1
|
Yusuf PA, Hubka P, Konerding W, Land R, Tillein J, Kral A. Congenital deafness reduces alpha-gamma cross-frequency coupling in the auditory cortex. Hear Res 2024; 449:109032. [PMID: 38797035 DOI: 10.1016/j.heares.2024.109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Neurons within a neuronal network can be grouped by bottom-up and top-down influences using synchrony in neuronal oscillations. This creates the representation of perceptual objects from sensory features. Oscillatory activity can be differentiated into stimulus-phase-locked (evoked) and non-phase-locked (induced). The former is mainly determined by sensory input, the latter by higher-level (cortical) processing. Effects of auditory deprivation on cortical oscillations have been studied in congenitally deaf cats (CDCs) using cochlear implant (CI) stimulation. CI-induced alpha, beta, and gamma activity were compromised in the auditory cortex of CDCs. Furthermore, top-down information flow between secondary and primary auditory areas in hearing cats, conveyed by induced alpha oscillations, was lost in CDCs. Here we used the matching pursuit algorithm to assess components of such oscillatory activity in local field potentials recorded in primary field A1. Additionally to the loss of induced alpha oscillations, we also found a loss of evoked theta activity in CDCs. The loss of theta and alpha activity in CDCs can be directly related to reduced high-frequency (gamma-band) activity due to cross-frequency coupling. Here we quantified such cross-frequency coupling in adult 1) hearing-experienced, acoustically stimulated cats (aHCs), 2) hearing-experienced cats following acute pharmacological deafening and subsequent CIs, thus in electrically stimulated cats (eHCs), and 3) electrically stimulated CDCs. We found significant cross-frequency coupling in all animal groups in > 70% of auditory-responsive sites. The predominant coupling in aHCs and eHCs was between theta/alpha phase and gamma power. In CDCs such coupling was lost and replaced by alpha oscillations coupling to delta/theta phase. Thus, alpha/theta oscillations synchronize high-frequency gamma activity only in hearing-experienced cats. The absence of induced alpha and theta oscillations contributes to the loss of induced gamma power in CDCs, thereby signifying impaired local network activity.
Collapse
Affiliation(s)
- Prasandhya A Yusuf
- Hannover Medical School, Institute of AudioNeuroTechnology and Department of Experimental Otology of the ENT Clinics, Hannover, Germany; Faculty of Medicine University of Indonesia, Department of Medical Physiology and Biophysics / Medical Technology IMERI, Jakarta, Indonesia.
| | - Peter Hubka
- Hannover Medical School, Institute of AudioNeuroTechnology and Department of Experimental Otology of the ENT Clinics, Hannover, Germany
| | - Wiebke Konerding
- Hannover Medical School, Institute of AudioNeuroTechnology and Department of Experimental Otology of the ENT Clinics, Hannover, Germany
| | - Rüdiger Land
- Hannover Medical School, Institute of AudioNeuroTechnology and Department of Experimental Otology of the ENT Clinics, Hannover, Germany
| | - Jochen Tillein
- J.W. Goethe University, Department of Otorhinolaryngology, Frankfurt am Main, Germany
| | - Andrej Kral
- Hannover Medical School, Institute of AudioNeuroTechnology and Department of Experimental Otology of the ENT Clinics, Hannover, Germany; Australian Hearing Hub, School of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
2
|
Hubka P, Schmidt L, Tillein J, Baumhoff P, Konerding W, Land R, Sato M, Kral A. Dissociated Representation of Binaural Cues in Single-Sided Deafness: Implications for Cochlear Implantation. J Neurosci 2024; 44:e1653232024. [PMID: 38830759 PMCID: PMC11236580 DOI: 10.1523/jneurosci.1653-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024] Open
Abstract
Congenital single-sided deafness (SSD) leads to an aural preference syndrome that is characterized by overrepresentation of the hearing ear in the auditory system. Cochlear implantation (CI) of the deaf ear is an effective treatment for SSD. However, the newly introduced auditory input in congenital SSD often does not reach expectations in late-implanted CI recipients with respect to binaural hearing and speech perception. In a previous study, a reduction of the interaural time difference (ITD) sensitivity has been shown in unilaterally congenitally deaf cats (uCDCs). In the present study, we focused on the interaural level difference (ILD) processing in the primary auditory cortex. The uCDC group was compared with hearing cats (HCs) and bilaterally congenitally deaf cats (CDCs). The ILD representation was reorganized, replacing the preference for the contralateral ear with a preference for the hearing ear, regardless of the cortical hemisphere. In accordance with the previous study, uCDCs were less sensitive to interaural time differences than HCs, resulting in unmodulated ITD responses, thus lacking directional information. Such incongruent ITDs and ILDs cannot be integrated for binaural sound source localization. In normal hearing, the predominant effect of each ear is excitation of the auditory cortex in the contralateral cortical hemisphere and inhibition in the ipsilateral hemisphere. In SSD, however, auditory pathways reorganized such that the hearing ear produced greater excitation in both cortical hemispheres and the deaf ear produced weaker excitation and preserved inhibition in both cortical hemispheres.
Collapse
Affiliation(s)
- Peter Hubka
- Department of Experimental Otology, Institute of AudioNeuroTechnology, Clinics of Otolaryngology, Hannover Medical School, Hannover D-30625, Germany
| | - Leonard Schmidt
- Department of Experimental Otology, Institute of AudioNeuroTechnology, Clinics of Otolaryngology, Hannover Medical School, Hannover D-30625, Germany
| | - Jochen Tillein
- Department of Experimental Otology, Institute of AudioNeuroTechnology, Clinics of Otolaryngology, Hannover Medical School, Hannover D-30625, Germany
- Clinics of Otolaryngology, School of Medicine, J.W. Goethe University, Frankfurt am Main D-60590, Germany
- MedEl GmbH, Starnberg 82319, Germany
| | - Peter Baumhoff
- Department of Experimental Otology, Institute of AudioNeuroTechnology, Clinics of Otolaryngology, Hannover Medical School, Hannover D-30625, Germany
| | - Wiebke Konerding
- Department of Experimental Otology, Institute of AudioNeuroTechnology, Clinics of Otolaryngology, Hannover Medical School, Hannover D-30625, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute of AudioNeuroTechnology, Clinics of Otolaryngology, Hannover Medical School, Hannover D-30625, Germany
| | - Mika Sato
- Department of Experimental Otology, Institute of AudioNeuroTechnology, Clinics of Otolaryngology, Hannover Medical School, Hannover D-30625, Germany
| | - Andrej Kral
- Department of Experimental Otology, Institute of AudioNeuroTechnology, Clinics of Otolaryngology, Hannover Medical School, Hannover D-30625, Germany
- Australian Hearing Hub, School of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
3
|
Calmels MN, Gallois Y, Marx M, Deguine O, Taoui S, Arnaud E, Strelnikov K, Barone P. Functional Reorganization of the Central Auditory System in Children with Single-Sided Deafness: A Protocol Using fNIRS. Brain Sci 2022; 12:brainsci12040423. [PMID: 35447955 PMCID: PMC9029510 DOI: 10.3390/brainsci12040423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
In children, single-sided deafness (SSD) affects the development of linguistic and social skills and can impede educational progress. These difficulties may relate to cortical changes that occur following SSD, such as reduced inter-hemispheric functional asymmetry and maladaptive brain plasticity. To investigate these neuronal changes and their evolution in children, a non-invasive technique is required that is little affected by motion artifacts. Here, we present a research protocol that uses functional near-infrared spectroscopy (fNIRS) to evaluate the reorganization of cortical auditory asymmetry in children with SSD; it also examines how the cortical changes relate to auditory and language skills. The protocol is designed for children whose SSD has not been treated, because hearing restoration can alter both brain reorganization and behavioral performance. We propose a single-center, cross-sectional study that includes 30 children with SSD (congenital or acquired moderate-to-profound deafness) and 30 children with normal hearing (NH), all aged 5–16 years. The children undergo fNIRS during monaural and binaural stimulation, and the pattern of cortical activity is analyzed using measures of the peak amplitude and area under the curve for both oxy- and deoxyhemoglobin. These cortical measures can be compared between the two groups of children, and analyses can be run to determine whether they relate to binaural hearing (speech-in-noise and sound localization), speech perception and production, and quality of life (QoL). The results could be of relevance for developing individualized rehabilitation programs for SSD, which could reduce patients’ difficulties and prevent long-term neurofunctional and clinical consequences.
