters. Experimental autoimmune encephalomyelitis is an inducible, inflammatory and demyelinating central nervous system disease extensively used as animal model of MS. Optic neuritis is part of the clinicopathological manifestations in a number of experimental autoimmune encephalomyelitis models. These have gained increasing interest for studies evaluating neuroprotective and/or remyelinating substances as longitudinal, visual and retinal readouts have become available. SUMMARY Translation of preclinical experiments, evaluating neuroprotective or remyelinating therapeutics to clinical studies is challenging. In-vivo readouts like optical coherence tomography, offers the possibility to transfer experimental study designs to clinical optic neuritis trials.
Collapse
|
20
|
Castoldi V, Marenna S, d'Isa R, Huang SC, De Battista D, Chirizzi C, Chaabane L, Kumar D, Boschert U, Comi G, Leocani L. Non-invasive visual evoked potentials to assess optic nerve involvement in the dark agouti rat model of experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein. Brain Pathol 2019; 30:137-150. [PMID: 31267597 DOI: 10.1111/bpa.12762] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the primary disease model of multiple sclerosis (MS), one of the most diffused neurological diseases characterized by fatigue, muscle weakness, vision loss, anxiety and depression. EAE can be induced through injection of myelin peptides to susceptible mouse or rat strains. In particular, EAE elicited by the autoimmune reaction against myelin oligodendrocyte glycoprotein (MOG) presents the common features of human MS: inflammation, demyelination and axonal loss. Optic neuritis affects visual pathways in both MS and in several EAE models. Neurophysiological evaluation through visual evoked potential (VEP) recording is useful to check visual pathway dysfunctions and to test the efficacy of innovative treatments against optic neuritis. For this purpose, we investigate the extent of VEP abnormalities in the dark agouti (DA) rat immunized with MOG, which develops a relapsing-remitting disease course. Together with the detection of motor signs, we acquired VEPs during both early and late stages of EAE, taking advantage of a non-invasive recording procedure that allows long follow-up studies. The validation of VEP outcomes was determined by comparison with ON histopathology, aimed at revealing inflammation, demyelination and nerve fiber loss. Our results indicate that the first VEP latency delay in MOG-EAE DA rats appeared before motor deficits and were mainly related to an inflammatory state. Subsequent VEP delays, detected during relapsing EAE phases, were associated with a combination of inflammation, demyelination and axonal loss. Moreover, DA rats with atypical EAE clinical course tested at extremely late time points, manifested abnormal VEPs although motor signs were mild. Overall, our data demonstrated that non-invasive VEPs are a powerful tool to detect visual involvement at different stages of EAE, prompting their validation as biomarkers to test novel treatments against MS optic neuritis.
Collapse
Affiliation(s)
- Valerio Castoldi
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Silvia Marenna
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Raffaele d'Isa
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Davide De Battista
- INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Chirizzi
- INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Linda Chaabane
- INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Deepak Kumar
- EMD Serono Research and Development Institute, Billerica, MA
| | - Ursula Boschert
- Ares Trading S.A., Affiliate of Merck Serono S.A, Eysins, Switzerland
| | - Giancarlo Comi
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
21
|
Castoldi V, Marenna S, Santangelo R, d'Isa R, Cursi M, Chaabane L, Quattrini A, Comi G, Leocani L. Optic nerve involvement in experimental autoimmune encephalomyelitis to homologous spinal cord homogenate immunization in the dark agouti rat. J Neuroimmunol 2018; 325:1-9. [PMID: 30340030 DOI: 10.1016/j.jneuroim.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Dark-Agouti rats were immunized with spinal cord homogenate to develop Experimental Autoimmune Encephalomyelitis, a model of multiple sclerosis. We assessed motor signs and recorded VEPs for five or eight weeks with epidural or epidermal electrodes, respectively, with final histopathology of optic nerves (ONs). Injected rats exhibited motor deficits a week after immunization. VEP delays arose from the 2nd to the 5th week, when a recovery occurred in epidermal-recorded rats. ON damage appeared in epidural-, but not in epidermal-recorded rats, probably due to a remyelination process. VEP could be exploited as neurophysiological marker to test novel treatments against neurodegeneration involving ONs.
Collapse
Affiliation(s)
- Valerio Castoldi
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Silvia Marenna
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | | | - Raffaele d'Isa
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Marco Cursi
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Linda Chaabane
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Angelo Quattrini
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Giancarlo Comi
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Letizia Leocani
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
22
|
Oertel FC, Havla J, Roca-Fernández A, Lizak N, Zimmermann H, Motamedi S, Borisow N, White OB, Bellmann-Strobl J, Albrecht P, Ruprecht K, Jarius S, Palace J, Leite MI, Kuempfel T, Paul F, Brandt AU. Retinal ganglion cell loss in neuromyelitis optica: a longitudinal study. J Neurol Neurosurg Psychiatry 2018; 89:1259-1265. [PMID: 29921610 DOI: 10.1136/jnnp-2018-318382] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Neuromyelitis optica spectrum disorders (NMOSD) are inflammatory conditions of the central nervous system and an important differential diagnosis of multiple sclerosis (MS). Unlike MS, the course is usually relapsing, and it is unclear, if progressive neurodegeneration contributes to disability. Therefore, we aimed to investigate if progressive retinal neuroaxonal damage occurs in aquaporin4-antibody-seropositive NMOSD. METHODS Out of 157 patients with NMOSD screened, 94 eyes of 51 patients without optic neuritis (ON) during follow-up (F/U) and 56 eyes of 28 age-matched and sex-matched healthy controls (HC) were included (median F/U 2.3 years). The NMOSD cohort included 60 eyes without (EyeON -) and 34 eyes with a history of ON prior to enrolment (EyeON+). Peripapillary retinal nerve fibre layer thickness (pRNFL), fovea thickness (FT), volumes of the combined ganglion cell and inner plexiform layer (GCIP) and the inner nuclear layer (INL) and total macular volume (TMV) were acquired by optical coherence tomography (OCT). RESULTS At baseline, GCIP, FT and TMV were reduced in EyeON+ (GCIP p<2e-16; FT p=3.7e-4; TMV p=3.7e-12) and in EyeON - (GCIP p=0.002; FT p=0.040; TMV p=6.1e-6) compared with HC. Longitudinally, we observed GCIP thinning in EyeON- (p=0.044) but not in EyeON+. Seven patients had attacks during F/U; they presented pRNFL thickening compared with patients without attacks (p=0.003). CONCLUSION This study clearly shows GCIP loss independent of ON attacks in aquaporin4-antibody-seropositive NMOSD. Potential explanations for progressive GCIP thinning include primary retinopathy, drug-induced neurodegeneration and retrograde neuroaxonal degeneration from lesions or optic neuropathy. pRNFL thickening in the patients presenting with attacks during F/U might be indicative of pRNFL susceptibility to inflammation.
