1
|
Brossaud J, Barat P, Moisan MP. Cognitive Disorders in Type 1 Diabetes: Role of Brain Glucose Variation, Insulin Activity, and Glucocorticoid Exposure. Neuroendocrinology 2024:1-15. [PMID: 39401497 DOI: 10.1159/000541989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND The number of patients with type 2 diabetes (T2D) and type 1 diabetes (T1D) is on the rise, partly due to a global increase in new T1D cases among children. Beyond the well-documented microvascular and macrovascular complications, there is now substantial evidence indicating that diabetes also impacts the brain, leading to neuropsychological impairments. The risk of developing neuropsychiatric symptoms is notably higher in childhood due to the ongoing maturation of the brain, which makes it more susceptible to damage. Despite this awareness, the specific effects of diabetes on cognitive function remain poorly understood. SUMMARY This review synthesizes literature on the impact of diabetes on cognition and its relationship with brain structural changes. It presents data and hypotheses to explain how T1D contributes to cognitive dysfunction, with a particular focus on children and adolescents. The emphasis on the pediatric population is intentional, as young diabetic patients typically have fewer comorbidities, reducing confounding factors and simplifying the investigation of cognitive alterations. KEY MESSAGE We examine the roles of hypo- and hyperglycemia, as well as the emerging role of glucocorticoids in the development of neuropsychological disorders. When specific mechanisms related to T1D are available, they are highlighted; otherwise, data and hypotheses applicable to both T1D and T2D are discussed.
Collapse
Affiliation(s)
- Julie Brossaud
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Team NutriPsy, Bordeaux, France
- CHU Bordeaux, Nuclear Medicine, Pessac, France
| | - Pascal Barat
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Team NutriPsy, Bordeaux, France
- CHU Bordeaux, Pediatric Endocrinology and DiaBEA Unit, Hôpital des Enfants, Bordeaux, France
| | - Marie-Pierre Moisan
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Team NutriPsy, Bordeaux, France
| |
Collapse
|
2
|
Dwyer MKR, Amelinez-Robles N, Polsfuss I, Herbert K, Kim C, Varghese N, Parry TJ, Buller B, Verdoorn TA, Billing CB, Morrison B. NTS-105 decreased cell death and preserved long-term potentiation in an in vitro model of moderate traumatic brain injury. Exp Neurol 2024; 371:114608. [PMID: 37949202 DOI: 10.1016/j.expneurol.2023.114608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of hospitalization and death. To mitigate these human costs, the search for effective drugs to treat TBI continues. In the current study, we evaluated the efficacy of the novel neurosteroid, NTS-105, to reduce post-traumatic pathobiology in an in vitro model of moderate TBI that utilizes an organotypic hippocampal slice culture. NTS-105 inhibited activation of the androgen receptor and the mineralocorticoid receptor, partially activated the progesterone B receptor and was not active at the glucocorticoid receptor. Treatment with NTS-105 starting one hour after injury decreased post-traumatic cell death in a dose-dependent manner, with 10 nM NTS-105 being most effective. Post-traumatic administration of 10 nM NTS-105 also prevented deficits in long-term potentiation (LTP) without adversely affecting neuronal activity in naïve cultures. We propose that the high potency pleiotropic action of NTS-105 beneficial effects at multiple receptors (e.g. androgen, mineralocorticoid and progesterone) provides significant mechanistic advantages over native neurosteroids such as progesterone, which lacked clinical success for the treatment of TBI. Our results suggest that this pleiotropic pharmacology may be a promising strategy for the effective treatment of TBI, and future studies should test its efficacy in pre-clinical animal models of TBI.
Collapse
Affiliation(s)
- Mary Kate R Dwyer
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Nicolas Amelinez-Robles
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Isabella Polsfuss
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Keondre Herbert
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Carolyn Kim
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Nevin Varghese
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Tom J Parry
- NeuroTrauma Sciences, LLC, Alpharetta, GA 30009, United States of America
| | - Benjamin Buller
- NeuroTrauma Sciences, LLC, Alpharetta, GA 30009, United States of America
| | - Todd A Verdoorn
- NeuroTrauma Sciences, LLC, Alpharetta, GA 30009, United States of America
| | - Clare B Billing
- BioPharmaWorks, LLC, Groton, CT 06340, United States of America
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America.
| |
Collapse
|
3
|
Marissal-Arvy N, Moisan MP. Diabetes and associated cognitive disorders: Role of the Hypothalamic-Pituitary Adrenal axis. Metabol Open 2022; 15:100202. [PMID: 35958117 PMCID: PMC9357829 DOI: 10.1016/j.metop.2022.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Both diabetes types, types 1 and 2, are associated with cognitive impairments. Each period of life is concerned, and this is an increasing public health problem. Animal models have been developed to investigate the biological actors involved in such impairments. Many levels of the brain function (structure, volume, neurogenesis, neurotransmission, behavior) are involved. In this review, we detailed the part potentially played by the Hypothalamic-Pituitary Adrenal axis in these dysfunctions. Notably, regulating glucocorticoid levels, their receptors and their bioavailability appear to be relevant for future research studies, and treatment development.
Collapse
Affiliation(s)
- Nathalie Marissal-Arvy
- INRAE, Laboratoire de Nutrition et Neurobiologie Intégrée, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Marie-Pierre Moisan
- University of Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33000, Bordeaux, France
| |
Collapse
|
4
|
Li Q, Li H, Yao X, Wang C, Liu H, Xu D, Yang C, Zhuang H, Xiao Y, Liu R, Shen S, Zhou S, Fu C, Wang Y, Teng G, Liu L. Stress Response and Hearing Loss Differentially Contribute to Dynamic Alterations in Hippocampal Neurogenesis and Microglial Reactivity in Mice Exposed to Acute Noise Exposure. Front Neurosci 2021; 15:749925. [PMID: 34955715 PMCID: PMC8692372 DOI: 10.3389/fnins.2021.749925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is one of the most prevalent forms of acquired hearing loss, and it is associated with aberrant microglial status and reduced hippocampal neurogenesis; however, the nature of these associations is far from being elucidated. Beyond its direct effects on the auditory system, exposure to intense noise has previously been shown to acutely activate the stress response, which has increasingly been linked to both microglial activity and adult hippocampal neurogenesis in recent years. Given the pervasiveness of noise pollution in modern society and the important implications of either microglial activity or hippocampal neurogenesis for cognitive and emotional function, this study was designed to investigate how microglial status and hippocampal neurogenesis change over time following acoustic exposure and to analyze the possible roles of the noise exposure-induced stress response and hearing loss in these changes. To accomplish this, adult male C57BL/6J mice were randomly assigned to either a control or noise exposure (NE) group. Auditory function was assessed by measuring ABR thresholds at 20 days post noise exposure. The time-course profile of serum corticosterone levels, microglial status, and hippocampal neurogenesis during the 28 days following noise exposure were quantified by ELISA or immunofluorescence staining. Our results illustrated a permanent moderate-to-severe degree of hearing loss, an early but transient increase in serum corticosterone levels, and time-dependent dynamic alterations in microglial activation status and hippocampal neurogenesis, which both present an early but transient change and a late but enduring change. These findings provide evidence that both the stress response and hearing loss contribute to the dynamic alterations of microglia and hippocampal neurogenesis following noise exposure; moreover, noise-induced permanent hearing loss rather than noise-induced transient stress is more likely to be responsible for perpetuating the neurodegenerative process associated with many neurological diseases.