Collapse
Affiliation(s)
- Marie-Noëlle Calmels
- Service d′Oto-Rhino-Laryngologie, d′Oto-Neurologie et d′ORL Pédiatrique, Centre Hospitalier Universitaire de Toulouse, CEDEX 9, 31059 Toulouse, France; (Y.G.); (M.M.); (O.D.); (S.T.); (K.S.)
- Correspondence:
| | - Yohan Gallois
- Service d′Oto-Rhino-Laryngologie, d′Oto-Neurologie et d′ORL Pédiatrique, Centre Hospitalier Universitaire de Toulouse, CEDEX 9, 31059 Toulouse, France; (Y.G.); (M.M.); (O.D.); (S.T.); (K.S.)
| | - Mathieu Marx
- Service d′Oto-Rhino-Laryngologie, d′Oto-Neurologie et d′ORL Pédiatrique, Centre Hospitalier Universitaire de Toulouse, CEDEX 9, 31059 Toulouse, France; (Y.G.); (M.M.); (O.D.); (S.T.); (K.S.)
- Centre de Recherche cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, 31052 Toulouse, France; (E.A.); (P.B.)
- UMR 5549, Faculté de Médecine de Purpan, Centre National de la Recherche Scientifique, 31055 Toulouse, France
| | - Olivier Deguine
- Service d′Oto-Rhino-Laryngologie, d′Oto-Neurologie et d′ORL Pédiatrique, Centre Hospitalier Universitaire de Toulouse, CEDEX 9, 31059 Toulouse, France; (Y.G.); (M.M.); (O.D.); (S.T.); (K.S.)
- Centre de Recherche cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, 31052 Toulouse, France; (E.A.); (P.B.)
- UMR 5549, Faculté de Médecine de Purpan, Centre National de la Recherche Scientifique, 31055 Toulouse, France
| | - Soumia Taoui
- Service d′Oto-Rhino-Laryngologie, d′Oto-Neurologie et d′ORL Pédiatrique, Centre Hospitalier Universitaire de Toulouse, CEDEX 9, 31059 Toulouse, France; (Y.G.); (M.M.); (O.D.); (S.T.); (K.S.)
| | - Emma Arnaud
- Centre de Recherche cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, 31052 Toulouse, France; (E.A.); (P.B.)
- UMR 5549, Faculté de Médecine de Purpan, Centre National de la Recherche Scientifique, 31055 Toulouse, France
| | - Kuzma Strelnikov
- Service d′Oto-Rhino-Laryngologie, d′Oto-Neurologie et d′ORL Pédiatrique, Centre Hospitalier Universitaire de Toulouse, CEDEX 9, 31059 Toulouse, France; (Y.G.); (M.M.); (O.D.); (S.T.); (K.S.)
| | - Pascal Barone
- Centre de Recherche cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, 31052 Toulouse, France; (E.A.); (P.B.)
- UMR 5549, Faculté de Médecine de Purpan, Centre National de la Recherche Scientifique, 31055 Toulouse, France
| |
Collapse
|
4
|
Yusuf PA, Lamuri A, Hubka P, Tillein J, Vinck M, Kral A. Deficient Recurrent Cortical Processing in Congenital Deafness. Front Syst Neurosci 2022; 16:806142. [PMID: 35283734 PMCID: PMC8913535 DOI: 10.3389/fnsys.2022.806142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
The influence of sensory experience on cortical feedforward and feedback interactions has rarely been studied in the auditory cortex. Previous work has documented a dystrophic effect of deafness in deep cortical layers, and a reduction of interareal couplings between primary and secondary auditory areas in congenital deafness which was particularly pronounced in the top-down direction (from the secondary to the primary area). In the present study, we directly quantified the functional interaction between superficial (supragranular, I to III) and deep (infragranular, V and VI) layers of feline’s primary auditory cortex A1, and also between superficial/deep layers of A1 and a secondary auditory cortex, namely the posterior auditory field (PAF). We compared adult hearing cats under acoustic stimulation and cochlear implant (CI) stimulation to adult congenitally deaf cats (CDC) under CI stimulation. Neuronal activity was recorded from auditory fields A1 and PAF simultaneously with two NeuroNexus electrode arrays. We quantified the spike field coherence (i.e., the statistical dependence of spike trains at one electrode with local field potentials on another electrode) using pairwise phase consistency (PPC). Both the magnitude as well as the preferred phase of synchronization was analyzed. The magnitude of PPC was significantly smaller in CDCs than in controls. Furthermore, controls showed no significant difference between the preferred phase of synchronization between supragranular and infragranular layers, both in acoustic and electric stimulation. In CDCs, however, there was a large difference in the preferred phase between supragranular and infragranular layers. These results demonstrate a loss of synchrony and for the first time directly document a functional decoupling of the interaction between supragranular and infragranular layers of the primary auditory cortex in congenital deafness. Since these are key for the influence of top-down to bottom-up computations, the results suggest a loss of recurrent cortical processing in congenital deafness and explain the outcomes of previous studies by deficits in intracolumnar microcircuitry.
Collapse
Affiliation(s)
- Prasandhya Astagiri Yusuf
- Department of Medical Physics/Medical Technology IMERI, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Aly Lamuri
- Department of Medical Physics/Medical Technology IMERI, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Peter Hubka
- Institute of AudioNeuroTechnology and Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hanover, Germany
| | - Jochen Tillein
- Institute of AudioNeuroTechnology and Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hanover, Germany
- MEDEL Comp., Starnberg, Germany
| | - Martin Vinck
- Ernst Strüngmann Institut for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
- Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Andrej Kral
- Institute of AudioNeuroTechnology and Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hanover, Germany
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
5
|
Yusuf PA, Hubka P, Tillein J, Vinck M, Kral A. Deafness Weakens Interareal Couplings in the Auditory Cortex. Front Neurosci 2021; 14:625721. [PMID: 33551733 PMCID: PMC7858676 DOI: 10.3389/fnins.2020.625721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/30/2020] [Indexed: 12/22/2022] Open
Abstract
The function of the cerebral cortex essentially depends on the ability to form functional assemblies across different cortical areas serving different functions. Here we investigated how developmental hearing experience affects functional and effective interareal connectivity in the auditory cortex in an animal model with years-long and complete auditory deprivation (deafness) from birth, the congenitally deaf cat (CDC). Using intracortical multielectrode arrays, neuronal activity of adult hearing controls and CDCs was registered in the primary auditory cortex and the secondary posterior auditory field (PAF). Ongoing activity as well as responses to acoustic stimulation (in adult hearing controls) and electric stimulation applied via cochlear implants (in adult hearing controls and CDCs) were analyzed. As functional connectivity measures pairwise phase consistency and Granger causality were used. While the number of coupled sites was nearly identical between controls and CDCs, a reduced coupling strength between the primary and the higher order field was found in CDCs under auditory stimulation. Such stimulus-related decoupling was particularly pronounced in the alpha band and in top–down direction. Ongoing connectivity did not show such a decoupling. These findings suggest that developmental experience is essential for functional interareal interactions during sensory processing. The outcomes demonstrate that corticocortical couplings, particularly top-down connectivity, are compromised following congenital sensory deprivation.