Collapse
Affiliation(s)
- Frederike C Oertel
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, Ludwig Maximilians University, Munich, Germany
| | | | - Nathaniel Lizak
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Monash School of Medicine, Monash University & The Alfred Hospital, Melbourne, Victoria, Australia
| | - Hanna Zimmermann
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Seyedamirhosein Motamedi
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nadja Borisow
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Owen B White
- Central Clinical School, Department of Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Maria Isabel Leite
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Tania Kuempfel
- Institute of Clinical Neuroimmunology, Ludwig Maximilians University, Munich, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany .,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
23
|
Tosic J, Stanojevic Z, Vidicevic S, Isakovic A, Ciric D, Martinovic T, Kravic-Stevovic T, Bumbasirevic V, Paunovic V, Jovanovic S, Todorovic-Markovic B, Markovic Z, Danko M, Micusik M, Spitalsky Z, Trajkovic V. Graphene quantum dots inhibit T cell-mediated neuroinflammation in rats. Neuropharmacology 2018; 146:95-108. [PMID: 30471296 DOI: 10.1016/j.neuropharm.2018.11.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
We investigated the therapeutic capacity of nano-sized graphene sheets, called graphene quantum dots (GQD), in experimental autoimmune encephalomyelitis (EAE), an animal model of immune-mediated central nervous system (CNS) damage. Intraperitoneally administered GQD (10 mg/kg/day) accumulated in the lymph node and CNS cells of Dark Agouti rats in which EAE was induced by immunization with spinal cord homogenate in complete Freund's adjuvant. GQD significantly reduced clinical signs of EAE when applied throughout the course of the disease (day 0-32), while the protection was less pronounced if the treatment was limited to the induction (day 0-7 post-immunization) or effector (from day 8 onwards) phase of the disease. GQD treatment diminished immune infiltration, demyelination, axonal damage, and apoptotic death in the CNS of EAE animals. GQD also reduced the numbers of interferon-γ-expressing T helper (Th)1 cells, as well as the expression of Th1 transcription factor T-bet and proinflammatory cytokines tumor necrosis factor, interleukin-1, and granulocyte-macrophage colony-stimulating factor in the lymph nodes and CNS immune infitrates. The protective effect of GQD in EAE was associated with the activation of p38 and p42/44 mitogen-activated protein kinases (MAPK) and Akt in the lymph nodes and/or CNS. Finally, GQD protected oligodendrocytes and neurons from T cell-mediated damage in the in vitro conditions. Collectively, these data demonstrate the ability of GQD to gain access to both immune and CNS cells during neuroinflammation, and to alleviate immune-mediated CNS damage by modulating MAPK/Akt signaling and encephalitogenic Th1 immune response.
Collapse
Affiliation(s)
- Jelena Tosic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, 11000, Belgrade, Serbia
| | - Zeljka Stanojevic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, 11000, Belgrade, Serbia
| | - Sasenka Vidicevic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, 11000, Belgrade, Serbia
| | - Aleksandra Isakovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, 11000, Belgrade, Serbia
| | - Darko Ciric
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000, Belgrade, Serbia
| | - Tamara Martinovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000, Belgrade, Serbia
| | - Tamara Kravic-Stevovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000, Belgrade, Serbia
| | - Vladimir Bumbasirevic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000, Belgrade, Serbia
| | - Verica Paunovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr Subotica 1, 11000, Belgrade, Serbia
| | - Svetlana Jovanovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000, Belgrade, Serbia
| | | | - Zoran Markovic
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 84541, Bratislava, Slovakia
| | - Martin Danko
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 84541, Bratislava, Slovakia
| | - Matej Micusik
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 84541, Bratislava, Slovakia
| | - Zdenko Spitalsky
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 84541, Bratislava, Slovakia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr Subotica 1, 11000, Belgrade, Serbia.
| |
Collapse
|
24
|
The possible anti-apoptotic and antioxidant effects of acetyl l-carnitine as an add-on therapy on a relapsing-remitting model of experimental autoimmune encephalomyelitis in rats. Biomed Pharmacother 2018; 103:1302-1311. [DOI: 10.1016/j.biopha.2018.04.173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 01/02/2023] Open
|
25
|
Wang F, Dang Y, Wang J, Zhou T, Zhu Y. Gypenosides attenuate lipopolysaccharide-induced optic neuritis in rats. Acta Histochem 2018; 120:340-346. [PMID: 29559175 DOI: 10.1016/j.acthis.2018.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate the effect of gypenosides (GPs) on lipopolysaccharide (LPS)-induced optic neuritis rats. METHODS Optic neuritis was induced by a single microinjection of LPS into the optic nerve of Sprague Dawley rats. GPs (400 mg/kg) was administrated by gavage for 21 days. The optic nerve structure changes and demyelination were observed after hematoxylin & eosin and Luxol-fast blue staining. Apoptosis of retinal ganglion cells (RGCs) was evaluated using Brn3a-TUNEL double staining. Expression of CD68 and glial fibrillary acidic protein (GFAP) were detected using immunofluorescence staining. The mRNA levels of inflammatory factors were measured using quantitative real-time PCR. The protein expression levels in the signal transducer and activator of transcription (STAT) and nuclear factor-κB (NF-κB) pathways were detected using Western blot. RESULTS GPs treatment prevented the optic nerve structure changes and demyelination in the rats with optic neuritis. GPs treatment downregulated LPS-induced overexpressions of CD68, GFAP and pro-inflammatory factors. GPs treatment inhibited STAT1 and 3 phosphorylation and NF-κB nuclear translocation in the optic nerve and retina of rats with optic neuritis. CONCLUSION GPs attenuate LPS-induced inflammation, demyelination and optic nerve damage which may be associated with the inhibition of the NF-κB and STAT pathways.