Collapse
Affiliation(s)
- Qian Li
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Hong Li
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xiuting Yao
- Medical College, Southeast University, Nanjing, China
| | - Conghui Wang
- Medical College, Southeast University, Nanjing, China
| | - Haiqing Liu
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Dan Xu
- School of Public Health, Southeast University, Nanjing, China
| | - Chenxi Yang
- Medical College, Southeast University, Nanjing, China
| | - Hong Zhuang
- Medical College, Southeast University, Nanjing, China
| | - Yu Xiao
- Medical College, Southeast University, Nanjing, China
| | - Rui Liu
- Medical College, Southeast University, Nanjing, China
| | - Sinuo Shen
- Medical College, Southeast University, Nanjing, China
| | - Shaoyang Zhou
- Medical College, Southeast University, Nanjing, China
| | - Chenge Fu
- Medical College, Southeast University, Nanjing, China
| | - Yifan Wang
- Medical College, Southeast University, Nanjing, China
| | - Gaojun Teng
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, Nanjing, China
| | - Lijie Liu
- Medical College, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Alhowail AH, Pinky PD, Eggert M, Bloemer J, Woodie LN, Buabeid MA, Bhattacharya S, Jasper SL, Bhattacharya D, Dhanasekaran M, Escobar M, Arnold RD, Suppiramaniam V. Doxorubicin induces dysregulation of AMPA receptor and impairs hippocampal synaptic plasticity leading to learning and memory deficits. Heliyon 2021; 7:e07456. [PMID: 34296005 PMCID: PMC8282984 DOI: 10.1016/j.heliyon.2021.e07456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022] Open
Abstract
Doxorubicin (Dox) is a chemotherapeutic agent used widely to treat a variety of malignant cancers. However, Dox chemotherapy is associated with several adverse effects, including "chemobrain," the observation that cancer patients exhibit through learning and memory difficulties extending even beyond treatment. This study investigated the effect of Dox treatment on learning and memory as well as hippocampal synaptic plasticity. Dox-treated mice (5 mg/kg weekly x 5) demonstrated impaired performance in the Y-maze spatial memory task and a significant reduction in hippocampal long-term potentiation. The deficit in synaptic plasticity was mirrored by deficits in the functionality of synaptic `α-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) channels, including reduced probability of opening, decreased dwell open time, and increased closed times. Furthermore, a reduction in the AMPAR subunit GluA1 level, its downstream signaling molecule Ca2+/calmodulin-dependent protein kinase (CaMKII), and brain-derived neurotrophic factor (BDNF) were observed. This was also accompanied by an increase in extracellular signal regulated kinase (ERK) and protein kinase B (AKT) activation. Together these data suggest that Dox-induced cognitive impairments are at least partially due to alterations in the expression and functionality of the glutamatergic AMPAR system.
Collapse
Affiliation(s)
- Ahmad H. Alhowail
- Department of Pharmacology and Toxicology, Qassim University, Buraydah, Saudi Arabia
| | - Priyanka D. Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Matthew Eggert
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY, USA
| | - Lauren N. Woodie
- Department of Nutrition, Dietetics and Hospitality Management, College of Human Sciences, Auburn University, Auburn, Alabama, USA
- Institute for Diabetes, Obesity and Metabolism, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Manal A. Buabeid
- College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Subhrajit Bhattacharya
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Shanese L. Jasper
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | | | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Martha Escobar
- Department of Psychology, Oakland University, Rochester, MI, USA
| | - Robert D. Arnold
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| |
Collapse
|
6
|
Sajjadi FS, Aghighi F, Vahidinia Z, Azami-Tameh A, Salami M, Talaei SA. Prenatal urban traffic noise exposure impairs spatial learning and memory and reduces glucocorticoid receptor expression in the hippocampus of male rat offspring. Physiol Int 2020; 107:209-219. [PMID: 32750028 DOI: 10.1556/2060.2020.00022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 03/11/2020] [Indexed: 11/19/2022]
Abstract
Introduction Exposure to noise stress during early life may permanently affect the structure and function of the central nervous system. The aim of this study was to evaluate the effects of prenatal exposure to urban traffic noise on the spatial learning and memory of the rats' offspring and the expression of glucocorticoid receptors (GRs) in their hippocampi. Methods Three g\roups of pregnant rats were exposed to recorded urban traffic noise for 1, 2 or 4 h/day during the last week of pregnancy. At the age of 45 days, their male offspring were introduced to the Morris water maze (MWM) for assessment of spatial learning and memory. The corticosterone levels were measured in the offspring's sera by radioimmunoassay, and the relative expression of glucocorticoid and mineralocorticoid receptors (MRs) in their hippocampi was evaluated via RT-PCR. Results Facing urban traffic noise for 2 and 4 h/day during the third trimester of pregnancy caused the offspring to spend more time and to travel a larger distance than the controls to find the target platform. Analogously, these two groups were inferior to their control counterparts in the probe test. Also, prenatal noise stress elevated the corticosterone concentration in the sera of the rats' offspring and dose-dependently decreased the relative expression of the mRNA of both GRs and MRs in their hippocampi. Conclusions Urban traffic noise exposure during the last trimester of pregnancy impairs spatial learning and memory of rat offspring and reduces GRs and MRs gene expression in the hippocampus.
Collapse
Affiliation(s)
- F S Sajjadi
- 1Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - F Aghighi
- 1Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Z Vahidinia
- 2Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - A Azami-Tameh
- 2Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - M Salami
- 1Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - S A Talaei
- 1Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
7
|
Combined Fluoxetine and Metformin Treatment Potentiates Antidepressant Efficacy Increasing IGF2 Expression in the Dorsal Hippocampus. Neural Plast 2019; 2019:4651031. [PMID: 30804991 PMCID: PMC6360645 DOI: 10.1155/2019/4651031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/08/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022] Open
Abstract
An increasing number of studies show that selective serotonin reuptake inhibitors (SSRIs) exert their therapeutic action, at least in part, by amplifying the influence of the living environment on mood. As a consequence, when administered in a favorable environment, SSRIs lead to a reduction of symptoms, but in stressful conditions, they show limited efficacy. Therefore, novel therapeutic approaches able to neutralize the influence of the stressful environment on treatment are needed. The aim of our study was to test whether, in a mouse model of depression, the combined administration of SSRI fluoxetine and metformin, a drug able to improve the metabolic profile, counteracts the limited efficacy of fluoxetine alone when administered in stressful conditions. Indeed, metabolic alterations are associated to both the onset of major depression and the antidepressant efficacy. To this goal, adult C57BL/6 male mice were exposed to stress for 6 weeks; the first two weeks was aimed at generating a mouse model of depression. During the remaining 4 weeks, mice received one of the following treatments: vehicle, fluoxetine, metformin, or a combination of fluoxetine and metformin. We measured liking- and wanting-type anhedonia as behavioral phenotypes of depression and assessed the expression levels of selected genes involved in major depressive disorder and antidepressant response in the dorsal and ventral hippocampus, which are differently involved in the depressive symptomatology. The combined treatment was more effective than fluoxetine alone in ameliorating the depressive phenotype after one week of treatment. This was associated to an increase in IGF2 mRNA expression and enhanced long-term potentiation, specifically in the dorsal hippocampus, at the end of treatment. Overall, the present results show that, when administered in stressful conditions, the combined fluoxetine and metformin treatment may represent a more effective approach than fluoxetine alone in a short term. Finally, our findings highlight the relevance of polypharmacological strategy as effective interventions to increase the efficacy of the antidepressant drugs currently available.
Collapse
|
8
|
Manahan-Vaughan D. Special Considerations When Using Mice for In Vivo Electrophysiology and Long-Term Studies of Hippocampal Synaptic Plasticity During Behavior. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00003-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Schwabe L. Memory under stress: from single systems to network changes. Eur J Neurosci 2016; 45:478-489. [PMID: 27862513 DOI: 10.1111/ejn.13478] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
Stressful events have profound effects on learning and memory. These effects are mainly mediated by catecholamines and glucocorticoid hormones released from the adrenals during stressful encounters. It has been known for long that both catecholamines and glucocorticoids influence the functioning of the hippocampus, a critical hub for episodic memory. However, areas implicated in other forms of memory, such as the insula or the dorsal striatum, can be affected by stress as well. Beyond changes in single memory systems, acute stress triggers the reconfiguration of large scale neural networks which sets the stage for a shift from thoughtful, 'cognitive' control of learning and memory toward more reflexive, 'habitual' processes. Stress-related alterations in amygdala connectivity with the hippocampus, dorsal striatum, and prefrontal cortex seem to play a key role in this shift. The bias toward systems proficient in threat processing and the implementation of well-established routines may facilitate coping with an acute stressor. Overreliance on these reflexive systems or the inability to shift flexibly between them, however, may represent a risk factor for psychopathology in the long-run.
