1
|
Jang G, Kragel PA. Understanding human amygdala function with artificial neural networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605621. [PMID: 39131372 PMCID: PMC11312467 DOI: 10.1101/2024.07.29.605621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The amygdala is a cluster of subcortical nuclei that receives diverse sensory inputs and projects to the cortex, midbrain and other subcortical structures. Numerous accounts of amygdalar contributions to social and emotional behavior have been offered, yet an overarching description of amygdala function remains elusive. Here we adopt a computationally explicit framework that aims to develop a model of amygdala function based on the types of sensory inputs it receives, rather than individual constructs such as threat, arousal, or valence. Characterizing human fMRI signal acquired as participants viewed a full-length film, we developed encoding models that predict both patterns of amygdala activity and self-reported valence evoked by naturalistic images. We use deep image synthesis to generate artificial stimuli that distinctly engage encoding models of amygdala subregions that systematically differ from one another in terms of their low-level visual properties. These findings characterize how the amygdala compresses high-dimensional sensory inputs into low-dimensional representations relevant for behavior.
Collapse
|
2
|
Coppin G, Muñoz Tord D, Pool ER, Locatelli L, Achaibou A, Erdemli A, León Pérez L, Wuensch L, Cereghetti D, Golay A, Sander D, Pataky Z. A randomized controlled trial investigating the effect of liraglutide on self-reported liking and neural responses to food stimuli in participants with obesity. Int J Obes (Lond) 2023; 47:1224-1231. [PMID: 37626125 PMCID: PMC10663148 DOI: 10.1038/s41366-023-01370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND/OBJECTIVES Obesity is a complex condition and the mechanisms involved in weight gain and loss are not fully understood. Liraglutide, a GLP-1 receptor agonist, has been demonstrated to successfully promote weight loss in patients with obesity (OB). Yet, it is unclear whether the observed weight loss is driven by an alteration of food liking. Here we investigated the effects of liraglutide on food liking and the cerebral correlates of liking in OB. SUBJECTS/METHODS This study was a randomized, single-center, double-blind, placebo-controlled, parallel group, prospective clinical trial. 73 participants with OB and without diabetes following a multidisciplinary weight loss program, were randomly assigned (1:1) to receive liraglutide 3.0 mg (37.40 ± 11.18 years old, BMI = 35.89 ± 3.01 kg) or a placebo (40.04 ± 14.10 years old, BMI = 34.88 ± 2.87 kg) subcutaneously once daily for 16 weeks. INTERVENTIONS/METHODS We investigated liking during food consumption. Participants reported their hedonic experience while consuming a high-calorie food (milkshake) and a tasteless solution. The solutions were administered inside the scanner with a Magnetic Resonance Imaging (MRI)-compatible gustometer to assess neural responses during consumption. The same procedure was repeated during the pre- and post-intervention sessions. RESULTS None of the effects involving the intervention factor reached significance when comparing liking between the pre- and post-intervention sessions or groups. Liking during food reward consumption was associated with the activation of the ventromedial prefrontal cortex (vmPFC) and the amygdala. The liraglutide group lost more weight (BMI post-pre = -3.19 ± 1.28 kg/m2) than the placebo group (BMI post-pre = -0.60 ± 1.26 kg/m2). CONCLUSIONS These results suggest that liraglutide leads to weight loss without self-report or neural evidence supporting a concomitant reduction of food liking in participants with OB.
Collapse
Affiliation(s)
- Géraldine Coppin
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland.
- Department of Psychology, University of Geneva, Geneva, Switzerland.