Collapse
|
26
|
Aranda ML, González Fleitas MF, Dieguez HH, Milne GA, Devouassoux JD, Keller Sarmiento MI, Chianelli M, Sande PH, Dorfman D, Rosenstein RE. Therapeutic benefit of environmental enrichment on optic neuritis. Neuropharmacology 2017; 145:87-98. [PMID: 29233635 DOI: 10.1016/j.neuropharm.2017.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/13/2017] [Accepted: 12/09/2017] [Indexed: 12/22/2022]
Abstract
Optic neuritis (ON) is an inflammatory, demyelinating, neurodegenerative, and presently untreatable condition of the optic nerve which might induce blindness. We analyzed the effect of environmental enrichment (EE) on visual pathway damage provoked by experimental ON induced by a microinjection of bacterial lipopolysaccharide (LPS) into the optic nerve. For this purpose, LPS was microinjected into the optic nerve from male Wistar rats. After injection, one group of animals was submitted to EE, and another group remained in standard environment (SE) for 21 days. EE prevented the decrease in pupil light reflex (PLR), visual evoked potentials, retinal anterograde transport, phosphorylated neurofilament immunoreactivity, myelination (luxol fast blue staining), and axon (toluidine blue staining) and retinal ganglion cell (Brn3a-immunoreactivity) number. EE also prevented microglial/macrophage reactivity (Iba-1- and ED1-immunoreactivity), and astrocytosis (glial fibrillary acidic protein-immunostaining) induced by experimental ON. LPS-injected optic nerves displayed oxidative damage and increased inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-1β and TNFα mRNA levels which were prevented by EE. EE increased optic nerve brain-derived neurotrophic factor levels. When EE started at 4 (but not 7) days post-injection of LPS, a preservation of the PLR was observed at 21 days post-LPS, which was blocked by the daily administration of ANA-12 from day 4 to day 7 post-LPS. Moreover, EE from day 4 to day 7 post-LPS significantly preserved the PLR at 21 days post-injection. Taken together, our data suggest that EE preserved visual functions and reduced neuroinflammation of the optic nerve. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
Affiliation(s)
- Marcos L Aranda
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina
| | - María F González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina
| | - Hernán H Dieguez
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina
| | - Georgia A Milne
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina
| | - Julián D Devouassoux
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina
| | - María I Keller Sarmiento
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina
| | - Mónica Chianelli
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina
| | - Pablo H Sande
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina.
| |
Collapse
|
27
|
Andrés-Guerrero V, Bravo-Osuna I, Pastoriza P, Molina-Martinez IT, Herrero-Vanrell R. Novel technologies for the delivery of ocular therapeutics in glaucoma. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
|
29
|
Wilhelm H, Schabet M. The Diagnosis and Treatment of Optic Neuritis. DEUTSCHES ARZTEBLATT INTERNATIONAL 2016; 112:616-25; quiz 626. [PMID: 26396053 DOI: 10.3238/arztebl.2015.0616] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Typical optic neuritis is often the presenting manifestation of multiple sclerosis (MS). Its incidence in central Europe is 5 cases per 100 000 persons per year. METHODS This review is based on articles retrieved by a selective search of the PubMed database, on the pertinent guidelines, and on the authors' clinical experience. RESULTS The diagnosis of optic neuritis is based on a constellation of symptoms and signs. The onset is usually with pain on eye movement in one eye and subacute visual loss. In unilateral optic neuritis, the direct pupillary light reflex is weaker in the affected eye. One-third of patients with optic neuritis have a mildly edematous optic disc. The visual disturbance resolves in 95% of cases. A less favorable course may be evidence of neuromyelitis optica, and macular involvement may be evidence of neuroretinitis. High-dosed intravenous methylprednisolone therapy speeds recovery but does not improve the final outcome. The risk that a patient with optic neuritis will later develop multiple sclerosis can be assessed with an MRI scan of the brain. CONCLUSION Optic neuritis is easy to distinguish from otherv diseases affecting the optic nerve. Atypical forms of this disease and other optic nerve diseases require special treatment. For patients judged to be at high risk of developing multiple sclerosis, immune prophylaxis with beta- interferon or glatiramer acetate is recommended.
Collapse
Affiliation(s)
- Helmut Wilhelm
- University Eye Hospital, University Hospital Tübingen, Department of Neurology, Klinikum Ludwigsburg
| | | |
Collapse
|
30
|
Aranda ML, González Fleitas MF, De Laurentiis A, Keller Sarmiento MI, Chianelli M, Sande PH, Dorfman D, Rosenstein RE. Neuroprotective effect of melatonin in experimental optic neuritis in rats. J Pineal Res 2016; 60:360-72. [PMID: 26882296 DOI: 10.1111/jpi.12318] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/09/2016] [Indexed: 12/16/2022]
Abstract
Optic neuritis (ON) is an inflammatory, demyelinating, and neurodegenerative condition of the optic nerve, which might induce permanent vision loss. Currently, there are no effective therapies for this disorder. We have developed an experimental model of primary ON in rats through a single microinjection of 4.5 μg of bacterial lipopolysaccharide (LPS) into the optic nerve. Since melatonin acts as a pleiotropic therapeutic agent in various neurodegenerative diseases, we analyzed the effect of melatonin on LPS-induced ON. For this purpose, LPS or vehicle were injected into the optic nerve from adult male Wistar rats. One group of animals received a subcutaneous pellet of 20 mg melatonin at 24 hr before vehicle or LPS injection, and another group was submitted to a sham procedure. Melatonin completely prevented the decrease in visual evoked potentials (VEPs), and pupil light reflex (PLR), and preserved anterograde transport of cholera toxin β-subunit from the retina to the superior colliculus. Moreover, melatonin prevented microglial reactivity (ED1-immunoreactivity, P < 0.01), astrocytosis (glial fibrillary acid protein-immunostaining, P < 0.05), demyelination (luxol fast blue staining, P < 0.01), and axon (toluidine blue staining, P < 0.01) and retinal ganglion cell (Brn3a-immunoreactivity, P < 0.01) loss, induced by LPS. Melatonin completely prevented the increase in nitric oxide synthase 2, cyclooxygenase-2 levels (Western blot) and TNFα levels, and partly prevented lipid peroxidation induced by experimental ON. When the pellet of melatonin was implanted at 4 days postinjection of LPS, it completely reversed the decrease in VEPs and PLR. These data suggest that melatonin could be a promising candidate for ON treatment.
Collapse
Affiliation(s)
- Marcos L Aranda
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María F González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | | | - María I Keller Sarmiento
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Mónica Chianelli
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Pablo H Sande
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| |
Collapse
|
31
|
Diem R, Molnar F, Beisse F, Gross N, Drüschler K, Heinrich SP, Joachimsen L, Rauer S, Pielen A, Sühs KW, Linker RA, Huchzermeyer C, Albrecht P, Hassenstein A, Aktas O, Guthoff T, Tonagel F, Kernstock C, Hartmann K, Kümpfel T, Hein K, van Oterendorp C, Grotejohann B, Ihorst G, Maurer J, Müller M, Volkmann M, Wildemann B, Platten M, Wick W, Heesen C, Schiefer U, Wolf S, Lagrèze WA. Treatment of optic neuritis with erythropoietin (TONE): a randomised, double-blind, placebo-controlled trial-study protocol. BMJ Open 2016; 6:e010956. [PMID: 26932144 PMCID: PMC4785322 DOI: 10.1136/bmjopen-2015-010956] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Optic neuritis leads to degeneration of retinal ganglion cells whose axons form the optic nerve. The standard treatment is a methylprednisolone pulse therapy. This treatment slightly shortens the time of recovery but does not prevent neurodegeneration and persistent visual impairment. In a phase II trial performed in preparation of this study, we have shown that erythropoietin protects global retinal nerve fibre layer thickness (RNFLT-G) in acute optic neuritis; however, the preparatory trial was not powered to show effects on visual function. METHODS AND ANALYSIS Treatment of Optic Neuritis with Erythropoietin (TONE) is a national, randomised, double-blind, placebo-controlled, multicentre trial with two parallel arms. The primary objective is to determine the efficacy of erythropoietin compared to placebo given add-on to methylprednisolone as assessed by measurements of RNFLT-G and low-contrast visual acuity in the affected eye 6 months after randomisation. Inclusion criteria are a first episode of optic neuritis with decreased visual acuity to ≤ 0.5 (decimal system) and an onset of symptoms within 10 days prior to inclusion. The most important exclusion criteria are history of optic neuritis or multiple sclerosis or any ocular disease (affected or non-affected eye), significant hyperopia, myopia or astigmatism, elevated blood pressure, thrombotic events or malignancy. After randomisation, patients either receive 33,000 international units human recombinant erythropoietin intravenously for 3 consecutive days or placebo (0.9% saline) administered intravenously. With an estimated power of 80%, the calculated sample size is 100 patients. The trial started in September 2014 with a planned recruitment period of 30 months. ETHICS AND DISSEMINATION TONE has been approved by the Central Ethics Commission in Freiburg (194/14) and the German Federal Institute for Drugs and Medical Devices (61-3910-4039831). It complies with the Declaration of Helsinki, local laws and ICH-GCP. TRIAL REGISTRATION NUMBER NCT01962571.