Collapse
Affiliation(s)
- Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, Von-Melle-Park 5, 20146, Hamburg, Germany
| |
Collapse
|
10
|
Ritchey M, McCullough AM, Ranganath C, Yonelinas AP. Stress as a mnemonic filter: Interactions between medial temporal lobe encoding processes and post-encoding stress. Hippocampus 2016; 27:77-88. [PMID: 27774683 DOI: 10.1002/hipo.22674] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2016] [Indexed: 11/11/2022]
Abstract
Acute stress has been shown to modulate memory for recently learned information, an effect attributed to the influence of stress hormones on medial temporal lobe (MTL) consolidation processes. However, little is known about which memories will be affected when stress follows encoding. One possibility is that stress interacts with encoding processes to selectively protect memories that had elicited responses in the hippocampus and amygdala, two MTL structures important for memory formation. There is limited evidence for interactions between encoding processes and consolidation effects in humans, but recent studies of consolidation in rodents have emphasized the importance of encoding "tags" for determining the impact of consolidation manipulations on memory. Here, we used functional magnetic resonance imaging in humans to test the hypothesis that the effects of post-encoding stress depend on MTL processes observed during encoding. We found that changes in stress hormone levels were associated with an increase in the contingency of memory outcomes on hippocampal and amygdala encoding responses. That is, for participants showing high cortisol reactivity, memories became more dependent on MTL activity observed during encoding, thereby shifting the distribution of recollected events toward those that had elicited relatively high activation. Surprisingly, this effect was generally larger for neutral, compared to emotionally negative, memories. The results suggest that stress does not uniformly enhance memory, but instead selectively preserves memories tagged during encoding, effectively acting as mnemonic filter. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maureen Ritchey
- Department of Psychology, Boston College, Chestnut Hill, Massachusetts.,Center for Neuroscience, University of California, Davis, California
| | | | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, California.,Department of Psychology, University of California, Davis, California
| | | |
Collapse
|
11
|
Lesburguères E, Sparks FT, O'Reilly KC, Fenton AA. Active place avoidance is no more stressful than unreinforced exploration of a familiar environment. Hippocampus 2016; 26:1481-1485. [PMID: 27701792 DOI: 10.1002/hipo.22666] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2016] [Indexed: 11/11/2022]
Abstract
Training in the active place avoidance task changes hippocampus synaptic function, the dynamics of hippocampus local field potentials, place cell discharge, and active place avoidance memory is maintained by persistent PKMζ activity. The extent to which these changes reflect memory processes and/or stress responses is unknown. We designed a study to assess stress within the active place avoidance task by measuring serum corticosterone (CORT) at different stages of training. CORT levels did not differ between trained mice that learned to avoid the location of the mild foot shock, and untrained no-shock controls exposed to the same environment for the same amount of time. Yoked mice, that received unavoidable shocks in the same time sequence as the trained mice, had significantly higher CORT levels than mice in the trained and no-shock groups after the first trial. This increase in CORT disappeared by the fourth trial the following day, and levels of CORT for all groups matched that of home cage controls. The data demonstrate that place avoidance training is no more stressful than experiencing a familiar environment. We conclude that changes in neural function as a result of active place avoidance training are likely to reflect learning and memory processes rather than stress. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | - André A Fenton
- Center for Neural Science, New York University, New York.,Department of Physiology and Pharmacology, Robert F. Furchgott Center for Neuroscience, SUNY Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
12
|
Mohammadmirzaei N, Rezayof A, Ghasemzadeh Z. Activation of cannabinoid CB1 receptors in the ventral hippocampus improved stress-induced amnesia in rat. Brain Res 2016; 1646:219-226. [DOI: 10.1016/j.brainres.2016.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/03/2016] [Accepted: 06/05/2016] [Indexed: 12/17/2022]
|
13
|
Wang M, Li D, Yun D, Zhuang Y, Repunte-Canonigo V, Sanna PP, Behnisch T. Translation of BDNF-gene transcripts with short 3' UTR in hippocampal CA1 neurons improves memory formation and enhances synaptic plasticity-relevant signaling pathways. Neurobiol Learn Mem 2016; 138:121-134. [PMID: 27394686 DOI: 10.1016/j.nlm.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 12/23/2022]
Abstract
While the brain-derived neurotrophic factor (BDNF) gene and its multiple transcripts have been recognized as a key factor for learning, but the specific involvement of BDNF translated from BDNF transcripts with short-3' untranslated region (short 3' UTR) in learning and memory requires further analysis. In this paper, we present data to show that the transduction of hippocampal CA1 neurons with AAV9-5' UTR-BDNF (short 3' UTR)-IRES-ZsGreen and the subsequent expression of BDNF enhanced the phosphorylation of synaptic plasticity relevant proteins and improved passive avoidance and object location, but not object recognition memory. In addition, BDNF improved the relearning of object location. At higher BDNF overexpression levels, the fear behavior was accompanied with a decline in the passive avoidance memory 24h post training, and with an enhanced fear conditioning performance. In addition, these animals developed spontaneous seizures. Thus, the expression of BDNF in the hippocampal CA1 region has the potential to improve fear and object location memory in wild type mouse strains when the region and expression levels of BDNF are well controlled.
Collapse
Affiliation(s)
- Man Wang
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Dongxue Li
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Di Yun
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yinghan Zhuang
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Vez Repunte-Canonigo
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pietro Paolo Sanna
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thomas Behnisch
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Hubbs-Tait L, Nation JR, Krebs NF, Bellinger DC. Neurotoxicants, Micronutrients, and Social Environments. Psychol Sci Public Interest 2016; 6:57-121. [DOI: 10.1111/j.1529-1006.2005.00024.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
SUMMARY—Systematic research evaluating the separate and interacting impacts of neurotoxicants, micronutrients, and social environments on children's cognition and behavior has only recently been initiated. Years of extensive human epidemiologic and animal experimental research document the deleterious impact of lead and other metals on the nervous system. However, discrepancies among human studies and between animal and human studies underscore the importance of variations in child nutrition as well as social and behavioral aspects of children's environments that mitigate or exacerbate the effects of neurotoxicants. In this monograph, we review existing research on the impact of neurotoxic metals, nutrients, and social environments and interactions across the three domains. We examine the literature on lead, mercury, manganese, and cadmium in terms of dispersal, epidemiology, experimental animal studies, effects of social environments, and effects of nutrition. Research documenting the negative impact of lead on cognition and behavior influenced reductions by the Center for Disease Control in child lead-screening guidelines from 30 micrograms per deciliter (μg/dL) in 1975 to 25 μg/dL in 1985 and to 10 μg/dL in 1991. A further reduction is currently being considered. Experimental animal research documents lead's alteration of glutamate-neurotransmitter (particularly N-methyl-D-aspartate) activity vital to learning and memory. In addition, lead induces changes in cholinergic and dopaminergic activity. Elevated lead concentrations in the blood are more common among children living in poverty and there is some evidence that socioeconomic status influences associations between lead and child outcomes. Micronutrients that influence the effects of lead include iron and zinc. Research documenting the negative impact of mercury on children (as well as adults) has resulted in a reference dose (RfD) of 0.1 microgram per kilogram of body weight per day (μg/kg/day). In animal studies, mercury interferes with glutamatergic, cholinergic, and dopaminergic activity. Although evidence for interactions of mercury with children's social contexts is minimal, researchers are examining interactions of mercury with several nutrients. Research on the effects of cadmium and manganese on child cognition and behavior is just beginning. Experimental animal research links cadmium to learning deficits, manganese to behaviors characteristic of Parkinson's disease, and both to altered dopaminergic functioning. We close our review with a discussion of policy implications, and we recommend interdisciplinary research that will enable us to bridge gaps within and across domains.
Collapse
Affiliation(s)
- Laura Hubbs-Tait
- Department of Human Development and Family Science, Oklahoma State University
| | | | - Nancy F. Krebs
- Department of Pediatrics, University of Colorado School of Medicine
| | - David C. Bellinger
- Department of Neurology, Harvard Medical School; Department of Environmental Health, Harvard School of Public Health; and Children's Hospital Boston
| |
Collapse
|
15
|
Cognitive Adaptation under Stress: A Case for the Mineralocorticoid Receptor. Trends Cogn Sci 2016; 20:192-203. [DOI: 10.1016/j.tics.2015.12.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/19/2015] [Accepted: 12/08/2015] [Indexed: 12/20/2022]
|
16
|
Hagena H, Hansen N, Manahan-Vaughan D. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory. Cereb Cortex 2016; 26:1349-64. [PMID: 26804338 PMCID: PMC4785955 DOI: 10.1093/cercor/bhv330] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Noradrenaline (NA) is a key neuromodulator for the regulation of behavioral state and cognition. It supports learning by increasing arousal and vigilance, whereby new experiences are “earmarked” for encoding. Within the hippocampus, experience-dependent information storage occurs by means of synaptic plasticity. Furthermore, novel spatial, contextual, or associative learning drives changes in synaptic strength, reflected by the strengthening of long-term potentiation (LTP) or long-term depression (LTD). NA acting on β-adrenergic receptors (β-AR) is a key determinant as to whether new experiences result in persistent hippocampal synaptic plasticity. This can even dictate the direction of change of synaptic strength. The different hippocampal subfields play different roles in encoding components of a spatial representation through LTP and LTD. Strikingly, the sensitivity of synaptic plasticity in these subfields to β-adrenergic control is very distinct (dentate gyrus > CA3 > CA1). Moreover, NA released from the locus coeruleus that acts on β-AR leads to hippocampal LTD and an enhancement of LTD-related memory processing. We propose that NA acting on hippocampal β-AR, that is graded according to the novelty or saliency of the experience, determines the content and persistency of synaptic information storage in the hippocampal subfields and therefore of spatial memories.