Collapse
Affiliation(s)
- Prasandhya Astagiri Yusuf
- Department of Medical Physics/Medical Technology Core Cluster IMERI, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia.,Institute of AudioNeuroTechnology, Hannover Medical School, Hanover, Germany.,Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hanover, Germany
| | - Peter Hubka
- Institute of AudioNeuroTechnology, Hannover Medical School, Hanover, Germany.,Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hanover, Germany
| | - Jochen Tillein
- Institute of AudioNeuroTechnology, Hannover Medical School, Hanover, Germany.,Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hanover, Germany.,Department of Otorhinolaryngology, Goethe University, Frankfurt am Main, Germany.,MedEL Company, Innsbruck, Austria
| | - Martin Vinck
- Ernst Strüngmann Institut for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.,Donders Centre for Neuroscience, Radboud University, Department of Neuroinformatics, Nijmegen, Netherlands
| | - Andrej Kral
- Institute of AudioNeuroTechnology, Hannover Medical School, Hanover, Germany.,Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hanover, Germany.,Department of Biomedical Sciences, School of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
6
|
Sadeghi Najafabadi M, Chen L, Dutta K, Norris A, Feng B, Schnupp JWH, Rosskothen-Kuhl N, Read HL, Escabí MA. Optimal Multichannel Artifact Prediction and Removal for Neural Stimulation and Brain Machine Interfaces. Front Neurosci 2020; 14:709. [PMID: 32765212 PMCID: PMC7379342 DOI: 10.3389/fnins.2020.00709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
Neural implants that deliver multi-site electrical stimulation to the nervous systems are no longer the last resort but routine treatment options for various neurological disorders. Multi-site electrical stimulation is also widely used to study nervous system function and neural circuit transformations. These technologies increasingly demand dynamic electrical stimulation and closed-loop feedback control for real-time assessment of neural function, which is technically challenging since stimulus-evoked artifacts overwhelm the small neural signals of interest. We report a novel and versatile artifact removal method that can be applied in a variety of settings, from single- to multi-site stimulation and recording and for current waveforms of arbitrary shape and size. The method capitalizes on linear electrical coupling between stimulating currents and recording artifacts, which allows us to estimate a multi-channel linear Wiener filter to predict and subsequently remove artifacts via subtraction. We confirm and verify the linearity assumption and demonstrate feasibility in a variety of recording modalities, including in vitro sciatic nerve stimulation, bilateral cochlear implant stimulation, and multi-channel stimulation and recording between the auditory midbrain and cortex. We demonstrate a vast enhancement in the recording quality with a typical artifact reduction of 25-40 dB. The method is efficient and can be scaled to arbitrary number of stimulus and recording sites, making it ideal for applications in large-scale arrays, closed-loop implants, and high-resolution multi-channel brain-machine interfaces.
Collapse
Affiliation(s)
- Mina Sadeghi Najafabadi
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, United States
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Kelsey Dutta
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, United States
| | - Ashley Norris
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Jan W. H. Schnupp
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| | - Nicole Rosskothen-Kuhl
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Neurobiological Research Laboratory, Section for Clinical and Experimental Otology, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| | - Heather L. Read
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
- Department of Psychology, University of Connecticut, Storrs, CT, United States
- The Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| | - Monty A. Escabí
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
- Department of Psychology, University of Connecticut, Storrs, CT, United States
- The Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
7
|
van Wieringen A, Boudewyns A, Sangen A, Wouters J, Desloovere C. Unilateral congenital hearing loss in children: Challenges and potentials. Hear Res 2019; 372:29-41. [PMID: 29395617 DOI: 10.1016/j.heares.2018.01.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/17/2017] [Accepted: 01/21/2018] [Indexed: 11/16/2022]
Abstract
The estimated incidence of sensorineural hearing impairment (>40 dB HL) at birth is 1.86 per 1000 newborns in developed countries and 30-40% of these are unilateral. Profound sensorineural unilateral hearing impairment or single sided deafness (SSD) can be treated with a cochlear implant. However, this treatment is costly and invasive and unnecessary in the eyes of many. Very young children with SSD often do not exhibit language and cognitive delays and it is hard to imagine that neurocognitive skills will present difficulties with one good ear. In the current paper we review the most recent evidence on the consequences of unilateral hearing impairment for auditory and neurocognitive factors. While data of both adults and children are discussed, we focus on developmental factors, congenital deafness and a window of opportunity for intervention. We discuss which etiologies qualify for a cochlear implant and present our multi-center prospective study on cochlear implants in infants with one deaf ear. The large, state-of-the art body of research allows for evidence-based decisions regarding management of unilateral hearing loss in children.
Collapse
Affiliation(s)
- Astrid van Wieringen
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental ORL, Herestraat 49, 3000 Leuven, Belgium.
| | - An Boudewyns
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, University of Antwerp, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Anouk Sangen
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental ORL, Herestraat 49, 3000 Leuven, Belgium
| | - Jan Wouters
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental ORL, Herestraat 49, 3000 Leuven, Belgium
| | - Christian Desloovere
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental ORL, Herestraat 49, 3000 Leuven, Belgium; University Hospital Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| |
Collapse
|
8
|
Konerding WS, Froriep UP, Kral A, Baumhoff P. New thin-film surface electrode array enables brain mapping with high spatial acuity in rodents. Sci Rep 2018; 8:3825. [PMID: 29491453 PMCID: PMC5830616 DOI: 10.1038/s41598-018-22051-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/16/2018] [Indexed: 12/20/2022] Open
Abstract
In neuroscience, single-shank penetrating multi-electrode arrays are standard for sequentially sampling several cortical sites with high spatial and temporal resolution, with the disadvantage of neuronal damage. Non-penetrating surface grids used in electrocorticography (ECoG) permit simultaneous recording of multiple cortical sites, with limited spatial resolution, due to distance to neuronal tissue, large contact size and high impedances. Here we compared new thin-film parylene C ECoG grids, covering the guinea pig primary auditory cortex, with simultaneous recordings from penetrating electrode array (PEAs), inserted through openings in the grid material. ECoG grid local field potentials (LFP) showed higher response thresholds and amplitudes compared to PEAs. They enabled, however, fast and reliable tonotopic mapping of the auditory cortex (place-frequency slope: 0.7 mm/octave), with tuning widths similar to PEAs. The ECoG signal correlated best with supragranular layers, exponentially decreasing with cortical depth. The grids also enabled recording of multi-unit activity (MUA), yielding several advantages over LFP recordings, including sharper frequency tunings. ECoG first spike latency showed highest similarity to superficial PEA contacts and MUA traces maximally correlated with PEA recordings from the granular layer. These results confirm high quality of the ECoG grid recordings and the possibility to collect LFP and MUA simultaneously.
Collapse
Affiliation(s)
- W S Konerding
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Stadtfelddamm 34, Hannover Medical School, 30625, Hannover, Germany.
| | - U P Froriep
- Translational Biomedical Engineering, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - A Kral
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Stadtfelddamm 34, Hannover Medical School, 30625, Hannover, Germany
| | - P Baumhoff
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Stadtfelddamm 34, Hannover Medical School, 30625, Hannover, Germany
| |
Collapse
|
9
|
Yusuf PA, Hubka P, Tillein J, Kral A. Induced cortical responses require developmental sensory experience. Brain 2017; 140:3153-3165. [PMID: 29155975 PMCID: PMC5841147 DOI: 10.1093/brain/awx286] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/12/2017] [Indexed: 01/25/2023] Open
Abstract
Sensory areas of the cerebral cortex integrate the sensory inputs with the ongoing activity. We studied how complete absence of auditory experience affects this process in a higher mammal model of complete sensory deprivation, the congenitally deaf cat. Cortical responses were elicited by intracochlear electric stimulation using cochlear implants in adult hearing controls and deaf cats. Additionally, in hearing controls, acoustic stimuli were used to assess the effect of stimulus mode (electric versus acoustic) on the cortical responses. We evaluated time-frequency representations of local field potential recorded simultaneously in the primary auditory cortex and a higher-order area, the posterior auditory field, known to be differentially involved in cross-modal (visual) reorganization in deaf cats. The results showed the appearance of evoked (phase-locked) responses at early latencies (<100 ms post-stimulus) and more abundant induced (non-phase-locked) responses at later latencies (>150 ms post-stimulus). In deaf cats, substantially reduced induced responses were observed in overall power as well as duration in both investigated fields. Additionally, a reduction of ongoing alpha band activity was found in the posterior auditory field (but not in primary auditory cortex) of deaf cats. The present study demonstrates that induced activity requires developmental experience and suggests that higher-order areas involved in the cross-modal reorganization show more auditory deficits than primary areas.