Collapse
Affiliation(s)
- Ricarda Diem
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Fanni Molnar
- Eye Center, Medical Center—University of Freiburg, Freiburg im Breisgau, Germany
| | - Flemming Beisse
- Department of Ophthalmology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nikolai Gross
- Eye Center, Medical Center—University of Freiburg, Freiburg im Breisgau, Germany
| | - Katharina Drüschler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sven P Heinrich
- Eye Center, Medical Center—University of Freiburg, Freiburg im Breisgau, Germany
| | - Lutz Joachimsen
- Eye Center, Medical Center—University of Freiburg, Freiburg im Breisgau, Germany
| | - Sebastian Rauer
- Department of Neurology and Neuroscience, Medical Center—University of Freiburg, Freiburg im Breisgau, Germany
| | - Amelie Pielen
- Clinic for Ophthalmology, Hannover Medical School, Hannover, Germany
| | | | | | - Cord Huchzermeyer
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - Philipp Albrecht
- Department of Neurology, Medical faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Andrea Hassenstein
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Orhan Aktas
- Department of Neurology, Medical faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Tanja Guthoff
- Department of Ophthalmology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | | | - Kathrin Hartmann
- Department of Ophthalmology, University Hospital Munich LMU, Munich, Germany
| | - Tania Kümpfel
- Department of Neurology, University Hospital Munich, Munich, Germany
| | - Katharina Hein
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Birgit Grotejohann
- Clinical Trials Unit, Medical Center—University of Freiburg, Freiburg im Breisgau, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit, Medical Center—University of Freiburg, Freiburg im Breisgau, Germany
| | - Julia Maurer
- Clinical Trials Unit, Medical Center—University of Freiburg, Freiburg im Breisgau, Germany
| | - Matthias Müller
- Competence Center “Vision Research”, Study Course Ophthalmological Optics, Faculty of Optics and Mechatronics, University of Applied Sciences, Aalen, Germany
| | - Martin Volkmann
- Medical Service Center PD Dr. Volkmann and Colleges, Karlsruhe, Germany
| | - Brigitte Wildemann
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Platten
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christoph Heesen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schiefer
- University Eye Hospital Tübingen, Tübingen, Germany
- Competence Center “Vision Research”, Study Course Ophthalmological Optics, Faculty of Optics and Mechatronics, University of Applied Sciences, Aalen, Germany
- Center for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Sebastian Wolf
- Department of Ophthalmology, Bern Photographic Reading Center, University Hospital and University of Bern, Bern, Switzerland
| | - Wolf A Lagrèze
- Eye Center, Medical Center—University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
32
|
Clemson CM, Yost J, Taylor AW. The Role of Alpha-MSH as a Modulator of Ocular Immunobiology Exemplifies Mechanistic Differences between Melanocortins and Steroids. Ocul Immunol Inflamm 2016; 25:179-189. [PMID: 26807874 PMCID: PMC5769144 DOI: 10.3109/09273948.2015.1092560] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melanocortins are a highly conserved family of peptides and receptors that includes multiple proopiomelanocortin-derived peptides and five defined melanocortin receptors. The melanocortins have an important role in maintaining immune homeostasis and in suppressing inflammation. Within the healthy eye, the melanocortins have a central role in preventing inflammation and maintaining immune privilege. A central mediator of the anti-inflammatory activity is the non-steroidogenic melanocortin peptide alpha-melanocyte stimulating hormone. In this review we summarize the major findings of melanocortin regulation of ocular immunobiology with particular interest in the ability of melanocortin to induce immune tolerance and cytoprotection. The melanocortins have therapeutic potential because their mechanisms of action in regulating immunity are distinctly different from the actions of steroids.
Collapse
Affiliation(s)
- Christine M Clemson
- a Autoimmune and Rare Diseases , Mallinckrodt Pharmaceuticals , Hayward , CA , USA
| | - John Yost
- a Autoimmune and Rare Diseases , Mallinckrodt Pharmaceuticals , Hayward , CA , USA
| | - Andrew W Taylor
- b Department of Ophthalmology , Boston University School of Medicine , Boston , MA , USA
| |
Collapse
|
33
|
Yu-Wai-Man P. Traumatic optic neuropathy-Clinical features and management issues. Taiwan J Ophthalmol 2015; 5:3-8. [PMID: 26052483 PMCID: PMC4457437 DOI: 10.1016/j.tjo.2015.01.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/12/2015] [Accepted: 02/17/2015] [Indexed: 01/22/2023] Open
Abstract
Traumatic optic neuropathy (TON) is an uncommon cause of visual loss following blunt or penetrating head trauma, but the consequences can be devastating, especially in cases with bilateral optic nerve involvement. Although the majority of patients are young adult males, about 20% of cases occur during childhood. A diagnosis of TON is usually straightforward based on the clinical history and examination findings indicative of an optic neuropathy. However, the assessment can be difficult when the patient's mental status is impaired owing to severe trauma. TON frequently results in profound loss of central vision, and the final visual outcome is largely dictated by the patient's baseline visual acuities. Other poor prognostic factors include loss of consciousness, no improvement in vision after 48 hours, the absence of visual evoked responses, and evidence of optic canal fractures on neuroimaging. The management of TON remains controversial. Some clinicians favor observation alone, whereas others opt to intervene with systemic steroids, surgical decompression of the optic canal, or both. The evidence base for these various treatment options is weak, and the routine use of high-dose steroids or surgery in TON is not without any attendant risks. There is a relatively high rate of spontaneous visual recovery among patients managed conservatively, and the possible adverse effects of intervention therefore need to be even more carefully considered in the balance.