Collapse
Affiliation(s)
- Hardy Hagena
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Niels Hansen
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
17
|
Suri D, Vaidya VA. The adaptive and maladaptive continuum of stress responses – a hippocampal perspective. Rev Neurosci 2015; 26:415-42. [DOI: 10.1515/revneuro-2014-0083] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/22/2015] [Indexed: 12/21/2022]
Abstract
AbstractExposure to stressors elicits a spectrum of responses that span from potentially adaptive to maladaptive consequences at the structural, cellular and physiological level. These responses are particularly pronounced in the hippocampus where they also appear to influence hippocampal-dependent cognitive function and emotionality. The factors that influence the nature of stress-evoked consequences include the chronicity, severity, predictability and controllability of the stressors. In addition to adult-onset stress, early life stress also elicits a wide range of structural and functional responses, which often exhibit life-long persistence. However, the outcome of early stress exposure is often contingent on the environment experienced in adulthood, and could either aid in stress coping or could serve to enhance susceptibility to the negative consequences of adult stress. This review comprehensively examines the consequences of adult and early life stressors on the hippocampus, with a focus on their effects on neurogenesis, neuronal survival, structural and synaptic plasticity and hippocampal-dependent behaviors. Further, we discuss potential factors that may tip stress-evoked consequences from being potentially adaptive to largely maladaptive.
Collapse
|
18
|
Sharvit A, Segal M, Kehat O, Stork O, Richter-Levin G. Differential modulation of synaptic plasticity and local circuit activity in the dentate gyrus and CA1 regions of the rat hippocampus by corticosterone. Stress 2015; 18:319-27. [PMID: 25815975 DOI: 10.3109/10253890.2015.1023789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Depending on its severity, timing and context, stress has been shown to have a differential regional effect on hippocampal synaptic plasticity. While the focus of attention in most recent studies is on excitatory synapses and generation, modifications of inhibitory synapses and local interneurons cannot be ignored. We have now examined the effects of corticosterone (CORT) on extrinsic afferent and local circuit plasticity of the perforant path on the dentate gyrus (DG) and the ventral hippocampal commissure on CA1. Local circuit activity was measured by responses to paired-pulse stimulation. Control rats expressed afferent long-term potentiation (LTP) and local circuit plasticity in both the DG and CA1. Administration of a high dosage of CORT-reduced paired-pulse inhibition and increased facilitation in DG but not in CA1, whereas administration of a moderate CORT dosage had no effect. Moderate CORT doses caused enhancement of LTP in the DG but not in CA1, while high CORT doses converted LTP to long-term depression in the CA1 but had no effect in the DG. CORT blocked theta burst stimulation-induced local circuit plasticity otherwise found in control DG. These findings suggest that elevation of the level of CORT results in a regionally differentiated physiological response. In addition, the results indicate that CORT affects aspects of local circuit activity and plasticity in the DG but less so in the CA1. It is possible that these differentiated alterations underlie some of the behavioral consequences and memory processes under stressful conditions.
Collapse
Affiliation(s)
- Adva Sharvit
- a "Sagol" Department of Neurobiology , University of Haifa , Haifa , Israel
| | - Menahem Segal
- b Department of Neurobiology , Weizmann Institute of Science , Rehovot , Israel
| | - Orli Kehat
- c The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa , Haifa , Israel
| | - Oliver Stork
- d Department of Genetics and Molecular Neurobiology , Institute of Biology, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
- e Center for Behavioural Brain Sciences , Magdeburg , Germany , and
| | - Gal Richter-Levin
- a "Sagol" Department of Neurobiology , University of Haifa , Haifa , Israel
- c The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa , Haifa , Israel
- f Department of Psychology , University of Haifa , Haifa , Israel
| |
Collapse
|
19
|
Dolcos F. The fast and the slow sides of cortisol's effects on emotional interference and sustained attention. Front Neurosci 2014; 8:268. [PMID: 25278824 PMCID: PMC4166312 DOI: 10.3389/fnins.2014.00268] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/10/2014] [Indexed: 01/28/2023] Open
Affiliation(s)
- Florin Dolcos
- Psychology Department, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
20
|
Huang CC, Chu CY, Yeh CM, Hsu KS. Acute hypernatremia dampens stress-induced enhancement of long-term potentiation in the dentate gyrus of rat hippocampus. Psychoneuroendocrinology 2014; 46:129-40. [PMID: 24882165 DOI: 10.1016/j.psyneuen.2014.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 01/09/2023]
Abstract
Stress often occurs within the context of homeostatic threat, requiring integration of physiological and psychological demands to trigger appropriate behavioral, autonomic and endocrine responses. However, the neural mechanism underlying stress integration remains elusive. Using an acute hypernatremic challenge (2.0M NaCl subcutaneous), we assessed whether physical state may affect subsequent responsiveness to psychogenic stressors. We found that experienced forced swimming (FS, 15min in 25°C), a model of psychogenic stress, enhanced long-term potentiation (LTP) induction in the dentate gyrus (DG) of the rat hippocampus ex vivo. The effect of FS on LTP was prevented when the animals were adrenalectomized or given mineralocorticoid receptor antagonist RU28318 before experiencing stress. Intriguingly, relative to normonatremic controls, hypernatremic challenge effectively elevated plasma sodium concentration and dampened FS-induced enhancement of LTP, which was prevented by adrenalectomy. In addition, acute hypernatremic challenge resulted in increased extracellular signal-regulated kinase (ERK)1/2 phosphorylation in the DG and occluded the subsequent activation of ERK1/2 by FS. Moreover, stress response dampening effects by acute hypernatremic challenge remained intact in conditional oxytocin receptor knockout mice. These results suggest that acute hypernatremic challenge evokes a sustained increase in plasma corticosterone concentration, which in turn produces stress-like changes in the DG, thereby occluding subsequent responsiveness to psychogenetic stress. They also fit into the general concept of "metaplasticity" - that is, the responsiveness to stress is not fixed but appears to be governed by the recent history of prior physical state.
Collapse
Affiliation(s)
- Chiung-Chun Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiao-Yin Chu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Che-Ming Yeh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
21
|
Stress modulation of hippocampal activity – Spotlight on the dentate gyrus. Neurobiol Learn Mem 2014; 112:53-60. [DOI: 10.1016/j.nlm.2014.04.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/17/2014] [Accepted: 04/08/2014] [Indexed: 12/18/2022]
|
22
|
Kim KN, Kim BT, Kim YS, Lee JH, Jahng JW. Increase of glucocorticoids is not required for the acquisition, but hinders the extinction, of lithium-induced conditioned taste aversion. Eur J Pharmacol 2014; 730:14-9. [PMID: 24582760 DOI: 10.1016/j.ejphar.2014.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/27/2014] [Accepted: 02/04/2014] [Indexed: 11/29/2022]
Abstract
Lithium chloride at doses sufficient to induce conditioned taste aversion (CTA) causes c-Fos expression in the paraventricular nucleus and increases the plasma level of corticosterone with activation of the hypothalamic-pituitary-adrenal axis. This study was conducted to define the role of glucocorticoid in the acquisition and extinction of lithium-induced CTA. In experiment 1, Sprague-Dawley rats received dexamethasone (2mg/kg) or RU486 (20mg/kg) immediately after 5% sucrose access, and then an intraperitoneal injection of isotonic lithium chloride (12ml/kg) was followed with 30min interval. Rats had either 1 or 7 days of recovery period before the daily sucrose drinking tests. In experiment 2, rats were conditioned with the sucrose-lithium pairing, and then received dexamethasone or vehicle at 30min before each drinking test. In experiment 3, adrenalectomized (ADX or ADX+B) rats were subjected to sucrose drinking tests after the sucrose-lithium pairing. Dexamethasone, but not RU486, pretreatment blunted the formation of lithium-induced CTA memory. Dexamethasone prior to each drinking test suppressed sucrose consumption and prolonged the extinction of lithium-induced CTA. Sucrose consumption was significantly suppressed not only in ADX+B rats but also in ADX rats during the first drinking session; however, a significant decrease was found only in ADX rats on the fourth drinking session. These results reveal that glucocorticoid is not a necessary component in the acquisition, but an important player in the extinction, of lithium-induced CTA, and suggest that a pulse increase of glucocorticoid may hinder the extinction memory formation of lithium-induced CTA.