- Department of Psychology, UniDistance Suisse, Brig, Switzerland.
| | - David Muñoz Tord
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
- Department of Psychology, University of Geneva, Geneva, Switzerland
- Department of Psychology, UniDistance Suisse, Brig, Switzerland
| | - Eva R Pool
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
- Department of Psychology, University of Geneva, Geneva, Switzerland
| | - Loïc Locatelli
- Division of endocrinology, diabetes, nutrition and therapeutic patient education, WHO Collaborating Centre, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Amal Achaibou
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
- Department of Psychology, UniDistance Suisse, Brig, Switzerland
| | - Asli Erdemli
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
- Department of Psychology, University of Geneva, Geneva, Switzerland
| | - Laura León Pérez
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
- Department of Psychology, University of Geneva, Geneva, Switzerland
| | - Lavinia Wuensch
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
- Department of Psychology, University of Geneva, Geneva, Switzerland
| | - Donato Cereghetti
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Alain Golay
- Division of endocrinology, diabetes, nutrition and therapeutic patient education, WHO Collaborating Centre, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - David Sander
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
- Department of Psychology, University of Geneva, Geneva, Switzerland
| | - Zoltan Pataky
- Division of endocrinology, diabetes, nutrition and therapeutic patient education, WHO Collaborating Centre, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Meyer K, Hindi Attar C, Fiebig J, Stamm T, Bassett TR, Bauer M, Dannlowski U, Ethofer T, Falkenberg I, Jansen A, Juckel G, Kircher T, Mulert C, Leicht G, Rau A, Rauh J, Ritter D, Ritter P, Trost S, Vogelbacher C, Walter H, Wolter S, Hautzinger M, Bermpohl F. Daring to Feel: Emotion-Focused Psychotherapy Increases Amygdala Activation and Connectivity in Euthymic Bipolar Disorder-A Randomized Controlled Trial. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:750-759. [PMID: 36898634 DOI: 10.1016/j.bpsc.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND In bipolar disorder (BD), the alternation of extreme mood states indicates deficits in emotion processing, accompanied by aberrant neural function of the emotion network. The present study investigated the effects of an emotion-centered psychotherapeutic intervention on amygdala responsivity and connectivity during emotional face processing in BD. METHODS In a randomized controlled trial within the multicentric BipoLife project, euthymic patients with BD received one of two interventions over 6 months: an unstructured, emotion-focused intervention (FEST), where patients were guided to adequately perceive and label their emotions (n = 28), or a specific, structured, cognitive behavioral intervention (SEKT) (n = 31). Before and after interventions, functional magnetic resonance imaging was conducted while patients completed an emotional face-matching paradigm (final functional magnetic resonance imaging sample of patients completing both measurements: SEKT, n = 17; FEST, n = 17). Healthy control subjects (n = 32) were scanned twice after the same interval without receiving any intervention. Given the focus of FEST on emotion processing, we expected FEST to strengthen amygdala activation and connectivity. RESULTS Clinically, both interventions stabilized patients' euthymic states in terms of affective symptoms. At the neural level, FEST versus SEKT increased amygdala activation and amygdala-insula connectivity at postintervention relative to preintervention time point. In FEST, the increase in amygdala activation was associated with fewer depressive symptoms (r = 0.72) 6 months after intervention. CONCLUSIONS Enhanced activation and functional connectivity of the amygdala after FEST versus SEKT may represent a neural marker of improved emotion processing, supporting the FEST intervention as an effective tool in relapse prevention in patients with BD.