Collapse
Affiliation(s)
- Patrick Yu-Wai-Man
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
| |
Collapse
|
34
|
Kumar P, Kretzschmar B, Herold S, Nau R, Kreutzfeldt M, Schütze S, Bähr M, Hein K. Beneficial effect of chronic Staphylococcus aureus infection in a model of multiple sclerosis is mediated through the secretion of extracellular adherence protein. J Neuroinflammation 2015; 12:22. [PMID: 25644616 PMCID: PMC4322648 DOI: 10.1186/s12974-015-0241-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/10/2015] [Indexed: 12/15/2022] Open
Abstract
Background Bacterial infections have been assumed to worsen multiple sclerosis (MS) disease symptoms and to lead to increased neurodegeneration. However, the underlying biological mechanisms for these effects are complex and poorly understood. Here, we assessed the disease-modulating effects of chronic infection with Staphylococcus aureus, a common human pathogen, on the clinical course and the extent of neurodegeneration in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Methods To conduct this study, we established a persistent chronic infection in female brown Norway rats by inoculating Staphylococcus aureus (S. aureus) bacteria in a subcutaneously implanted tissue cages. Results In this study, we observed that the introduction of a localized S. aureus infection during the subclinical phase of EAE induced a chronic systemic inflammatory response, consisting of increased T- and B-cell counts and systemic production of proinflammatory cytokines. Unexpectedly, the S. aureus infection completely prevented the development of clinical EAE, and markedly reduced inflammatory infiltration and demyelination of the optic nerve, while it increased the number of surviving retinal neurons. Using a S. aureus strain that lacked the extracellular adherence protein (Eap), we determined that the extracellular adherence protein is at least partially responsible for the inhibitory effect of S. aureus infection on autoimmune inflammation of the central nervous system. Conclusions Our results demonstrate for the first time that chronic infection with S. aureus has a beneficial effect on EAE, indicating a dual role of infection in the pathogenesis of MS. We also showed that secretion of Eap by S. aureus plays a major role in preventing autoimmune inflammation of the CNS. Moreover, we identified Eap as a factor responsible for this protective effect.
Collapse
Affiliation(s)
- Prateek Kumar
- Department of Neurology, University Medicine Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany.
| | - Benedikt Kretzschmar
- Department of Neurology, University Medicine Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany.
| | - Sabine Herold
- Department of Neurology, University Medicine Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany.
| | - Roland Nau
- Institute of Neuropathology, University Medicine Goettingen, Goettingen, 37075, Germany.
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Centre Médical Universitaire 1, Rue Michel-Servet 1211, Geneva 4, Switzerland.
| | - Sandra Schütze
- Institute of Neuropathology, University Medicine Goettingen, Goettingen, 37075, Germany.
| | - Mathias Bähr
- Department of Neurology, University Medicine Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany.
| | - Katharina Hein
- Department of Neurology, University Medicine Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany.
| |
Collapse
|
35
|
Najmi Varzaneh F, Najmi Varzaneh F, Azimi AR, Rezaei N, Sahraian MA. Efficacy of combination therapy with erythropoietin and methylprednisolone in clinical recovery of severe relapse in multiple sclerosis. Acta Neurol Belg 2014; 114:273-8. [PMID: 24604685 DOI: 10.1007/s13760-014-0286-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
Multiple sclerosis (MS) is a multifaceted disease in which genetic and environmental factors are involved. Although neurodegeneration aspect of MS has major influence in patients' disability, none of the available treatments have been shown to obviously reduce neurodegeneration. Recently, the role of Erythropoietin (EPO) as a neuroprotective and anti-inflammatory agent has been attracted tremendous interest. In the present randomized double-blind pilot study, we combined EPO with methylprednisolone (MPred) in severe motor relapsing-remitting MS (RR-MS) patients to target both inflammatory and neurodegenerative aspects of disease. Twenty patients with RR-MS in relapse phase were randomized into two groups. The case group (10 patients) received intravenous MPred (1,000 mg/24 h) and intravenous EPO (20,000 U/24 h) for five consecutive days, and the control group (10 patients) received just MPred at the same dose as the case group, and a placebo. Both groups were followed for 3 months by ambulatory index (AI), Expanded Disability Status Scale (EDSS) and by magnetic resonance imaging (MRI) parameters. Improvement in maximal distance walking, reflected by reduction in AI and EDSS, was observed in EPO group after second month and continued after 3 months. Furthermore, MRI data analysis showed significant reduction in the number of T2WI lesions in EPO group without any significant change in contrast enhancing and black hole lesions. There was no major side effect in EPO group. The results of this first therapeutic pilot trial in RR-MS patients are promising, but need to be validated in larger trials.
Collapse
|
36
|
Forkwa TK, Tamm ER, Ohlmann A. Ambiguous role of glucocorticoids on survival of retinal neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:365-71. [PMID: 24664719 DOI: 10.1007/978-1-4614-3209-8_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glucocorticoids (GCs) have a wide range of functions on several mammalian cell types, most of which are aimed at boosting survival, which is the raison d'être of the acute stress response. The role GCs play in the survival and viability of neurons is incongruous, as studies have revealed neuroprotective as well as neurodegenerative effects. These effects seem to depend on multiple factors amongst which are; the cell type involved, the mode of injury or underlying cause of cell death, likewise the concentration and or duration of GC exposure.In this mini review, we discuss mechanisms of GC action and their effect on neurodegeneration in general, and specifically review the effect of GCs on retinal neurons, in animal models of retinal degeneration or acute neuronal damage. Finally, we summarize potential protective and harmful GC-mediated mechanisms, which might be involved in the determination of neuronal fate in the retina following injury or during degeneration.
Collapse
Affiliation(s)
- Tembei K Forkwa
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany,
| | | | | |
Collapse
|
37
|
Benjamins JA, Nedelkoska L, Lisak RP. Adrenocorticotropin hormone 1-39 promotes proliferation and differentiation of oligodendroglial progenitor cells and protects from excitotoxic and inflammation-related damage. J Neurosci Res 2014; 92:1243-51. [PMID: 24916309 DOI: 10.1002/jnr.23416] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 01/20/2023]
Abstract
Oligodendroglia (OL) are highly susceptible to damage and, like neurons, are terminally differentiated. It is important to protect OL precursors (OPC) because they are reservoirs of differentiating cells capable of myelination following perinatal insult and remyelination in white matter diseases, including multiple sclerosis (MS). Patients with relapsing-remitting MS are commonly treated with high-dose corticosteroids (CS) when experiencing an exacerbation. Adrenocorticotropin hormone (ACTH), a primary component of another approved MS exacerbation treatment, is a melanocortin peptide that stimulates production of CS by the adrenals. Melanocortin receptors are also found in the central nervous system (CNS) and on immune cells. ACTH is produced within the CNS and may have CS-independent effects on glia. We found that ACTH 1-39 stimulated proliferation of OPC, and to a lesser extent astroglia (AS) and microglia (MG), in rat glial cultures. ACTH accelerated differentiation of PDGFRα(+) OPC to a later stage marked by galactolipid expression and caused greater expansion of OL myelin-like sheets compared with untreated cells. Protective effects of ACTH on OPC were assessed by treating cultures with selected toxic agents, with or without ACTH. At 200 nM, ACTH protected OPC from death induced by staurosporine, glutamate, NMDA, AMPA, kainate, quinolinic acid, H2 O2 , and slow NO release, but not against kynurenic acid or rapid NO release. These agents and ACTH were not toxic to AS or MG. Our findings indicate that ACTH 1-39 provides benefits by increasing the number of OPC, accelerating their development into mature OL, and reducing OPC death from toxic insults.