Collapse
Affiliation(s)
- Kyu-Nam Kim
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon 443 721, Republic of Korea
| | - Bom-Taeck Kim
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon 443 721, Republic of Korea.
| | - Young-Sang Kim
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jong-Ho Lee
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul 110768, Republic of Korea
| | - Jeong Won Jahng
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul 110768, Republic of Korea.
| |
Collapse
|
23
|
Kelemen E, Bahrendt M, Born J, Inostroza M. Hippocampal corticosterone impairs memory consolidation during sleep but improves consolidation in the wake state. Hippocampus 2014; 24:510-5. [PMID: 24596244 PMCID: PMC4233998 DOI: 10.1002/hipo.22266] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2014] [Indexed: 01/03/2023]
Abstract
We studied the interaction between glucocorticoid (GC) level and sleep/wake state during memory consolidation. Recent research has accumulated evidence that sleep supports memory consolidation in a unique physiological process, qualitatively distinct from consolidation occurring during wakefulness. This appears particularly true for memories that rely on the hippocampus, a region with abundant expression of GC receptors. Against this backdrop we hypothesized that GC effects on consolidation depend on the brain state, i.e., sleep and wakefulness. Following exploration of two objects in an open field, during 80 min retention periods rats received an intrahippocampal infusion of corticosterone (10 ng) or vehicle while asleep or awake. Then the memory was tested in the hippocampus-dependent object-place recognition paradigm. GCs impaired memory consolidation when administered during sleep but improved consolidation during the wake retention interval. Intrahippocampal infusion of GC or sleep/wake manipulations did not alter novel-object recognition performance that does not require the hippocampus. This work corroborates the notion of distinct consolidation processes occurring in sleep and wakefulnesss, and identifies GCs as a key player controlling distinct hippocampal memory consolidation processes in sleep and wake conditions.
Collapse
Affiliation(s)
- Eduard Kelemen
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany
| | | | | | | |
Collapse
|
24
|
Keralapurath MM, Clark JK, Hammond S, Wagner JJ. Cocaine- or stress-induced metaplasticity of LTP in the dorsal and ventral hippocampus. Hippocampus 2014; 24:577-90. [PMID: 24464838 DOI: 10.1002/hipo.22250] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2014] [Indexed: 01/04/2023]
Abstract
Despite the well documented role of the hippocampus in various modes of drug reinstatement behavior, the persisting effects of in vivo cocaine exposure on hippocampal synaptic plasticity are not sufficiently understood. In this report we investigated the effects of cocaine conditioning on long-term potentiation (LTP) in the CA1 region of hippocampus along its septotemporal axis. Male Sprague-Dawley rats experienced a behavioral protocol, in which locomotor activity was monitored in response to various conditioning treatments. LTP was measured in ex vivo slice preparations taken 1-2 weeks after the last behavioral session from the ventral (vH) and dorsal (dH) sectors of hippocampus. Unexpectedly, experiencing the minor intermittent stimuli of the behavioral protocol caused stress-induced metaplastic changes in both vH (increased LTP) and dH (decreased LTP) in the saline conditioned rats relative to behaviorally naïve controls. These stress effects in the vH and dH were blocked by conditioning with either mineralocorticoid (spironolactone) or glucocorticoid (mifepristone) antagonists, respectively. Stress-induced metaplasticity in the vH was also prevented by prior administration of the kappa opioid antagonist nor-binaltorphimine. Cocaine conditioning induced locomotor sensitization and significantly increased LTP in the vH without causing significant change in LTP in the dH. Cocaine-induced metaplasticity in the vH was prevented by co-administration of the dopamine D2-like antagonist eticlopride during cocaine conditioning, but not by co-administration of the D1/5 antagonist SCH 23390. Our results suggest that the functional connectivity of hippocampus is altered by metaplastic triggers such as exposure to drugs of abuse and/or stressors, thereby shifting the efferent output of hippocampus from dH (cortical) toward vH (limbic) influenced circuits.
Collapse
Affiliation(s)
- Madhusudhanan M Keralapurath
- Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia; Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia
| | | | | | | |
Collapse
|
25
|
Diabetes cognitive impairments and the effect of traditional chinese herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:649396. [PMID: 24386004 PMCID: PMC3872237 DOI: 10.1155/2013/649396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 12/27/2022]
Abstract
The problem of cognitive impairment resulting from diabetes is gaining more acceptance and attention. Both type 1 and type 2 diabetes mellitus have been proved to be associated with reduced performance on numerous domains of cognitive function. Although the exact mechanisms of cognitive impairments in diabetes have not been completely understood, hyperglycemia and insulin resistance seem to play significant roles. And other possible risk factors such as hypoglycemia, insulin deficiency, vascular risk factors, hyperactive HPA axis, depression, and altered neurotransmitters will also be examined. In the meanwhile, this review analyzed the role of the active ingredient of Chinese herbal medicine in the treatment of diabetes cognitive impairments.
Collapse
|
26
|
Differential contribution of mineralocorticoid and glucocorticoid receptors to memory formation during sleep. Psychoneuroendocrinology 2013; 38:2962-72. [PMID: 24035099 DOI: 10.1016/j.psyneuen.2013.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/31/2013] [Accepted: 08/21/2013] [Indexed: 11/21/2022]
Abstract
Corticosteroids are known to modulate the consolidation of memories during sleep, specifically in the hippocampus-dependent declarative memory system. However, effects of the major human corticosteroid cortisol are conveyed via two different receptors, i.e., mineralocorticoid (MRs) and glucocorticoid receptors (GRs) whose specific contributions to memory consolidation are unclear. Whereas a shift in the balance between MR and GR activation toward predominant GR activation has been found to impair sleep-dependent consolidation of declarative memories, the effect of predominant MR activation is not well characterized. Here, we examined differential corticosteroid receptor contributions to memory consolidation during post-learning sleep in two placebo-controlled double-blind studies in humans, by comparing the effects of the selective MR agonist fludrocortisone (0.2 mg, orally, Study 1) and of hydrocortisone (22 mg, intravenously, Study 2) with strong binding affinity to both MR and GR. We hypothesized increased activation of MRs during sleep to enhance declarative memory consolidation, but the joint MR/GR activation to impair it. Participants (16 men in each study) learned a declarative (word pair associates) and a procedural task (mirror tracing) before a 7-h period of nocturnal retention sleep, with the substances administered before sleep (Study 1) and during sleep (Study 2), respectively. As hypothesized, retention of word pairs, but not of mirror tracing skill, was selectively enhanced by the MR agonist fludrocortisone. An impairing effect of hydrocortisone on word pair retention remained non-significant possibly reflecting that hydrocortisone administration failed to establish robust predominance of GR activation. Our results show that predominant MR activation benefits declarative memory consolidation presumably by enhancing the sleep-dependent reactivation of hippocampal memories and resultant synaptic plastic processes. The effect is counteracted by additional GR activation. Insufficient MR activation, like GR overactivation, might be a factor contributing to memory impairment in pathological conditions.
Collapse
|
27
|
Schmidt M, Abraham W, Maroun M, Stork O, Richter-Levin G. Stress-induced metaplasticity: From synapses to behavior. Neuroscience 2013; 250:112-20. [DOI: 10.1016/j.neuroscience.2013.06.059] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/26/2013] [Accepted: 06/26/2013] [Indexed: 01/29/2023]
|
28
|
Tabassum H, Frey JU. The effect of acute swim stress and training in the water maze on hippocampal synaptic activity as well as plasticity in the dentate gyrus of freely moving rats: revisiting swim-induced LTP reinforcement. Hippocampus 2013; 23:1291-8. [PMID: 23836535 DOI: 10.1002/hipo.22166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2013] [Indexed: 01/07/2023]
Abstract
Hippocampal long-term potentiation (LTP) is a cellular model of learning and memory. An early form of LTP (E-LTP) can be reinforced into its late form (L-LTP) by various behavioral interactions within a specific time window ("behavioral LTP-reinforcement"). Depending on the type and procedure used, various studies have shown that stress differentially affects synaptic plasticity. Under low stress, such as novelty detection or mild foot shocks, E-LTP can be transformed into L-LTP in the rat dentate gyrus (DG). A reinforcing effect of a 2-min swim, however, has only been shown in (Korz and Frey (2003) J Neurosci 23:7281-7287; Korz and Frey (2005) J Neurosci 25:7393-7400; Ahmed et al. (2006) J Neurosci 26:3951-3958; Sajikumar et al., (2007) J Physiol 584.2:389-400) so far. We have reinvestigated these studies using the same as well as an improved recording technique which allowed the recording of field excitatory postsynaptic potentials (fEPSP) and the population spike amplitude (PSA) at their places of generation in freely moving rats. We show that acute swim stress led to a long-term depression (LTD) in baseline values of PSA and partially fEPSP. In contrast to earlier studies a LTP-reinforcement by swimming could never be reproduced. Our results indicate that 2-min swim stress influenced synaptic potentials as well as E-LTP negatively.