Collapse
Affiliation(s)
- Kristina Meyer
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Catherine Hindi Attar
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jana Fiebig
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Stamm
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Clinical Psychiatry and Psychotherapy, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Tyler R Bassett
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Thomas Ethofer
- University Clinic for Psychiatry and Psychotherapy, Tübingen, Germany; Department of Biomedical Magnetic Resonance, University Clinic for Radiology Tübingen, Tübingen, Germany
| | - Irina Falkenberg
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany; Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Christoph Mulert
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Psychiatry, Justus Liebig University, Giessen, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Rau
- University Clinic for Psychiatry and Psychotherapy, Tübingen, Germany
| | - Jonas Rauh
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Ritter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Philipp Ritter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Sarah Trost
- Department of Psychiatry and Psychotherapy, Georg-August-University Göttingen, Göttingen, Germany; Department of Geriatric Psychiatry, Universitäre Altersmedizin FELIX PLATTER, Basel, Switzerland
| | - Christoph Vogelbacher
- Translational Clinical Psychology, Department of Psychology, Philipps-University Marburg, Marburg, Germany
| | - Henrik Walter
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Wolter
- Department of Psychiatry and Psychotherapy, Georg-August-University Göttingen, Göttingen, Germany; Department of Psychiatry and Psychotherapy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Hautzinger
- Department of Psychology, Clinical Psychology and Psychotherapy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Felix Bermpohl
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Wang J, Ji G, Li G, Hu Y, Zhang W, Ji W, Tan Z, Li H, Jiang F, Zhang Y, Wu F, von Deneen KM, Yu J, Han Y, Cui G, Manza P, Tomasi D, Volkow ND, Nie Y, Zhang Y, Wang GJ. Habenular connectivity predict weight loss and negative emotional-related eating behavior after laparoscopic sleeve gastrectomy. Cereb Cortex 2023; 33:2037-2047. [PMID: 35580853 PMCID: PMC10365841 DOI: 10.1093/cercor/bhac191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/14/2022] Open
Abstract
Habenular (Hb) processes negative emotions that may drive compulsive food-intake. Its functional changes were reported following laparoscopic-sleeve-gastrectomy (LSG). However, structural connectivity (SC) of Hb-homeostatic/hedonic circuits after LSG remains unclear. We selected regions implicated in homeostatic/hedonic regulation that have anatomical connections with Hb as regions-of-interest (ROIs), and used diffusion-tensor-imaging with probabilistic tractography to calculate SC between Hb and these ROIs in 30 obese participants before LSG (PreLSG) and at 12-month post-LSG (PostLSG12) and 30 normal-weight controls. Three-factor-eating-questionnaire (TFEQ) and Dutch-eating-behavior-questionnaire (DEBQ) were used to assess eating behaviors. LSG significantly decreased weight, negative emotion, and improved self-reported eating behavior. LSG increased SC between the Hb and homeostatic/hedonic regions including hypothalamus (Hy), bilateral superior frontal gyri (SFG), left amygdala (AMY), and orbitofrontal cortex (OFC). TFEQ-hunger negatively correlated with SC of Hb-Hy at PostLSG12; and increased SC of Hb-Hy correlated with reduced depression and DEBQ-external eating. TFEQ-disinhibition negatively correlated with SC of Hb-bilateral SFG at PreLSG. Increased SC of Hb-left AMY correlated with reduced DEBQ-emotional eating. Higher percentage of total weight-loss negatively correlated with SC of Hb-left OFC at PreLSG. Enhanced SC of Hb-homeostatic/hedonic regulatory regions post-LSG may contribute to its beneficial effects in improving eating behaviors including negative emotional eating, and long-term weight-loss.
Collapse
Affiliation(s)
- Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Zongxin Tan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Hao Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Fukun Jiang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yaqi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Feifei Wu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Juan Yu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Markowitsch HJ, Staniloiu A, Wahl-Kordon A. Urbach-Wiethe disease in a young patient without apparent amygdala calcification. Neuropsychologia 2023; 183:108505. [PMID: 36775051 DOI: 10.1016/j.neuropsychologia.2023.108505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Urbach-Wiethe disease is an extremely rare genetically-based syndrome which usually leads to dermatological and neurological changes. Neurologically, the amygdaloid region is primarily bilaterally affected. Therefore, several functions modulated by the amygdala are changed in patients with Urbach-Wiethe disease. As the neurological alterations evolve only gradually, it is particularly important to determine the cognitive and brain status of a juvenile. The patient described here was seen briefly at age 9 and tested neuropsychologically at age 19; furthermore, computer tomography and magnetic resonance imaging of his head was done. There were no important abnormalities in the brain, which is unusual in the light of previous data from other patients. On the cognitive level, the patient was generally within normal limits. However, he had mild problems in attention and concentration, and more prominent problems in emotional processing domain, and in personality dimensions. It is concluded that amygdala calcifications in Urbach-Wiethe disease take place progressively-possibly underpinned by genetic and gender variables; this can subsequently allow psychosocial-social factors (such a proper education and socialization) and biological factors (compensatory neuroplasticity) to retard and diminish the development of socio-emotional and cognitive deteriorations, though the outcome of questionnaires indicates that such patients may develop substantial concerns as to their future life and well-being.