Collapse
Affiliation(s)
- Joyce A Benjamins
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan; Department of Immunology and Microbiology, Wayne State University School of Medicine Detroit, Michigan
| | | | | |
Collapse
|
38
|
Sühs KW, Fairless R, Williams SK, Heine K, Cavalié A, Diem R. N-Methyl-d-Aspartate Receptor Blockade Is Neuroprotective in Experimental Autoimmune Optic Neuritis. J Neuropathol Exp Neurol 2014; 73:507-18. [DOI: 10.1097/nen.0000000000000073] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
39
|
Li K, Du Y, Fan Q, Tang CY, He JF. Gypenosides might have neuroprotective and immunomodulatory effects on optic neuritis. Med Hypotheses 2014; 82:636-8. [PMID: 24629564 DOI: 10.1016/j.mehy.2014.02.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/16/2014] [Accepted: 02/24/2014] [Indexed: 11/24/2022]
Abstract
Optic neuritis is a common disease in young adults, inducing apoptosis of retinal ganglion cells, which leads to varying degree of visual function damages, even blindness. As the standard treatment, methylprednisolone pulse therapy can only promote the recovery of visual acuity but not prevent retinal ganglion cell degeneration. It cannot help improve the ultimate visual outcome. Both inflammatory response and endogenous oxidative stress play crucial roles in the progression of optic neuritis. The combination of immunomodulatory and antioxidant is expected to improve the prognosis of the disease by preventing the apoptosis of retinal ganglion cells. Triterpenoids (oleanolic acid derived) were reported to have the dual capacity of simultaneously repressing production of pro-inflammatory mediators and exerting neuroprotective effects through induction of anti-oxidant genes in experimental optic neuritis. Gypenosides with an aglycone mainly of dammarane-type tetracyclic triterpenoids, also has the dual capacity of immune regulation and antioxidation. Both gypenosides and oleanolic acid were reported to have similar roles in hepatoprotection. Beside, gypenosides were reported to have the capacity of modulating the activation of immune cells and the expression of cytokines. In addition, gypenosides showed neuroprotective effect against oxidative injury in dopaminergic neurons and mouse model of Parkinson's disease. Accordingly, we propose that gypenosides have potential neuroprotective and immunomodulatory effects on optic neuritis through antioxidation and immune regulation. The application of gypenosides might prevent the apoptosis of retinal ganglion cells and improve the ultimate visual outcome in patients with optic neuritis.
Collapse
Affiliation(s)
- Kaijun Li
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yi Du
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong, China
| | - Qian Fan
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Cheng-Ye Tang
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jian-Feng He
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
40
|
Kretzschmar B, Hein K, Moinfar Z, Könnecke B, Sättler MB, Hess H, Weissert R, Bähr M. Treatment with atacicept enhances neuronal cell death in a rat model of optic neuritis. J Neuroimmunol 2014; 268:58-63. [DOI: 10.1016/j.jneuroim.2014.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 01/01/2023]
|
41
|
Zhu Z, You W, Xie Z, Wang P, Liu Z, Wang C, Bi J. Mycophenolate mofetil improves neurological function and alters blood T-lymphocyte subsets in rats with experimental autoimmune encephalomyelitis. J Int Med Res 2014; 42:530-41. [PMID: 24496150 DOI: 10.1177/0300060513505267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective This study evaluated the clinical and pathological effects of the immunosuppressive agent mycophenolate mofetil (MMF) in rats with experimental autoimmune encephalomyelitis (EAE; a model of multiple sclerosis [MS]). Methods EAE rats were randomly divided into 4 groups: model alone ( n = 7); low- or high-dose MMF (20 and 30 mg/kg per day, respectively, n = 6 each) orally for 14 days; methylprednisolone (20 mg/kg per day, n = 6) injected once daily for 3 days. Six normal Wistar rats served as controls. Clinical signs and histopathological findings were evaluated 14 days after treatment started. Results Oral administration of high-dose MMF significantly ameliorated the course of EAE in rats: cumulative clinical scores were lower and weight loss was less than in rats receiving methylprednisolone. The ameliorated disease course was associated with alleviation of histopathological signs of EAE. Treatment increased the blood proportion of CD8+, CD4+CD25+ and CD4+CD45RA+ T cells, with a concomitant reduced proportion of CD4+ T cells and ratio of CD4+ to CD8+ T cells, compared with EAE model alone rats. Conclusions MMF may have pharmacological potential in MS treatment and these findings may help in understanding the pathophysiological mechanism of MS.
Collapse
Affiliation(s)
- Zhengyu Zhu
- Department of Neural Medicine, Second Hospital of Shandong University, Jinan, China
| | - Wei You
- Yantai Municipal Laiyang Central Hospital, Yantai, China
| | - ZhaoHong Xie
- Department of Neural Medicine, Second Hospital of Shandong University, Jinan, China
| | - Ping Wang
- Department of Neural Medicine, Second Hospital of Shandong University, Jinan, China
| | - Zhen Liu
- Department of Neural Medicine, Second Hospital of Shandong University, Jinan, China
| | - Cunfu Wang
- Department of Neural Medicine, Second Hospital of Shandong University, Jinan, China
| | - JianZhong Bi
- Department of Neural Medicine, Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
42
|
Krieger S, Sorrells SF, Nickerson M, Pace TWW. Mechanistic insights into corticosteroids in multiple sclerosis: war horse or chameleon? Clin Neurol Neurosurg 2014; 119:6-16. [PMID: 24635918 DOI: 10.1016/j.clineuro.2013.12.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 11/19/2013] [Accepted: 12/27/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Relapse management is a crucial component of multiple sclerosis (MS) care. High-dose corticosteroids (CSs) are used to dampen inflammation, which is thought to hasten the recovery of MS relapse. A diversity of mechanisms drive the heterogeneous clinical response to exogenous CSs in patients with MS. Preclinical research is beginning to provide important insights into how CSs work, both in terms of intended and unintended effects. In this article we discuss cellular, systemic, and clinical characteristics that might contribute to intended and unintended CS effects when utilizing supraphysiological doses in clinical practice. The goal of this article is to consider recent insights about CS mechanisms of action in the context of MS. METHODS We reviewed relevant preclinical and clinical studies on the desirable and undesirable effects of high-dose corticosteroids used in MS care. RESULTS Preclinical studies reviewed suggest that corticosteroids may act in unpredictable ways in the context of autoimmune conditions. The precise timing, dosage, duration, cellular exposure, and background CS milieu likely contribute to their clinical heterogeneity. CONCLUSION It is difficult to predict when patients will respond favorably to CSs, both in terms of therapeutic response and tolerability profile. There are specific cellular, systemic, and clinical characteristics that might merit further consideration when utilizing CSs in clinical practice, and these should be explored in a translational setting.