Collapse
Affiliation(s)
- Heena Tabassum
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
29
|
Beraki S, Litrus L, Soriano L, Monbureau M, To LK, Braithwaite SP, Nikolich K, Urfer R, Oksenberg D, Shamloo M. A pharmacological screening approach for discovery of neuroprotective compounds in ischemic stroke. PLoS One 2013; 8:e69233. [PMID: 23874920 PMCID: PMC3715457 DOI: 10.1371/journal.pone.0069233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/06/2013] [Indexed: 11/17/2022] Open
Abstract
With the availability and ease of small molecule production and design continuing to improve, robust, high-throughput methods for screening are increasingly necessary to find pharmacologically relevant compounds amongst the masses of potential candidates. Here, we demonstrate that a primary oxygen glucose deprivation assay in primary cortical neurons followed by secondary assays (i.e. post-treatment protocol in organotypic hippocampal slice cultures and cortical neurons) can be used as a robust screen to identify neuroprotective compounds with potential therapeutic efficacy. In our screen about 50% of the compounds in a library of pharmacologically active compounds displayed some degree of neuroprotective activity if tested in a pre-treatment toxicity assay but just a few of these compounds, including Carbenoxolone, remained active when tested in a post-treatment protocol. When further examined, Carbenoxolone also led to a significant reduction in infarction size and neuronal damage in the ischemic penumbra when administered six hours post middle cerebral artery occlusion in rats. Pharmacological testing of Carbenoxolone-related compounds, acting by inhibition of 11-β-hydroxysteroid dehydrogenase-1 (11β-HSD1), gave rise to similarly potent in vivo neuroprotection. This indicates that the increase of intracellular glucocorticoid levels mediated by 11β-HSD1 may be involved in the mechanism that exacerbates ischemic neuronal cell death, and inhibiting this enzyme could have potential therapeutic value for neuroprotective therapies in ischemic stroke and other neurodegenerative disorders associated with neuronal injury.
Collapse
Affiliation(s)
- Simret Beraki
- Behavioral and Functional Neuroscience Laboratory, Institute for Neuro-Innovation and Translational Neurosciences, School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.
Collapse
Affiliation(s)
- Björn Rasch
- Division of Biopsychology, Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
31
|
Post-exercise whey protein hydrolysate supplementation induces a greater increase in muscle protein synthesis than its constituent amino acid content. Br J Nutr 2013; 110:981-7. [DOI: 10.1017/s0007114512006174] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is well known that ingestion of a protein source is effective in stimulating muscle protein synthesis after exercise. In addition, there are numerous reports on the impact of leucine and leucine-rich whey protein on muscle protein synthesis and mammalian target of rapamycin (mTOR) signalling. However, there is only limited information on the effects of whey protein hydrolysates (WPH) on muscle protein synthesis and mTOR signalling. The aim of the present study was to compare the effects of WPH and amino acids on muscle protein synthesis and the initiation of translation in skeletal muscle during the post-exercise phase. Male Sprague–Dawley rats swam for 2 h to depress muscle protein synthesis. Immediately after exercise, the animals were administered either carbohydrate (CHO), CHO plus an amino acid mixture (AA) or CHO plus WPH. At 1 h after exercise, the supplements containing whey-based protein (AA and WPH) caused a significant increase in the fractional rate of protein synthesis (FSR) compared with CHO. WPH also caused a significant increase in FSR compared with AA. Post-exercise ingestion of WPH caused a significant increase in the phosphorylation of mTOR levels compared with AA or CHO. In addition, WPH caused greater phosphorylation of ribosomal protein S6 kinase and eukaryotic initiation factor 4E-binding protein 1 than AA and CHO. In contrast, there was no difference in plasma amino acid levels following supplementation with either AA or WPH. These results indicate that WPH may include active components that are superior to amino acids for stimulating muscle protein synthesis and initiating translation.
Collapse
|
32
|
Wang H, Meyer K, Korz V. Stress induced hippocampal mineralocorticoid and estrogen receptor β gene expression and long-term potentiation in male adult rats is sensitive to early-life stress experience. Psychoneuroendocrinology 2013; 38:250-62. [PMID: 22776422 DOI: 10.1016/j.psyneuen.2012.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 01/06/2023]
Abstract
Glucocorticoid hormones and their receptors have been identified to be involved in emotional and cognitive disorders in early stressed subjects during adulthood. However, the impact of other steroid hormones and receptors has been considered less. Especially, functional roles of estrogen and estrogen receptors in male subjects are largely unknown. Therefore, we measured hippocampal concentrations of 17β-estradiol, corticosterone and testosterone, as well as the gene expression of estrogen receptor α and β (ERα, β), androgen receptor (AR), glucocorticoid (GR) and mineralocorticoid (MR) receptors after stress in adulthood in maternally separated (MS+; at postnatal days 14-16 for 6h each day) and control (MS-) male rats. In vivo hippocampal long-term potentiation (LTP) serves as a cellular model of learning and memory formation. Population spike- (PSA) and the fEPSP-LTP within the dentate gyrus (DG) were reinforced by elevated-platform-stress (EP-stress) in MS- but not in MS+ rats. MR- and ERβ-mRNA were upregulated 1h after EP-stress in MS- but not in MS+ rats as compared to non-stressed littermates. Infusion of an MR antagonist before LTP induction blocked early- and late-PSA- and -fEPSP-LTP, whereas blockade of ERβ impaired only the late PSA-LTP. Application of a DNA methyltransferase (DNMT) inhibitor partly restored the LTP-reinforcement in MS+ rats, accompanied by a retrieval of ERβ- but not MR-mRNA upregulation. Basal ERβ gene promoter methylation was similar between groups, whereas MS+ and MS- rats showed different methylation patterns across CpG sites after EP-stress. These findings indicate a key role of ERβ in early-stress mediated emotionality and emotion-induced late-LTP in adult male rats via DNA methylation mechanisms.
Collapse
Affiliation(s)
- Han Wang
- Leibniz Institute for Neurobiology, Brenneckestrasse 6, D-39118 Magdeburg, Germany
| | | | | |
Collapse
|
33
|
Kulisch C, Albrecht D. Effects of single swim stress on changes in TRPV1-mediated plasticity in the amygdala. Behav Brain Res 2013; 236:344-349. [DOI: 10.1016/j.bbr.2012.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/15/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
|
34
|
Joëls M, Sarabdjitsingh RA, Karst H. Unraveling the Time Domains of Corticosteroid Hormone Influences on Brain Activity: Rapid, Slow, and Chronic Modes. Pharmacol Rev 2012; 64:901-38. [DOI: 10.1124/pr.112.005892] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
35
|
Suri D, Vaidya VA. Glucocorticoid regulation of brain-derived neurotrophic factor: relevance to hippocampal structural and functional plasticity. Neuroscience 2012; 239:196-213. [PMID: 22967840 DOI: 10.1016/j.neuroscience.2012.08.065] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 12/20/2022]
Abstract
Glucocorticoids serve as key stress response hormones that facilitate stress coping. However, sustained glucocorticoid exposure is associated with adverse consequences on the brain, in particular within the hippocampus. Chronic glucocorticoid exposure evokes neuronal cell damage and dendritic atrophy, reduces hippocampal neurogenesis and impairs synaptic plasticity. Glucocorticoids also alter expression and signaling of the neurotrophin, brain-derived neurotrophic factor (BDNF). Since BDNF is known to promote neuroplasticity, enhance cell survival, increase hippocampal neurogenesis and cellular excitability, it has been hypothesized that specific adverse effects of glucocorticoids may be mediated by attenuating BDNF expression and signaling. The purpose of this review is to summarize the current state of literature examining the influence of glucocorticoids on BDNF, and to address whether specific effects of glucocorticoids arise through perturbation of BDNF signaling. We integrate evidence of glucocorticoid regulation of BDNF at multiple levels, spanning from the well-documented glucocorticoid-induced changes in BDNF mRNA to studies examining alterations in BDNF receptor-mediated signaling. Further, we delineate potential lines of future investigation to address hitherto unexplored aspects of the influence of glucocorticoids on BDNF. Finally, we discuss the current understanding of the contribution of BDNF to the modulation of structural and functional plasticity by glucocorticoids, in particular in the context of the hippocampus. Understanding the mechanistic crosstalk between glucocorticoids and BDNF holds promise for the identification of potential therapeutic targets for disorders associated with the dysfunction of stress hormone pathways.