Collapse
Affiliation(s)
| | - Angelica Staniloiu
- University of Bielefeld, Germany; University of Bucharest, Romania; Oberberg Clinic Hornberg, Germany
| | | |
Collapse
|
6
|
Spindler M, Thiel CM. Hypothalamic microstructure and function are related to body mass, but not mental or cognitive abilities across the adult lifespan. GeroScience 2023; 45:277-291. [PMID: 35896889 PMCID: PMC9886766 DOI: 10.1007/s11357-022-00630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/20/2022] [Indexed: 02/03/2023] Open
Abstract
Physical, mental, and cognitive resources are essential for healthy aging. Aging impacts on the structural integrity of various brain regions, including the hippocampus. Even though recent rodent studies hint towards a critical role of the hypothalamus, there is limited evidence on functional consequences of age-related changes of this region in humans. Given its central role in metabolic regulation and affective processing and its connections to the hippocampus, it is plausible that hypothalamic integrity and connectivity are associated with functional age-related decline. We used data of n = 369 participants (18-88 years) from the Cambridge Centre for Ageing and Neuroscience repository to determine functional impacts of potential changes in hypothalamic microstructure across the lifespan. First, we identified age-related changes in microstructure as a function of physical, mental, and cognitive health and compared those findings to changes in hippocampal microstructure. Second, we investigated the relationship of hypothalamic microstructure and resting-state functional connectivity and related those changes to age as well as physical health. Our results showed that hypothalamic microstructure is not affected by depressive symptoms (mental health), cognitive performance (cognitive health), and comparatively stable across the lifespan, but affected by body mass (physical health). Furthermore, body mass changes connectivity to limbic regions including the hippocampus, amygdala, and nucleus accumbens, suggesting functional alterations in the metabolic and reward systems. Our results demonstrate that hypothalamic structure and function are affected by body mass, focused on neural density and dispersion, but not inflammation. Still, observed effect sizes were small, encouraging detailed investigations of individual hypothalamic subunits.
Collapse
Affiliation(s)
- Melanie Spindler
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl Von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany.
| | - Christiane M Thiel
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl Von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
- Cluster of Excellence "Hearing4all", Carl Von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
- Research Centre Neurosensory Science, Carl Von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
7
|
Ghobadi-Azbari P, Mahdavifar Khayati R, Sangchooli A, Ekhtiari H. Task-Dependent Effective Connectivity of the Reward Network During Food Cue-Reactivity: A Dynamic Causal Modeling Investigation. Front Behav Neurosci 2022; 16:899605. [PMID: 35813594 PMCID: PMC9263922 DOI: 10.3389/fnbeh.2022.899605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Neural reactivity to food cues may play a central role in overeating and excess weight gain. Functional magnetic resonance imaging (fMRI) studies have implicated regions of the reward network in dysfunctional food cue-reactivity, but neural interactions underlying observed patterns of signal change remain poorly understood. Fifty overweight and obese participants with self-reported cue-induced food craving viewed food and neutral cues during fMRI scanning. Regions of the reward network with significantly greater food versus neutral cue-reactivity were used to specify plausible models of task-related neural interactions underlying the observed blood oxygenation level-dependent (BOLD) signal, and a bi-hemispheric winning model was identified in a dynamic causal modeling (DCM) framework. Neuro-behavioral correlations are investigated with group factor analysis (GFA) and Pearson's correlation tests. The ventral tegmental area (VTA), amygdalae, and orbitofrontal cortices (OFC) showed significant food cue-reactivity. DCM suggests these activations are produced by largely reciprocal dynamic signaling between these regions, with food cues causing regional disinhibition and an apparent shifting of activity to the right amygdala. Intrinsic self-inhibition in the VTA and right amygdala is negatively correlated with measures of food craving and hunger and right-amygdalar disinhibition by food cues is associated with the intensity of cue-induced food craving, but no robust cross-unit latent factors were identified between the neural group and behavioral or demographic variable groups. Our results suggest a rich array of dynamic signals drive reward network cue-reactivity, with the amygdalae mediating much of the dynamic signaling between the VTA and OFCs. Neuro-behavioral correlations suggest particularly crucial roles for the VTA, right amygdala, and the right OFC-amygdala connection but the more robust GFA identified no cross-unit factors, so these correlations should be interpreted with caution. This investigation provides novel insights into dynamic circuit mechanisms with etiologic relevance to obesity, suggesting pathways in biomarker development and intervention.