Collapse
Affiliation(s)
- Stephen Krieger
- Corinne Goldsmith Dickinson Center for MS, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shawn F Sorrells
- Department of Neurosurgery, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA
| | | | - Thaddeus W W Pace
- College of Nursing and College of Medicine (Department of Psychiatry), University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
43
|
Reichardt HM, Gold R, Lühder F. Glucocorticoids in multiple sclerosis and experimental autoimmune encephalomyelitis. Expert Rev Neurother 2014; 6:1657-70. [PMID: 17144780 DOI: 10.1586/14737175.6.11.1657] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glucocorticoids exert a variety of immunomodulatory activities. Since changes in glucocorticoid homeostasis impact on susceptibility to autoimmune diseases, and synthetic glucocorticoids are widely used in the treatment of multiple sclerosis, a detailed understanding of their mechanism of action is desirable. Experimental autoimmune encephalomyelitis is a common animal model that mirrors many hallmarks of multiple sclerosis, a chronic inflammatory disease of the CNS with presumed autoimmune origin. Experimental autoimmune encephalomyelitis has been instrumental for many years in studying multiple sclerosis, revealing the blood-brain barrier, the microglia and T-cell apoptosis as major targets of glucocorticoids in this disease. Despite the great advances in the field, the answers to many questions concerning the mechanism of glucocorticoids; for example, the contribution of nongenomic effects or the cell-type specificity of their action, remain elusive. This review will critically discuss what we have learned so far from the analysis of animal models of the molecular mode of therapeutic and endogenous glucocorticoid action in multiple sclerosis. With this knowledge in mind, we should be able to further improve the management of multiple sclerosis using this class of drugs.
Collapse
Affiliation(s)
- Holger M Reichardt
- University of Würzburg, Molecular Immunology, Institute for Virology and Immunobiology, Versbacher Strasse 7, 97078 Würzburg, Germany.
| | | | | |
Collapse
|
44
|
Chen YI, Lee YJ, Wilkie DA, Lin CT. Evaluation of potential topical and systemic neuroprotective agents for ocular hypertension-induced retinal ischemia-reperfusion injury. Vet Ophthalmol 2013; 17:432-42. [PMID: 24171811 DOI: 10.1111/vop.12105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate for drugs with superior neuroprotective efficacy and investigate their underlying mechanisms related to antioxidation. PROCEDURES Brinzolamide (1%), timolol (0.5%), minocycline (22 mg/kg), lidocaine (1.5 mg/kg), and methylprednisolone (30 mg/kg) were administered to Sprague-Dawley (SD) rats. The retina was evaluated by electroretinography and histological analysis. The antioxidative capacity of drugs was evaluated to clarify the underlying mechanism. The oxidant/antioxidant profiles of plasma, red blood cells, and retina were analyzed by lipid peroxidation (malondialdehyde) and by measuring the activities of antioxidants. Proteomic analysis was used to investigate the possible protective mechanisms of the drug against ischemia-reperfusion injury. RESULTS The results suggested that timolol, methylprednisolone, and minocycline protected retinal function. Methylprednisolone and minocycline possessed good antioxidative activity. Brinzolamide and lidocaine preserved the structural integrity of the retina, but not retinal function. CONCLUSION Methylprednisolone, minocycline, and timolol have potential acute or delayed benefit in retinal ischemia-reperfusion injury. Their neuroprotective actions depend at least partially on the ability to alleviate oxidative stress.
Collapse
Affiliation(s)
- Yi-Ing Chen
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 106, Taiwan
| | | | | | | |
Collapse
|
45
|
Donaldson D, Matas Riera M, Holloway A, Beltran E, Barnett KC. Contralateral optic neuropathy and retinopathy associated with visual and afferent pupillomotor dysfunction following enucleation in six cats. Vet Ophthalmol 2013; 17:373-84. [DOI: 10.1111/vop.12104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- David Donaldson
- Unit of Comparative Ophthalmology; Animal Health Trust; Newmarket UK
| | | | - Andrew Holloway
- Diagnostic Imaging Department; Animal Health Trust; Newmarket UK
| | - Elsa Beltran
- Neurology/Neurosurgery Department; Animal Health Trust; Newmarket UK
| | - Keith C. Barnett
- Unit of Comparative Ophthalmology; Animal Health Trust; Newmarket UK
| |
Collapse
|
46
|
Abstract
BACKGROUND Traumatic optic neuropathy (TON) is an important cause of severe visual loss following blunt or penetrating head trauma. Following the initial injury, optic nerve swelling within the optic nerve canal can result in secondary retinal ganglion cell loss. Optic nerve decompression with steroids or surgical interventions or both has therefore been advocated as a means of improving visual prognosis in TON. OBJECTIVES The aim of this review was to examine the effectiveness and safety of using steroids in TON. SEARCH METHODS We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2013, Issue 4), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE, (January 1950 to May 2013), EMBASE (January 1980 to May 2013), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to May 2013), Web of Science Conference Proceedings Citation Index- Science (CPCI-S) (January 1990 to May 2013), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (http://clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 21 May 2013. We also searched the reference lists of included studies, other reviews and book chapters on TON to find references to additional trials. The Science Citation Index was used to look for papers that cited the studies included in this review. We did not manually search any journals or conference proceedings. We contacted trial investigators and experts in the field to identify additional published and unpublished studies. SELECTION CRITERIA We planned to include only randomised controlled trials (RCTs) of TON in which any steroid regime, either on its own or in combination with surgical optic nerve decompression, was compared to surgery alone or no treatment. DATA COLLECTION AND ANALYSIS Two review authors independently assessed the titles and abstracts identified from the electronic searches. MAIN RESULTS We included one study that met our selection criteria; a double-masked, placebo-controlled, randomised trial of high dose intravenous steroids in patients with indirect TON diagnosed within seven days of the initial injury. A total of 31 eligible participants were randomised to receive either high dose intravenous steroids (n = 16) or placebo (n = 15), and they were all followed-up for three months. Mean final best corrected visual acuity (BCVA) was 1.78±1.23 Logarithm of the Minimum Angle of Resolution (LogMAR) in the placebo group, and 1.11±1.14 LogMAR in the steroid group. The mean difference in BCVA between the placebo and steroid groups was 0.67 LogMAR (95% confidence interval -1.54 to 0.20), and this difference was not statistically significant (P = 0.13). At three months follow-up, an improvement in BCVA of 0.40 LogMAR occurred in eight eyes (8/15, 53.3%) in the placebo group, and in 11 eyes (11/16, 68.8%) in the treatment group. This difference was not statistically significant (P = 0.38). AUTHORS' CONCLUSIONS There is a relatively high rate of spontaneous visual recovery in TON and there is no convincing data that steroids provide any additional visual benefit over observation alone. Recent evidence also suggests a possible detrimental effect of steroids in TON and further studies are urgently needed to clarify this important issue. Each case therefore needs to be assessed on an individual basis and proper informed consent is paramount.