Collapse
Affiliation(s)
- Prasandhya Astagiri Yusuf
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Hannover Medical School, Germany
| | - Peter Hubka
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Hannover Medical School, Germany
| | - Jochen Tillein
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Hannover Medical School, Germany.,ENT Clinics, J. W. Goethe University, Frankfurt am Main, Germany
| | - Andrej Kral
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Hannover Medical School, Germany.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| |
Collapse
|
10
|
Polonenko MJ, Papsin BC, Gordon KA. Delayed access to bilateral input alters cortical organization in children with asymmetric hearing. NEUROIMAGE-CLINICAL 2017; 17:415-425. [PMID: 29159054 PMCID: PMC5683809 DOI: 10.1016/j.nicl.2017.10.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 11/19/2022]
Abstract
Bilateral hearing in early development protects auditory cortices from reorganizing to prefer the better ear. Yet, such protection could be disrupted by mismatched bilateral input in children with asymmetric hearing who require electric stimulation of the auditory nerve from a cochlear implant in their deaf ear and amplified acoustic sound from a hearing aid in their better ear (bimodal hearing). Cortical responses to bimodal stimulation were measured by electroencephalography in 34 bimodal users and 16 age-matched peers with normal hearing, and compared with the same measures previously reported for 28 age-matched bilateral implant users. Both auditory cortices increasingly favoured the better ear with delay to implanting the deaf ear; the time course mirrored that occurring with delay to bilateral implantation in unilateral implant users. Preference for the implanted ear tended to occur with ongoing implant use when hearing was poor in the non-implanted ear. Speech perception deteriorated with longer deprivation and poorer access to high-frequencies. Thus, cortical preference develops in children with asymmetric hearing but can be avoided by early provision of balanced bimodal stimulation. Although electric and acoustic stimulation differ, these inputs can work sympathetically when used bilaterally given sufficient hearing in the non-implanted ear.
Collapse
Affiliation(s)
- Melissa Jane Polonenko
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada; Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| | - Blake Croll Papsin
- Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, ON M5G 2N2, Canada; Otolaryngology - Head & Neck Surgery, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Karen Ann Gordon
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada; Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, ON M5G 2N2, Canada; Otolaryngology - Head & Neck Surgery, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
11
|
Cortical Processing of Level Cues for Spatial Hearing is Impaired in Children with Prelingual Deafness Despite Early Bilateral Access to Sound. Brain Topogr 2017; 31:270-287. [DOI: 10.1007/s10548-017-0596-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/25/2017] [Indexed: 01/13/2023]
|
12
|
Berger C, Kühne D, Scheper V, Kral A. Congenital deafness affects deep layers in primary and secondary auditory cortex. J Comp Neurol 2017; 525. [PMID: 28643417 PMCID: PMC5599951 DOI: 10.1002/cne.24267] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Congenital deafness leads to functional deficits in the auditory cortex for which early cochlear implantation can effectively compensate. Most of these deficits have been demonstrated functionally. Furthermore, the majority of previous studies on deafness have involved the primary auditory cortex; knowledge of higher-order areas is limited to effects of cross-modal reorganization. In this study, we compared the cortical cytoarchitecture of four cortical areas in adult hearing and congenitally deaf cats (CDCs): the primary auditory field A1, two secondary auditory fields, namely the dorsal zone and second auditory field (A2); and a reference visual association field (area 7) in the same section stained either using Nissl or SMI-32 antibodies. The general cytoarchitectonic pattern and the area-specific characteristics in the auditory cortex remained unchanged in animals with congenital deafness. Whereas area 7 did not differ between the groups investigated, all auditory fields were slightly thinner in CDCs, this being caused by reduced thickness of layers IV-VI. The study documents that, while the cytoarchitectonic patterns are in general independent of sensory experience, reduced layer thickness is observed in both primary and higher-order auditory fields in layer IV and infragranular layers. The study demonstrates differences in effects of congenital deafness between supragranular and other cortical layers, but similar dystrophic effects in all investigated auditory fields.
Collapse
Affiliation(s)
- Christoph Berger
- Institute of AudioNeuroTechnology & Department of Experimental OtologyENT Clinics, School of Medicine, Hannover Medical UniversityHannoverGermany
| | - Daniela Kühne
- Institute of AudioNeuroTechnology & Department of Experimental OtologyENT Clinics, School of Medicine, Hannover Medical UniversityHannoverGermany
| | - Verena Scheper
- Institute of AudioNeuroTechnology & Department of Experimental OtologyENT Clinics, School of Medicine, Hannover Medical UniversityHannoverGermany
| | - Andrej Kral
- Institute of AudioNeuroTechnology & Department of Experimental OtologyENT Clinics, School of Medicine, Hannover Medical UniversityHannoverGermany
- School of Behavioral and Brain SciencesThe University of TexasDallasUSA
| |
Collapse
|
13
|
Cross-Modal Plasticity in Higher-Order Auditory Cortex of Congenitally Deaf Cats Does Not Limit Auditory Responsiveness to Cochlear Implants. J Neurosci 2017; 36:6175-85. [PMID: 27277796 DOI: 10.1523/jneurosci.0046-16.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/19/2016] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Congenital sensory deprivation can lead to reorganization of the deprived cortical regions by another sensory system. Such cross-modal reorganization may either compete with or complement the "original" inputs to the deprived area after sensory restoration and can thus be either adverse or beneficial for sensory restoration. In congenital deafness, a previous inactivation study documented that supranormal visual behavior was mediated by higher-order auditory fields in congenitally deaf cats (CDCs). However, both the auditory responsiveness of "deaf" higher-order fields and interactions between the reorganized and the original sensory input remain unknown. Here, we studied a higher-order auditory field responsible for the supranormal visual function in CDCs, the auditory dorsal zone (DZ). Hearing cats and visual cortical areas served as a control. Using mapping with microelectrode arrays, we demonstrate spatially scattered visual (cross-modal) responsiveness in the DZ, but show that this did not interfere substantially with robust auditory responsiveness elicited through cochlear implants. Visually responsive and auditory-responsive neurons in the deaf auditory cortex formed two distinct populations that did not show bimodal interactions. Therefore, cross-modal plasticity in the deaf higher-order auditory cortex had limited effects on auditory inputs. The moderate number of scattered cross-modally responsive neurons could be the consequence of exuberant connections formed during development that were not pruned postnatally in deaf cats. Although juvenile brain circuits are modified extensively by experience, the main driving input to the cross-modally (visually) reorganized higher-order auditory cortex remained auditory in congenital deafness. SIGNIFICANCE STATEMENT In a common view, the "unused" auditory cortex of deaf individuals is reorganized to a compensatory sensory function during development. According to this view, cross-modal plasticity takes over the unused cortex and reassigns it to the remaining senses. Therefore, cross-modal plasticity might conflict with restoration of auditory function with cochlear implants. It is unclear whether the cross-modally reorganized auditory areas lose auditory responsiveness. We show that the presence of cross-modal plasticity in a higher-order auditory area does not reduce auditory responsiveness of that area. Visual reorganization was moderate, spatially scattered and there were no interactions between cross-modally reorganized visual and auditory inputs. These results indicate that cross-modal reorganization is less detrimental for neurosensory restoration than previously thought.
Collapse
|
14
|
Synaptic distribution and plasticity in primary auditory cortex (A1) exhibits laminar and cell-specific changes in the deaf. Hear Res 2017; 353:122-134. [PMID: 28697947 DOI: 10.1016/j.heares.2017.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 12/19/2022]
Abstract
The processing sequence through primary auditory cortex (A1) is impaired by deafness as evidenced by reduced neuronal activation in A1 of cochlear-implanted deaf cats. Such a loss of neuronal excitation should be manifest as changes in excitatory synaptic number and/or size, for which the post-synaptic correlate is the dendritic spine. Therefore, the present study sought evidence for this functional disruption using Golgi-Cox/light microscopic techniques that examined spine-bearing neurons and their dendritic spine features across all laminae in A1 of early-deaf (ototoxic lesion <1 month; raised into adulthood >16 months) and hearing cats. Surprisingly, in the early-deaf significant increases in spine density and size were observed in the supragranular layers, while significant reductions in spine density were observed for spiny non-pyramidal, but not pyramidal, neurons in the granular layer. No changes in dendritic spine density consistent with loss of excitatory inputs were seen for infragranular neurons. These results indicate that long-term early-deafness induces plastic changes in the excitatory circuitry of A1 that are laminar and cell-specific. An additional finding was that, unlike the expected abundance of stellate neurons that characterize the granular layer of other primary sensory cortices, pyramidal neurons predominate within layer 4 of A1. Collectively, these observations are important for understanding how neuronal connectional configurations contribute to region-specific processing capabilities in normal brains as well as those with altered sensory experiences.