Collapse
Affiliation(s)
- D Suri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | | |
Collapse
|
36
|
Dockery CA, Liebetanz D, Birbaumer N, Malinowska M, Wesierska MJ. Cumulative benefits of frontal transcranial direct current stimulation on visuospatial working memory training and skill learning in rats. Neurobiol Learn Mem 2011; 96:452-60. [DOI: 10.1016/j.nlm.2011.06.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 06/03/2011] [Accepted: 06/30/2011] [Indexed: 12/30/2022]
|
37
|
Anxiety and hypothalamic-pituitary-adrenal axis responses to psychological stress are attenuated in male rats made lean by large litter rearing. Psychoneuroendocrinology 2011; 36:1080-91. [PMID: 21349647 DOI: 10.1016/j.psyneuen.2011.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/12/2011] [Accepted: 01/28/2011] [Indexed: 11/21/2022]
Abstract
An excellent strategy to treat overactive responses to stress is to exploit the body's inherent stress-inhibitory mechanisms. Stress responses are known to differ between individuals depending upon their level and distribution of adiposity and their experiences in early life. For instance, we have recently shown that female rats made obese by overfeeding during the neonatal period have exacerbated responses to psychological stress. The converse may be true for those that are underfed during this period. In this investigation we hypothesized that rats made lean by neonatal underfeeding would have reduced anxiety and attenuated hypothalamic-pituitary-adrenal (HPA) axis responses to psychological stress. Our findings show that male (but not female) rats, made smaller by being suckled in a large litter, show reduced anxiety-related behaviour compared with those from normal litters when tested in the elevated plus maze. These smaller males also have attenuated activation of the paraventricular nucleus of the hypothalamus in response to the psychological stress, restraint, and corticosterone responses to restraint that return more quickly to baseline than controls. These findings are exciting from the perspective of understanding and potentially exploiting the body's inherent stress-inhibitory mechanisms to treat overactive responses to stress. They also provide an indication that being lean may be able to ameliorate overactive stress responses. Understanding the mechanisms by which these stress responses are attenuated in lean animals will be important for future strategies to treat diseases associated with overactive HPA axes in humans.
Collapse
|
38
|
Bergado JA, Lucas M, Richter-Levin G. Emotional tagging—A simple hypothesis in a complex reality. Prog Neurobiol 2011; 94:64-76. [PMID: 21435370 DOI: 10.1016/j.pneurobio.2011.03.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 02/15/2011] [Accepted: 03/15/2011] [Indexed: 02/06/2023]
Affiliation(s)
- Jorge A Bergado
- Centro Internacional de Restauracion Neurologica, La Habana, Cuba
| | | | | |
Collapse
|
39
|
Impact of glucocorticoids on brain function: relevance for mood disorders. Psychoneuroendocrinology 2011; 36:406-14. [PMID: 20382481 DOI: 10.1016/j.psyneuen.2010.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/10/2010] [Accepted: 03/10/2010] [Indexed: 01/13/2023]
Abstract
Exposure to stressful situations activates two hormonal systems that help the organism to adapt. On the one hand stress hormones achieve adaptation by affecting peripheral organs, on the other hand by altering brain function such that appropriate behavioral strategies are selected for optimal performance at the short term, while relevant information is stored for reference in the future. In this chapter we describe how cellular effects induced by stress hormones--in particular by glucocorticoids--may contribute to the behavioral outcome after a single stressor. In addition to situations of acute stress, chronic uncontrollable and unpredictable stress also exerts profound effects on structure and function of limbic neurons. The impact of chronic stress is not a mere cumulative effect of what is seen after acute stress exposure. Dendritic trees are expanded in some regions but reduced in others. In general, cells are exposed to a higher calcium load upon depolarization, but show attenuated responses to serotonin. Synaptic strengthening is largely impaired. In this viewpoint we speculate how cellular effects after chronic stress may be maladaptive and could contribute to the development of psychopathology in genetically vulnerable individuals.
Collapse
|
40
|
Bennett MR. The prefrontal-limbic network in depression: Modulation by hypothalamus, basal ganglia and midbrain. Prog Neurobiol 2011; 93:468-87. [PMID: 21349315 DOI: 10.1016/j.pneurobio.2011.01.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 01/05/2011] [Accepted: 01/11/2011] [Indexed: 01/07/2023]
Abstract
The anterior cingulate cortex, amygdala and hippocampus form part of an interconnected prefrontal neocortical and limbic archicortical network that is dysregulated in major depressive disorders (MDD). Modulation of this prefrontal-limbic network (PLN) is principally through the hypothalamus, basal ganglia and midbrain. Here the likely mechanisms by which these modulations are affected are described and the implications of their failure for depression associated with suicidal diathesis, late-life and psychoses discussed.
Collapse
Affiliation(s)
- M R Bennett
- Brain and Mind Research Institute, University of Sydney, Camperdown, NSW 2050, Australia.
| |
Collapse
|
41
|
Bergado JA, Almaguer W, Rojas Y, Capdevila V, Frey JU. Spatial and emotional memory in aged rats: a behavioral-statistical analysis. Neuroscience 2010; 172:256-69. [PMID: 21036203 DOI: 10.1016/j.neuroscience.2010.10.064] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 01/20/2023]
Abstract
Age-related impairment in synaptic plasticity, like long-term potentiation (LTP), has been repeatedly reported. We had shown that late stages of LTP in the rat dentate gyrus can be modulated by emotional factors, but this is impaired by aging. In the present study we have searched for possible impairments in emotional and spatial memory tasks that may correspond to the impaired reinforcement observed at the cellular level. We have trained young and aged animals in a battery of tests: exploration (open field) object recognition, anxiety (plus maze) fear conditioning and spatial memory (Morris' water maze (MWM)). The open field, anxiety, and novelty recognition showed no age differences except a reduced velocity in aged rats. Emotional and contextual memories were preserved, but acquisition was slightly impaired. Age-dependent impairments appeared in spatial memory, evaluated in terms of latency and distance to reach the hidden escape platform in the water maze task, but these were not related with impairments in other tests, in particular there was no relation between spatial and emotional memory impairments. Age-related impairments in different paradigms were caused by different independent factors that did not correlated with each other.
Collapse
Affiliation(s)
- J A Bergado
- Centro Internacional de Restauracion Neurologica (CIREN), 11300 Playa, La Habana, Cuba.
| | | | | | | | | |
Collapse
|
42
|
Schulz K, Korz V. Emotional and cognitive information processing: Relations to behavioral performance and hippocampal long-term potentiation in vivo during a spatial water maze training in rats. Learn Mem 2010; 17:552-60. [DOI: 10.1101/lm.1855610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Beneficial Effects of Tianeptine on Hippocampus-Dependent Long-Term Memory and Stress-Induced Alterations of Brain Structure and Function. Pharmaceuticals (Basel) 2010. [PMCID: PMC4034085 DOI: 10.3390/ph3103143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tianeptine is a well-described antidepressant which has been shown to prevent stress from producing deleterious effects on brain structure and function. Preclinical studies have shown that tianeptine blocks stress-induced alterations of neuronal morphology and synaptic plasticity. Moreover, tianeptine prevents stress from impairing learning and memory, and, importantly, demonstrates memory-enhancing properties in the absence of stress. Recent research has indicated that tianeptine works by normalizing glutamatergic neurotransmission, a mechanism of action that may underlie its effectiveness as an antidepressant. These findings emphasize the value in focusing on the mechanisms of action of tianeptine, and specifically, the glutamatergic system, in the development of novel pharmacotherapeutic strategies in the treatment of depression.
Collapse
|
44
|
Stranahan AM, Arumugam TV, Lee K, Mattson MP. Mineralocorticoid receptor activation restores medial perforant path LTP in diabetic rats. Synapse 2010; 64:528-32. [PMID: 20196138 DOI: 10.1002/syn.20758] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the hippocampus, glucocorticoids bind to two types of receptors: the mineralocorticoid receptor, which binds corticosterone with high affinity and is tonically occupied; and the glucocorticoid receptor, which is occupied during stress and at certain phases in the circadian cycle. Diabetes mellitus increases levels of glucocorticoids in both humans and animal models. To explore the contributions of hippocampal corticosteroid receptors to the diabetes-induced suppression of neuroplasticity, we manipulated these receptors in hippocampal slices from streptozocin-diabetic rats, a model of Type 1 diabetes mellitus. STZ-diabetes reduced long-term potentiation (LTP) at medial perforant path synapses in the dentate gyrus, and induced a bias in favor of long-term depression following intermediate stimulation frequencies. Bath application of the mineralocorticoid receptor agonist aldosterone restored LTP in slices from diabetic animals. These results suggest additional mechanisms for diabetes-induced functional alterations and support a restorative role for dentate gyrus mineralocorticoid receptors.