Collapse
Affiliation(s)
- Patrick Yu-Wai-Man
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne, UK.
| | | |
Collapse
|
47
|
Syed F, Bayat A. Superior effect of combination vs. single steroid therapy in keloid disease: A comparative in vitro analysis of glucocorticoids. Wound Repair Regen 2012; 21:88-102. [DOI: 10.1111/j.1524-475x.2012.00862.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 08/20/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Farhatullah Syed
- Plastic & Reconstructive Surgery Research; Manchester Institute of Biotechnology; University of Manchester; Manchester United Kingdom
| | - Ardeshir Bayat
- Plastic & Reconstructive Surgery Research; Manchester Institute of Biotechnology; University of Manchester; Manchester United Kingdom
- Department of Plastic and Reconstructive Surgery; University Hospital South Manchester NHS Foundation Trust; Wythenshawe Hospital; Manchester United Kingdom
| |
Collapse
|
48
|
Sühs KW, Hein K, Sättler MB, Görlitz A, Ciupka C, Scholz K, Käsmann-Kellner B, Papanagiotou P, Schäffler N, Restemeyer C, Bittersohl D, Hassenstein A, Seitz B, Reith W, Fassbender K, Hilgers R, Heesen C, Bähr M, Diem R. A randomized, double-blind, phase 2 study of erythropoietin in optic neuritis. Ann Neurol 2012; 72:199-210. [PMID: 22926853 DOI: 10.1002/ana.23573] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Based on findings in animal models of autoimmune optic nerve inflammation, we have assessed the safety and efficacy of erythropoietin in patients presenting with a first episode of optic neuritis. METHODS Patients with optic neuritis who attended the University Hospitals of Homburg/Saar, Göttingen, or Hamburg (Germany) were included in this double-blind, placebo-controlled, phase 2 study (ClinicalTrials.gov, NCT00355095). They were randomly assigned to groups receiving either 33,000IU recombinant human erythropoietin intravenously daily for 3 days or placebo as an add-on therapy to methylprednisolone. The primary outcome parameter was change in retinal nerve fiber layer (RNFL) thickness after 16 weeks. Secondary outcome parameters included optic nerve atrophy as assessed by magnetic resonance imaging, and changes in visual acuity, visual field, and visual evoked potentials (VEPs). RESULTS Forty patients were assigned to the treatment groups (21/19 erythropoietin/placebo). Safety monitoring revealed no relevant issues. Thirty-seven patients (20/17 erythropoietin/placebo) were analyzed for the primary endpoint according to the intention-to-treat protocol. RNFL thinning was less apparent after erythropoietin treatment. Thickness of the RNFL decreased by a median of 7.5μm by week 16 (mean ± standard deviation, 10.55 ± 17.54μm) compared to a median of 16.0μm (22.65 ± 29.18μm) in the placebo group (p = 0.0357). Decrease in retrobulbar diameter of the optic nerve was smaller in the erythropoietin group (p = 0.0112). VEP latencies at week 16 were shorter in erythropoietin-treated patients than in the placebo group (p = 0.0011). Testing of visual functions revealed trends toward an improved outcome after erythropoietin treatment. INTERPRETATION These results give the first indications that erythropoietin might be neuroprotective in optic neuritis.
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW To examine the proposed mechanisms of vision-threatening injuries occurring secondary to orbital and facial trauma: traumatic optic neuropathy (TON), retrobulbar haemorrhage (RBH) and penetrating eye injury. To evaluate the evidence supporting different management options for traumatic vision-threatening injury. RECENT FINDINGS Despite considerable debate over the roles of surgical decompression and systemic steroid therapy for TON, these interventions have not been proved to be more effective than conservative management and there is limited evidence that the use of steroids may be associated with an adverse outcome. Lateral canthotomy and inferior cantholysis have been proven to be effective treatments for RBH. Orbital exploration and surgical evacuation of haematoma remains a second line intervention. Open globe injuries require immediate primary surgical exploration and repair. Irretrievable devastating globe injuries require either enucleation or evisceration. There is no consensus as to which is the best treatment with recent surveys indicating that enucleation is preferred in the USA and evisceration in the United Kingdom. SUMMARY Conservative management is the first line treatment for TON. The evidence strongly supports lateral canthotomy and inferior cantholysis as best treatment for RBH. There is no consensus as to whether enucleation or evisceration is the best treatment for irretrievable devastating globe injury. The choice of management is currently determined by surgeon preference.
Collapse
|
50
|
Williams SK, Fairless R, Weise J, Kalinke U, Schulz-Schaeffer W, Diem R. Neuroprotective effects of the cellular prion protein in autoimmune optic neuritis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2823-31. [PMID: 21641403 DOI: 10.1016/j.ajpath.2011.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 02/15/2011] [Accepted: 02/23/2011] [Indexed: 10/18/2022]
Abstract
Although the pathologic role of the prion protein in transmissible spongiform encephalopathic diseases has been widely investigated, the physiologic role of the cellular prion protein (PrP(C)) is not known. Among the many functions attributed to PrP(C), there is increasing evidence that it is involved in cell survival and mediates neuroprotection. A potential role in the immune response has also been suggested. However, how these two functions interplay in autoimmune disease is unclear. To address this, autoimmune optic neuritis, a model of multiple sclerosis, was induced in C57Bl/6 mice, and up-regulation of PrP(C) was observed throughout the disease course. In addition, compared with wild-type mice, in PrP(C)-deficient mice and mice overexpressing PrP(C), histopathologic analysis demonstrated that optic neuritis was exacerbated, as indicated by axonal degeneration, inflammatory infiltration, and demyelination. However, significant neuroprotection of retinal ganglion cells, the axons of which form the optic nerve, was observed in mice that overexpressed PrP(C). Conversely, mice lacking PrP(C) demonstrated significantly more neurodegeneration. This suggests that PrP(C) may have a neuroprotective function independent of its role in regulating the immune response.
Collapse
Affiliation(s)
- Sarah K Williams
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | |
Collapse
|