Collapse
|
15
|
Ehlers E, Goupell MJ, Zheng Y, Godar SP, Litovsky RY. Binaural sensitivity in children who use bilateral cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:4264. [PMID: 28618809 PMCID: PMC5464955 DOI: 10.1121/1.4983824] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 05/29/2023]
Abstract
Children who are deaf and receive bilateral cochlear implants (BiCIs) perform better on spatial hearing tasks using bilateral rather than unilateral inputs; however, they underperform relative to normal-hearing (NH) peers. This gap in performance is multi-factorial, including the inability of speech processors to reliably deliver binaural cues. Although much is known regarding binaural sensitivity of adults with BiCIs, less is known about how the development of binaural sensitivity in children with BiCIs compared to NH children. Sixteen children (ages 9-17 years) were tested using synchronized research processors. Interaural time differences and interaural level differences (ITDs and ILDs, respectively) were presented to pairs of pitch-matched electrodes. Stimuli were 300-ms, 100-pulses-per-second, constant-amplitude pulse trains. In the first and second experiments, discrimination of interaural cues (either ITDs or ILDs) was measured using a two-interval left/right task. In the third experiment, subjects reported the perceived intracranial position of ITDs and ILDs in a lateralization task. All children demonstrated sensitivity to ILDs, possibly due to monaural level cues. Children who were born deaf had weak or absent sensitivity to ITDs; in contrast, ITD sensitivity was noted in children with previous exposure to acoustic hearing. Therefore, factors such as auditory deprivation, in particular, lack of early exposure to consistent timing differences between the ears, may delay the maturation of binaural circuits and cause insensitivity to binaural differences.
Collapse
Affiliation(s)
- Erica Ehlers
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Yi Zheng
- Beijing Advanced Innovation Center for Future Education, Beijing Normal University, Beijing 100875, China
| | - Shelly P Godar
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Ruth Y Litovsky
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|
16
|
Easwar V, Yamazaki H, Deighton M, Papsin B, Gordon K. Simultaneous bilateral cochlear implants: Developmental advances do not yet achieve normal cortical processing. Brain Behav 2017; 7:e00638. [PMID: 28413698 PMCID: PMC5390830 DOI: 10.1002/brb3.638] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/15/2016] [Accepted: 12/18/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Simultaneous bilateral cochlear implantation promotes symmetric development of bilateral auditory pathways but binaural hearing remains abnormal. To evaluate whether bilateral cortical processing remains impaired in such children, cortical activity to unilateral and bilateral stimuli was assessed in a unique cohort of 16 children who received bilateral cochlear implants (CIs) simultaneously at 1.97 ± 0.86 years of age and had ~4 years of CI experience, providing the first opportunity to assess electrically driven cortical development in the absence of reorganized asymmetries from sequential implantation. METHODS Cortical activity to unilateral and bilateral stimuli was measured using multichannel electro-encephalography. Cortical processing in children with bilateral CIs was compared with click-elicited activity in 13 normal hearing children matched for time-in-sound. Source activity was localized using the Time Restricted, Artefact and Coherence source Suppression (TRACS) beamformer method. RESULTS Consistent with dominant crossed auditory pathways, normal P1 activity (~100 ms) was weaker to ipsilateral stimuli relative to contralateral and bilateral stimuli and both auditory cortices preferentially responded to the contralateral ear. Right hemisphere dominance was evident overall. Children with bilateral CIs maintained the expected right dominance but differences from normal included: (i) minimal changes between ipsilateral, contralateral and bilateral stimuli, (ii) weaker than normal contralateral stimulus preference, (iii) symmetric activity to bilateral stimuli, and (iv) increased occipital lobe recruitment during bilateral relative to unilateral stimulation. Between-group contrasts demonstrated lower than normal activity in the inferior parieto-occipital lobe (suggesting deficits in sensory integration) and greater than normal left frontal lobe activity (suggesting increased attention), even during passive listening. CONCLUSIONS Together, findings suggest that early simultaneous bilateral cochlear implantation promotes normal-like auditory symmetry but that abnormalities in cortical processing consequent to deafness and/or electrical stimulation through two independent speech processors persist.
Collapse
Affiliation(s)
- Vijayalakshmi Easwar
- Archie's Cochlear Implant Laboratory The Hospital for Sick Children Toronto ON Canada.,Collaborative Program in Neuroscience The University of Toronto Toronto ON Canada
| | - Hiroshi Yamazaki
- Archie's Cochlear Implant Laboratory The Hospital for Sick Children Toronto ON Canada
| | - Michael Deighton
- Archie's Cochlear Implant Laboratory The Hospital for Sick Children Toronto ON Canada
| | - Blake Papsin
- Otolaryngology The University of Toronto Toronto ON Canada.,Otolaryngology The Hospital for Sick Children Toronto ON Canada
| | - Karen Gordon
- Archie's Cochlear Implant Laboratory The Hospital for Sick Children Toronto ON Canada.,Otolaryngology The University of Toronto Toronto ON Canada
| |
Collapse
|
17
|
Schierholz I, Finke M, Kral A, Büchner A, Rach S, Lenarz T, Dengler R, Sandmann P. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study. Hum Brain Mapp 2017; 38:2206-2225. [PMID: 28130910 DOI: 10.1002/hbm.23515] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/26/2016] [Accepted: 01/03/2017] [Indexed: 11/10/2022] Open
Abstract
There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Irina Schierholz
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence "Hearing4all,", Hannover, Germany.,Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Mareike Finke
- Cluster of Excellence "Hearing4all,", Hannover, Germany.,Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Andrej Kral
- Cluster of Excellence "Hearing4all,", Hannover, Germany.,Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Institute of AudioNeuroTechnology and Department of Experimental Otology, Hannover Medical School, Hannover, Germany.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas
| | - Andreas Büchner
- Cluster of Excellence "Hearing4all,", Hannover, Germany.,Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Stefan Rach
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Thomas Lenarz
- Cluster of Excellence "Hearing4all,", Hannover, Germany.,Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Reinhard Dengler
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence "Hearing4all,", Hannover, Germany
| | - Pascale Sandmann
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence "Hearing4all,", Hannover, Germany.,Department of Otorhinolaryngology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
18
|
Kral A, Yusuf PA, Land R. Higher-order auditory areas in congenital deafness: Top-down interactions and corticocortical decoupling. Hear Res 2017; 343:50-63. [DOI: 10.1016/j.heares.2016.08.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/25/2016] [Accepted: 08/29/2016] [Indexed: 11/16/2022]
|
19
|
Hindriks R, Arsiwalla XD, Panagiotaropoulos T, Besserve M, Verschure PFMJ, Logothetis NK, Deco G. Discrepancies between Multi-Electrode LFP and CSD Phase-Patterns: A Forward Modeling Study. Front Neural Circuits 2016; 10:51. [PMID: 27471451 PMCID: PMC4945652 DOI: 10.3389/fncir.2016.00051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/29/2016] [Indexed: 01/05/2023] Open
Abstract
Multi-electrode recordings of local field potentials (LFPs) provide the opportunity to investigate the spatiotemporal organization of neural activity on the scale of several millimeters. In particular, the phases of oscillatory LFPs allow studying the coordination of neural oscillations in time and space and to tie it to cognitive processing. Given the computational roles of LFP phases, it is important to know how they relate to the phases of the underlying current source densities (CSDs) that generate them. Although CSDs and LFPs are distinct physical quantities, they are often (implicitly) identified when interpreting experimental observations. That this identification is problematic is clear from the fact that LFP phases change when switching to different electrode montages, while the underlying CSD phases remain unchanged. In this study we use a volume-conductor model to characterize discrepancies between LFP and CSD phase-patterns, to identify the contributing factors, and to assess the effect of different electrode montages. Although we focus on cortical LFPs recorded with two-dimensional (Utah) arrays, our findings are also relevant for other electrode configurations. We found that the main factors that determine the discrepancy between CSD and LFP phase-patterns are the frequency of the neural oscillations and the extent to which the laminar CSD profile is balanced. Furthermore, the presence of laminar phase-differences in cortical oscillations, as commonly observed in experiments, precludes identifying LFP phases with those of the CSD oscillations at a given cortical depth. This observation potentially complicates the interpretation of spike-LFP coherence and spike-triggered LFP averages. With respect to reference strategies, we found that the average-reference montage leads to larger discrepancies between LFP and CSD phases as compared with the referential montage, while the Laplacian montage reduces these discrepancies. We therefore advice to conduct analysis of two-dimensional LFP recordings using the Laplacian montage.