Collapse
Affiliation(s)
| | | | - Arshiya Sangchooli
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Ekhtiari
- Department of Psychiatry, University of Minnesota, Minnesota, MN, United States
| |
Collapse
|
8
|
Domínguez-Borràs J, Vuilleumier P. Amygdala function in emotion, cognition, and behavior. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:359-380. [PMID: 35964983 DOI: 10.1016/b978-0-12-823493-8.00015-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The amygdala is a core structure in the anterior medial temporal lobe, with an important role in several brain functions involving memory, emotion, perception, social cognition, and even awareness. As a key brain structure for saliency detection, it triggers and controls widespread modulatory signals onto multiple areas of the brain, with a great impact on numerous aspects of adaptive behavior. Here we discuss the neural mechanisms underlying these functions, as established by animal and human research, including insights provided in both healthy and pathological conditions.
Collapse
Affiliation(s)
- Judith Domínguez-Borràs
- Department of Clinical Psychology and Psychobiology & Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Patrik Vuilleumier
- Department of Neuroscience and Center for Affective Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Extrahypothalamic Control of Energy Balance and Its Connection with Reproduction: Roles of the Amygdala. Metabolites 2021; 11:metabo11120837. [PMID: 34940594 PMCID: PMC8708157 DOI: 10.3390/metabo11120837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022] Open
Abstract
Body energy and metabolic homeostasis are exquisitely controlled by multiple, often overlapping regulatory mechanisms, which permit the tight adjustment between fuel reserves, internal needs, and environmental (e.g., nutritional) conditions. As such, this function is sensitive to and closely connected with other relevant bodily systems, including reproduction and gonadal function. The aim of this mini-review article is to summarize the most salient experimental data supporting a role of the amygdala as a key brain region for emotional learning and behavior, including reward processing, in the physiological control of feeding and energy balance. In particular, a major focus will be placed on the putative interplay between reproductive signals and amygdala pathways, as it pertains to the control of metabolism, as complementary, extrahypothalamic circuit for the integral control of energy balance and gonadal function.
Collapse
|
10
|
Smith DM, Torregrossa MM. Valence encoding in the amygdala influences motivated behavior. Behav Brain Res 2021; 411:113370. [PMID: 34051230 DOI: 10.1016/j.bbr.2021.113370] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 01/02/2023]
Abstract
The amygdala is critical for emotional processing and motivated behavior. Its role in these functions is due to its processing of the valence of environmental stimuli. The amygdala receives direct sensory input from sensory thalamus and cortical regions to integrate sensory information from the environment with aversive and/or appetitive outcomes. As many reviews have discussed the amygdala's role in threat processing and fear conditioning, this review will focus on how the amygdala encodes positive valence and the mechanisms that allow it to distinguish between stimuli of positive and negative valence. These findings are also extended to consider how valence encoding populations in the amygdala contribute to local and long-range circuits including those that integrate environmental cues and positive valence. Understanding the complexity of valence encoding in the amygdala is crucial as these mechanisms are implicated in a variety of disease states including anxiety disorders and substance use disorders.
Collapse
Affiliation(s)
- Dana M Smith
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA.
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA
| |
Collapse
|