Collapse
|
45
|
Sciolino NR, Bortolato M, Eisenstein SA, Fu J, Oveisi F, Hohmann AG, Piomelli D. Social isolation and chronic handling alter endocannabinoid signaling and behavioral reactivity to context in adult rats. Neuroscience 2010; 168:371-86. [PMID: 20394803 PMCID: PMC2882942 DOI: 10.1016/j.neuroscience.2010.04.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 12/22/2022]
Abstract
Social deprivation in early life disrupts emotionality and attentional processes in humans. Rearing rats in isolation reproduces some of these abnormalities, which are attenuated by daily handling. However, the neurochemical mechanisms underlying these responses remain poorly understood. We hypothesized that post-weaning social isolation alters the endocannabinoid system, a neuromodulatory system that controls emotional responding. We characterized behavioral consequences of social isolation and evaluated whether handling would reverse social isolation-induced alterations in behavioral reactivity to context and the endocannabinoid system. At weaning, pups were single or group housed and concomitantly handled or not handled daily until adulthood. Rats were tested in emotionality- and attentional-sensitive behavioral assays (open field, elevated plus maze, startle and prepulse inhibition). Cannabinoid receptor densities and endocannabinoid levels were quantified in a separate group of rats. Social isolation negatively altered behavioral responding. Socially-isolated rats that were handled showed less deficits in the open field, elevated plus maze, and prepulse inhibition tests. Social isolation produced site-specific alterations (supraoptic nucleus, ventrolateral thalamus, rostral striatum) in cannabinoid receptor densities compared to group rearing. Handling altered the endocannabinoid system in neural circuitry controlling emotional expression. Handling altered endocannabinoid content (prefrontal and piriform cortices, nucleus accumbens) and cannabinoid receptor densities (lateral globus pallidus, cingulate and piriform cortices, hippocampus) in a region-specific manner. Some effects of social isolation on the endocannabinoid system were moderated by handling. Isolates were unresponsive to handling-induced increases in cannabinoid receptor densities (caudal striatum, anterior thalamus), but were sensitive to handling-induced changes in endocannabinoid content (piriform, prefrontal cortices), compared to group-reared rats. Our findings suggest alterations in the endocannabinoid system may contribute to the abnormal isolate phenotype. Handling modifies the endocannabinoid system and behavioral reactivity to context, but surmounts only some effects of social isolation. These data implicate a pivotal role for the endocannabinoid system in stress adaptation and emotionality-related disturbances.
Collapse
Affiliation(s)
- Natale R. Sciolino
- Neuroscience and Behavior Program, Department of Psychology, University of Georgia, Athens, GA, 30622 USA
| | - Marco Bortolato
- Department of Pharmacology, University of California at Irvine, Irvine, CA 92697, USA
| | - Sarah A. Eisenstein
- Neuroscience and Behavior Program, Department of Psychology, University of Georgia, Athens, GA, 30622 USA
| | - Jin Fu
- Department of Pharmacology, University of California at Irvine, Irvine, CA 92697, USA
| | - Fariba Oveisi
- Department of Pharmacology, University of California at Irvine, Irvine, CA 92697, USA
| | - Andrea G. Hohmann
- Neuroscience and Behavior Program, Department of Psychology, University of Georgia, Athens, GA, 30622 USA
| | - Daniele Piomelli
- Department of Pharmacology, University of California at Irvine, Irvine, CA 92697, USA
| |
Collapse
|
46
|
Chen CC, Yang CH, Huang CC, Hsu KS. Acute stress impairs hippocampal mossy fiber-CA3 long-term potentiation by enhancing cAMP-specific phosphodiesterase 4 activity. Neuropsychopharmacology 2010; 35:1605-17. [PMID: 20237461 PMCID: PMC3055459 DOI: 10.1038/npp.2010.33] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mossy fiber synapses onto hippocampal CA3 neurons show unique molecular features and a wide dynamic range of plasticity. Although acute stress has been well recognized to alter bidirectional long-term synaptic plasticity in the hippocampal CA1 region and dentate gyrus, it remains unclear whether the same effect may also occur at the mossy fiber-CA3 synapses. Here, we report that hippocampal slices prepared from adult mice that had experienced an acute unpredictable and inescapable restraint tail-shock stress showed a marked impairment of long-term potentiation (LTP) induced by high-frequency stimulation or adenylyl cyclase activator forskolin. This effect was prevented when animals were submitted to bilateral adrenalectomy or given the glucocorticoid receptor antagonist RU38486 before experiencing stress. In contrast, stress has no effect on synaptic potentiation induced by the non-hydrolysable and membrane-permeable cyclic adenosine 5'-monophosphate (cAMP) analog Sp-8-bromo-cAMPS. No obvious differences were observed between control and stressed mice in the basal synaptic transmission, paired-pulse facilitation, or frequency facilitation at the mossy fiber-CA3 synapses. We also found that the inhibitory effect of stress on mossy fiber LTP was obviated by the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3,-dipropylxanthine, the non-specific phosphodiesterase (PDE) inhibitor 3-isobutyl-methylxanthine, and the specific PDE4 inhibitor 4-(3-butoxy-4-methoxyphenyl)methyl-2-imidazolidone. In addition, stress induces a sustained and profound increase in cAMP-specific PDE4 activity. These results suggest that the inhibition of mossy fiber LTP by acute stress treatment seems originating from a corticosterone-induced sustained increase in the PDE4 activity to accelerate the metabolism of cAMP to adenosine, in turn triggering an adenosine A(1) receptor-mediated impairment of transmitter release machinery.
Collapse
Affiliation(s)
- Chien-Chung Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Hao Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiung-Chun Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuei-Sen Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan,Center for Gene Regulation and Signal Transduction Research, National Cheng Kung University, Tainan, Taiwan,Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, Tel: +886 6235 3535 ext: 5498, Fax: +886 6274 9296, E-mail:
| |
Collapse
|
47
|
Abstract
Nocturnal sleep is characterized by a unique pattern of endocrine activity, which comprises reciprocal influences on the hypothalamo-pituitary-adrenal (HPA) and the somatotropic system. During early sleep, when slow wave sleep (SWS) prevails, HPA secretory activity is suppressed whereas growth hormone (GH) release reaches a maximum; this pattern is reversed during late sleep when rapid eye movement (REM) sleep predominates. SWS benefits the consolidation of hippocampus-dependent declarative memories, whereas REM sleep improves amygdala-dependent emotional memories and procedural skill memories involving striato-cortical circuitry. Manipulation of plasma cortisol and GH concentration during sleep revealed a primary role of HPA activity for memory consolidation. Pituitary-adrenal inhibition during SWS sleep represents a prerequisite for efficient consolidation of declarative memory; increased cortisol during late REM sleep seems to protect from an overshooting consolidation of emotional memories.
Collapse
|
48
|
Rimmele U, Meier F, Lange T, Born J. Suppressing the morning rise in cortisol impairs free recall. Learn Mem 2010; 17:186-90. [DOI: 10.1101/lm.1728510] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Spyrka J, Hess G. Repeated restraint-induced modulation of long-term potentiation in the dentate gyrus of the mouse. Brain Res 2010; 1320:28-33. [DOI: 10.1016/j.brainres.2010.01.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 12/22/2022]
|
50
|
Sevoflurane preconditioning reverses impairment of hippocampal long-term potentiation induced by myocardial ischaemia-reperfusion injury. Eur J Anaesthesiol 2010; 26:961-8. [PMID: 19687741 DOI: 10.1097/eja.0b013e328330e968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE We sought to test whether a transient myocardial ischaemia can induce impairment of hippocampal long-term potentiation (LTP) and whether sevoflurane preconditioning can provide robust protective effects on this neurological impairment. METHODS Wistar rats were subjected to a transient coronary artery occlusion for 30 min. Sevoflurane preconditioning was performed by exposure to 1.0 minimum alveolar concentration of sevoflurane for 1 h and washout for 30 min before myocardial ischaemia. Hippocampal LTP was evaluated during a 7-day observation period. The expressions of haem oxygenase-1 mRNA, tumour necrosis factor-alpha mRNA and interleukin-1beta mRNA in the hippocampus were analysed by quantitative reverse transcription-PCR. RESULTS LTP was significantly inhibited 1 and 3 days after the transient myocardial ischaemia in the control group when compared with the animals subjected to a sham operation without coronary occlusion, and the LTP recovered to a normal magnitude 7 days later. Sevoflurane preconditioning remarkably reversed the transient inhibition of LTP observed at 1 and 3 days after myocardial ischaemia. Compared with the sham animals, the expressions of haem oxygenase-1 mRNA, tumour necrosis factor-alpha mRNA and interleukin-1beta mRNA in the hippocampus of the control rats were significantly increased during the early stage after myocardial ischaemia (1-3 days), and the increases of these cytokines were attenuated by sevoflurane pretreatment. CONCLUSION Sevoflurane preconditioning induced neuroprotection against impairment of hippocampal LTP resulting from myocardial ischaemia and reperfusion.
Collapse
|