Collapse
Affiliation(s)
- Rikkert Hindriks
- Computational Neuroscience Group, Department of Information, Center for Brain and Cognition Barcelona, Spain
| | - Xerxes D Arsiwalla
- Synthetic Perceptive Emotive and Cognitive Systems Lab, Center of Autonomous Systems and Neurorobotics, Universitat Pompeu Fabra Barcelona, Spain
| | - Theofanis Panagiotaropoulos
- Department Physiology of Cognitive Processes, Max Planck Institute for Biological CyberneticsTubingen, Germany; Centre for Systems Neuroscience, University of LeicesterLeicester, UK; King's College London, Institute of Psychiatry, Psychology and NeuroscienceLondon, UK
| | - Michel Besserve
- Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics Tubingen, Germany
| | - Paul F M J Verschure
- Synthetic Perceptive Emotive and Cognitive Systems Lab, Center of Autonomous Systems and Neurorobotics, Universitat Pompeu FabraBarcelona, Spain; Institucio Catalana de Recerca i Estudis Avancats (ICREA), Universitat Pompeu FabraBarcelona, Spain
| | - Nikos K Logothetis
- Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics Tubingen, Germany
| | - Gustavo Deco
- Computational Neuroscience Group, Department of Information, Center for Brain and CognitionBarcelona, Spain; Institucio Catalana de Recerca i Estudis Avancats (ICREA), Universitat Pompeu FabraBarcelona, Spain
| |
Collapse
|
20
|
Fallon JB, Irving S, Pannu SS, Tooker AC, Wise AK, Shepherd RK, Irvine DRF. Second spatial derivative analysis of cortical surface potentials recorded in cat primary auditory cortex using thin film surface arrays: Comparisons with multi-unit data. J Neurosci Methods 2016; 267:14-20. [PMID: 27060384 DOI: 10.1016/j.jneumeth.2016.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND Current source density analysis of recordings from penetrating electrode arrays has traditionally been used to examine the layer- specific cortical activation and plastic changes associated with changed afferent input. We report on a related analysis, the second spatial derivative (SSD) of surface local field potentials (LFPs) recorded using custom designed thin-film polyimide substrate arrays. RESULTS SSD analysis of tone- evoked LFPs generated from the auditory cortex under the recording array demonstrated a stereotypical single local minimum, often flanked by maxima on both the caudal and rostral sides. In contrast, tone-pips at frequencies not represented in the region under the array, but known (on the basis of normal tonotopic organization) to be represented caudal to the recording array, had a more complex pattern of many sources and sinks. COMPARISON WITH EXISTING METHODS Compared to traditional analysis of LFPs, SSD analysis produced a tonotopic map that was more similar to that obtained with multi-unit recordings in a normal-hearing animal. Additionally, the statistically significant decrease in the number of acoustically responsive cortical locations in partially deafened cats following 6 months of cochlear implant use compared to unstimulated cases observed with multi-unit data (p=0.04) was also observed with SSD analysis (p=0.02), but was not apparent using traditional analysis of LFPs (p=0.6). CONCLUSIONS SSD analysis of surface LFPs from the thin-film array provides a rapid and robust method for examining the spatial distribution of cortical activity with improved spatial resolution compared to more traditional LFP recordings.
Collapse
Affiliation(s)
- James B Fallon
- Bionics Institute, Melbourne, Victoria, Australia; Department of Otolaryngology, University of Melbourne, Melbourne, Victoria, Australia; Medical Bionics Department, University of Melbourne, Melbourne, Victoria, Australia.
| | - Sam Irving
- Bionics Institute, Melbourne, Victoria, Australia
| | | | - Angela C Tooker
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Andrew K Wise
- Bionics Institute, Melbourne, Victoria, Australia; Department of Otolaryngology, University of Melbourne, Melbourne, Victoria, Australia; Medical Bionics Department, University of Melbourne, Melbourne, Victoria, Australia
| | - Robert K Shepherd
- Bionics Institute, Melbourne, Victoria, Australia; Medical Bionics Department, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
21
|
Tillein J, Hubka P, Kral A. Monaural Congenital Deafness Affects Aural Dominance and Degrades Binaural Processing. Cereb Cortex 2016; 26:1762-77. [PMID: 26803166 PMCID: PMC4785956 DOI: 10.1093/cercor/bhv351] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cortical development extensively depends on sensory experience. Effects of congenital monaural and binaural deafness on cortical aural dominance and representation of binaural cues were investigated in the present study. We used an animal model that precisely mimics the clinical scenario of unilateral cochlear implantation in an individual with single-sided congenital deafness. Multiunit responses in cortical field A1 to cochlear implant stimulation were studied in normal-hearing cats, bilaterally congenitally deaf cats (CDCs), and unilaterally deaf cats (uCDCs). Binaural deafness reduced cortical responsiveness and decreased response thresholds and dynamic range. In contrast to CDCs, in uCDCs, cortical responsiveness was not reduced, but hemispheric-specific reorganization of aural dominance and binaural interactions were observed. Deafness led to a substantial drop in binaural facilitation in CDCs and uCDCs, demonstrating the inevitable role of experience for a binaural benefit. Sensitivity to interaural time differences was more reduced in uCDCs than in CDCs, particularly at the hemisphere ipsilateral to the hearing ear. Compared with binaural deafness, unilateral hearing prevented nonspecific reduction in cortical responsiveness, but extensively reorganized aural dominance and binaural responses. The deaf ear remained coupled with the cortex in uCDCs, demonstrating a significant difference to deprivation amblyopia in the visual system.
Collapse
Affiliation(s)
- Jochen Tillein
- Cluster of Excellence Hearing4all, Institute of AudioNeuroTechnology and Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany Department of Otorhinolaryngology, J.W. Goethe University, Frankfurt am Main, Germany MED-EL GmbH, Innsbruck, Austria
| | - Peter Hubka
- Cluster of Excellence Hearing4all, Institute of AudioNeuroTechnology and Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| | - Andrej Kral
- Cluster of Excellence Hearing4all, Institute of AudioNeuroTechnology and Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
22
|
Gordon K, Henkin Y, Kral A. Asymmetric Hearing During Development: The Aural Preference Syndrome and Treatment Options. Pediatrics 2015; 136:141-53. [PMID: 26055845 DOI: 10.1542/peds.2014-3520] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2015] [Indexed: 11/24/2022] Open
Abstract
Deafness affects ∼2 in 1000 children and is one of the most common congenital impairments. Permanent hearing loss can be treated by fitting hearing aids. More severe to profound deafness is an indication for cochlear implantation. Although newborn hearing screening programs have increased the identification of asymmetric hearing loss, parents and caregivers of children with single-sided deafness are often hesitant to pursue therapy for the deaf ear. Delayed intervention has consequences for recovery of hearing. It has long been reported that asymmetric hearing loss/single-sided deafness compromises speech and language development and educational outcomes in children. Recent studies in animal models of deafness and in children consistently show evidence of an "aural preference syndrome" in which single-sided deafness in early childhood reorganizes the developing auditory pathways toward the hearing ear, with weaker central representation of the deaf ear. Delayed therapy consequently compromises benefit for the deaf ear, with slow rates of improvement measured over time. Therefore, asymmetric hearing needs early identification and intervention. Providing early effective stimulation in both ears through appropriate fitting of auditory prostheses, including hearing aids and cochlear implants, within a sensitive period in development has a cardinal role for securing the function of the impaired ear and for restoring binaural/spatial hearing. The impacts of asymmetric hearing loss on the developing auditory system and on spoken language development have often been underestimated. Thus, the traditional minimalist approach to clinical management aimed at 1 functional ear should be modified on the basis of current evidence.
Collapse
Affiliation(s)
- Karen Gordon
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Canada;
| | - Yael Henkin
- Hearing, Speech, and Language Center, Sheba Medical Center, Tel Hashomer, Department of Communication Disorders, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; and
| | - Andrej Kral
- Cluster of Excellence Hearing4all, Institute of AudioNeuroTechnology, Hannover, Germany; Department of Experimental Otology, ENT Clinics, School of Medicine, Hannover Medical University, Hannover, Germany; and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas
| |
Collapse
|
23
|
Kral A, Hubka P, Tillein J. Strengthening of hearing ear representation reduces binaural sensitivity in early single-sided deafness. Audiol Neurootol 2015; 20 Suppl 1:7-12. [PMID: 25998842 DOI: 10.1159/000380742] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Single-sided deafness initiates extensive adaptations in the central auditory system, with the consequence that a stronger and a weaker ear representation develops in the auditory brain. Animal studies demonstrated that the effects are substantially stronger if the condition starts early in development. Sequential binaural cochlear implantations with longer interimplant delays demonstrate that the speech comprehension at the weaker ear is substantially compromised. A pronounced loss of the ability to extract and represent binaural localisation cues accompanies this condition, as shown in animal models.
Collapse
Affiliation(s)
- Andrej Kral
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, School of Medicine, Hannover Medical University, Hannover, Germany
| | | | | |
Collapse
|
24
|
Abstract
Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity.
Collapse
Affiliation(s)
- Ruth Litovsky
- Binaural Hearing and Speech Laboratory, Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
25
|
Kan A, Litovsky RY. Binaural hearing with electrical stimulation. Hear Res 2014; 322:127-37. [PMID: 25193553 DOI: 10.1016/j.heares.2014.08.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 07/16/2014] [Accepted: 08/18/2014] [Indexed: 11/18/2022]
Abstract
Bilateral cochlear implantation is becoming a standard of care in many clinics. While much benefit has been shown through bilateral implantation, patients who have bilateral cochlear implants (CIs) still do not perform as well as normal hearing listeners in sound localization and understanding speech in noisy environments. This difference in performance can arise from a number of different factors, including the areas of hardware and engineering, surgical precision and pathology of the auditory system in deaf persons. While surgical precision and individual pathology are factors that are beyond careful control, improvements can be made in the areas of clinical practice and the engineering of binaural speech processors. These improvements should be grounded in a good understanding of the sensitivities of bilateral CI patients to the acoustic binaural cues that are important to normal hearing listeners for sound localization and speech in noise understanding. To this end, we review the current state-of-the-art in the understanding of the sensitivities of bilateral CI patients to binaural cues in electric hearing, and highlight the important issues and challenges as they relate to clinical practice and the development of new binaural processing strategies. This article is part of a Special Issue entitled <Lasker Award>.
Collapse
Affiliation(s)
- Alan Kan
- University of Wisconsin-Madison Waisman Center, 1500 Highland Ave, Madison WI 53705, USA.
| | - Ruth Y Litovsky
- University of Wisconsin-Madison Waisman Center, 1500 Highland Ave, Madison WI 53705, USA.
| |
Collapse
|
26
|
Effects of deafness and cochlear implant use on temporal response characteristics in cat primary auditory cortex. Hear Res 2014; 315:1-9. [PMID: 24933111 DOI: 10.1016/j.heares.2014.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/28/2014] [Accepted: 06/03/2014] [Indexed: 11/24/2022]
Abstract
We have previously shown that neonatal deafness of 7-13 months duration leads to loss of cochleotopy in the primary auditory cortex (AI) that can be reversed by cochlear implant use. Here we describe the effects of a similar duration of deafness and cochlear implant use on temporal processing. Specifically, we compared the temporal resolution of neurons in AI of young adult normal-hearing cats that were acutely deafened and implanted immediately prior to recording with that in three groups of neonatally deafened cats. One group of neonatally deafened cats received no chronic stimulation. The other two groups received up to 8 months of either low- or high-rate (50 or 500 pulses per second per electrode, respectively) stimulation from a clinical cochlear implant, initiated at 10 weeks of age. Deafness of 7-13 months duration had no effect on the duration of post-onset response suppression, latency, latency jitter, or the stimulus repetition rate at which units responded maximally (best repetition rate), but resulted in a statistically significant reduction in the ability of units to respond to every stimulus in a train (maximum following rate). None of the temporal response characteristics of the low-rate group differed from those in acutely deafened controls. In contrast, high-rate stimulation had diverse effects: it resulted in decreased suppression duration, longer latency and greater jitter relative to all other groups, and an increase in best repetition rate and cut-off rate relative to acutely deafened controls. The minimal effects of moderate-duration deafness on temporal processing in the present study are in contrast to its previously-reported pronounced effects on cochleotopy. Much longer periods of deafness have been reported to result in significant changes in temporal processing, in accord with the fact that duration of deafness is a major factor influencing outcome in human cochlear implantees.
Collapse
|
27
|
Coding of electric pulse trains presented through cochlear implants in the auditory midbrain of awake rabbit: comparison with anesthetized preparations. J Neurosci 2014; 34:218-31. [PMID: 24381283 DOI: 10.1523/jneurosci.2084-13.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cochlear implant (CI) listeners show limits at high frequencies in tasks involving temporal processing such as rate pitch and interaural time difference discrimination. Similar limits have been observed in neural responses to electric stimulation in animals with CI; however, the upper limit of temporal coding of electric pulse train stimuli in the inferior colliculus (IC) of anesthetized animals is lower than the perceptual limit. We hypothesize that the upper limit of temporal neural coding has been underestimated in previous studies due to the confound of anesthesia. To test this hypothesis, we developed a chronic, awake rabbit preparation for single-unit studies of IC neurons with electric stimulation through CI. Stimuli were periodic trains of biphasic pulses with rates varying from 20 to 1280 pulses per second. We found that IC neurons in awake rabbits showed higher spontaneous activity and greater sustained responses, both excitatory and suppressive, at high pulse rates. Maximum pulse rates that elicited synchronized responses were approximately two times higher in awake rabbits than in earlier studies with anesthetized animals. Here, we demonstrate directly that anesthesia is a major factor underlying these differences by monitoring the responses of single units in one rabbit before and after injection of an ultra-short-acting barbiturate. In general, the physiological rate limits of IC neurons in the awake rabbit are more consistent with the psychophysical limits in human CI subjects compared with limits from anesthetized animals.
Collapse
|
28
|
|
29
|
Atencio CA, Shih JY, Schreiner CE, Cheung SW. Primary auditory cortical responses to electrical stimulation of the thalamus. J Neurophysiol 2013; 111:1077-87. [PMID: 24335216 DOI: 10.1152/jn.00749.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cochlear implant electrical stimulation of the auditory system to rehabilitate deafness has been remarkably successful. Its deployment requires both an intact auditory nerve and a suitably patent cochlear lumen. When disease renders prerequisite conditions impassable, such as in neurofibromatosis type II and cochlear obliterans, alternative treatment targets are considered. Electrical stimulation of the cochlear nucleus and midbrain in humans has delivered encouraging clinical outcomes, buttressing the promise of central auditory prostheses to mitigate deafness in those who are not candidates for cochlear implantation. In this study we explored another possible implant target: the auditory thalamus. In anesthetized cats, we first presented pure tones to determine frequency preferences of thalamic and cortical sites. We then electrically stimulated tonotopically organized thalamic sites while recording from primary auditory cortical sites using a multichannel recording probe. Cathode-leading biphasic thalamic stimulation thresholds that evoked cortical responses were much lower than published accounts of cochlear and midbrain stimulation. Cortical activation dynamic ranges were similar to those reported for cochlear stimulation, but they were narrower than those found through midbrain stimulation. Our results imply that thalamic stimulation can activate auditory cortex at low electrical current levels and suggest an auditory thalamic implant may be a viable central auditory prosthesis.
Collapse
Affiliation(s)
- Craig A Atencio
- Coleman Memorial Laboratory, Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California
| | | | | | | |
Collapse
|
30
|
Kral A, Heid S, Hubka P, Tillein J. Unilateral hearing during development: hemispheric specificity in plastic reorganizations. Front Syst Neurosci 2013; 7:93. [PMID: 24348345 PMCID: PMC3841817 DOI: 10.3389/fnsys.2013.00093] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/05/2013] [Indexed: 02/04/2023] Open
Abstract
The present study investigates the hemispheric contributions of neuronal reorganization following early single-sided hearing (unilateral deafness). The experiments were performed on ten cats from our colony of deaf white cats. Two were identified in early hearing screening as unilaterally congenitally deaf. The remaining eight were bilaterally congenitally deaf, unilaterally implanted at different ages with a cochlear implant. Implanted animals were chronically stimulated using a single-channel portable signal processor for two to five months. Microelectrode recordings were performed at the primary auditory cortex under stimulation at the hearing and deaf ear with bilateral cochlear implants. Local field potentials (LFPs) were compared at the cortex ipsilateral and contralateral to the hearing ear. The focus of the study was on the morphology and the onset latency of the LFPs. With respect to morphology of LFPs, pronounced hemisphere-specific effects were observed. Morphology of amplitude-normalized LFPs for stimulation of the deaf and the hearing ear was similar for responses recorded at the same hemisphere. However, when comparisons were performed between the hemispheres, the morphology was more dissimilar even though the same ear was stimulated. This demonstrates hemispheric specificity of some cortical adaptations irrespective of the ear stimulated. The results suggest a specific adaptation process at the hemisphere ipsilateral to the hearing ear, involving specific (down-regulated inhibitory) mechanisms not found in the contralateral hemisphere. Finally, onset latencies revealed that the sensitive period for the cortex ipsilateral to the hearing ear is shorter than that for the contralateral cortex. Unilateral hearing experience leads to a functionally-asymmetric brain with different neuronal reorganizations and different sensitive periods involved.
Collapse
Affiliation(s)
- Andrej Kral
- Cluster of Excellence, Department of Experimental Otology, Institute of Audioneurotechnology, ENT Clinics, Hannover Medical School Hannover, Germany
| | - Silvia Heid
- Cluster of Excellence, Department of Experimental Otology, Institute of Audioneurotechnology, ENT Clinics, Hannover Medical School Hannover, Germany ; Department of Physiology and Otolaryngology, J. W. Goethe University Frankfurt am Main, Germany
| | - Peter Hubka
- Cluster of Excellence, Department of Experimental Otology, Institute of Audioneurotechnology, ENT Clinics, Hannover Medical School Hannover, Germany
| | - Jochen Tillein
- Cluster of Excellence, Department of Experimental Otology, Institute of Audioneurotechnology, ENT Clinics, Hannover Medical School Hannover, Germany ; Department of Physiology and Otolaryngology, J. W. Goethe University Frankfurt am Main, Germany
| |
Collapse
|
31
|
Senkowski D, Pomper U, Fitzner I, Engel AK, Kral A. Beta-band activity in auditory pathways reflects speech localization and recognition in bilateral cochlear implant users. Hum Brain Mapp 2013; 35:3107-21. [PMID: 24123535 DOI: 10.1002/hbm.22388] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/12/2013] [Accepted: 07/22/2013] [Indexed: 11/07/2022] Open
Abstract
In normal-hearing listeners, localization of auditory speech involves stimulus processing in the postero-dorsal pathway of the auditory system. In quiet environments, bilateral cochlear implant (CI) users show high speech recognition performance, but localization of auditory speech is poor, especially when discriminating stimuli from the same hemifield. Whether this difficulty relates to the inability of the auditory system to translate binaural electrical cues into neural signals, or to a functional reorganization of auditory cortical pathways following long periods of binaural deprivation is unknown. In this electroencephalography study, we examined the processing of auditory syllables in postlingually deaf adults with bilateral CIs and in normal-hearing adults. Participants were instructed to either recognize ("recognition" task) or localize ("localization" task) the syllables. The analysis focused on event-related potentials and oscillatory brain responses. N1 amplitudes in CI users were larger in the localization compared with recognition task, suggesting an enhanced stimulus processing effort in the localization task. Linear beamforming of oscillatory activity in CI users revealed stronger suppression of beta-band activity after 200 ms in the postero-dorsal auditory pathway for the localization compared with the recognition task. In normal-hearing adults, effects for longer latency event-related potentials were found, but no effects were observed for N1 amplitudes or beta-band responses. Our study suggests that difficulties in speech localization in bilateral CI users are not reflected in a functional reorganization of cortical auditory pathways. New signal processing strategies of cochlear devices preserving unambiguous binaural cues may improve auditory localization performance in bilateral CI users.
Collapse
Affiliation(s)
- Daniel Senkowski
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, Germany; Department of Psychiatry and Psychotherapy Charité-Universitätsmedizin, Berlin, St. Hedwig Hospital, Große Hamburger Str. 5-11, Berlin, Germany
| | | | | | | | | |
Collapse
|
32
|
Kral A. Auditory critical periods: A review from system’s perspective. Neuroscience 2013; 247:117-33. [DOI: 10.1016/j.neuroscience.2013.05.021] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 11/17/2022]
|
33
|
Barone P, Lacassagne L, Kral A. Reorganization of the connectivity of cortical field DZ in congenitally deaf cat. PLoS One 2013; 8:e60093. [PMID: 23593166 PMCID: PMC3625188 DOI: 10.1371/journal.pone.0060093] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/25/2013] [Indexed: 02/07/2023] Open
Abstract
Psychophysics and brain imaging studies in deaf patients have revealed a functional crossmodal reorganization that affects the remaining sensory modalities. Similarly, the congenital deaf cat (CDC) shows supra-normal visual skills that are supported by specific auditory fields (DZ-dorsal zone and P-posterior auditory cortex) but not the primary auditory cortex (A1). To assess the functional reorganization observed in deafness we analyzed the connectivity pattern of the auditory cortex by means of injections of anatomical tracers in DZ and A1 in both congenital deaf and normally hearing cats. A quantitative analysis of the distribution of the projecting neurons revealed the presence of non-auditory inputs to both A1 and DZ of the CDC which were not observed in the hearing cats. Firstly, some visual (areas 19/20) and somatosensory (SIV) areas were projecting toward DZ of the CDC but not in the control. Secondly, A1 of the deaf cat received a weak projection from the visual lateral posterior nuclei (LP). Most of these abnormal projections to A1 and DZ represent only a small fraction of the normal inputs to these areas. In addition, most of the afferents to DZ and A1 appeared normal in terms of areal specificity and strength of projection, with preserved but smeared nucleotopic gradient of A1 in CDCs. In conclusion, while the abnormal projections revealed in the CDC can participate in the crossmodal compensatory mechanisms, the observation of a limited reorganization of the connectivity pattern of the CDC implies that functional reorganization in congenital deafness is further supported also by normal cortico-cortical connectivity.
Collapse
Affiliation(s)
- Pascal Barone
- Université Toulouse, CerCo, Université Paul Sabatier, Toulouse, France.
| | | | | |
Collapse
|
34
|
Direct recordings from the auditory cortex in a cochlear implant user. J Assoc Res Otolaryngol 2013; 14:435-50. [PMID: 23519390 DOI: 10.1007/s10162-013-0382-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/25/2013] [Indexed: 10/27/2022] Open
Abstract
Electrical stimulation of the auditory nerve with a cochlear implant (CI) is the method of choice for treatment of severe-to-profound hearing loss. Understanding how the human auditory cortex responds to CI stimulation is important for advances in stimulation paradigms and rehabilitation strategies. In this study, auditory cortical responses to CI stimulation were recorded intracranially in a neurosurgical patient to examine directly the functional organization of the auditory cortex and compare the findings with those obtained in normal-hearing subjects. The subject was a bilateral CI user with a 20-year history of deafness and refractory epilepsy. As part of the epilepsy treatment, a subdural grid electrode was implanted over the left temporal lobe. Pure tones, click trains, sinusoidal amplitude-modulated noise, and speech were presented via the auxiliary input of the right CI speech processor. Additional experiments were conducted with bilateral CI stimulation. Auditory event-related changes in cortical activity, characterized by the averaged evoked potential and event-related band power, were localized to posterolateral superior temporal gyrus. Responses were stable across recording sessions and were abolished under general anesthesia. Response latency decreased and magnitude increased with increasing stimulus level. More apical intracochlear stimulation yielded the largest responses. Cortical evoked potentials were phase-locked to the temporal modulations of periodic stimuli and speech utterances. Bilateral electrical stimulation resulted in minimal artifact contamination. This study demonstrates the feasibility of intracranial electrophysiological recordings of responses to CI stimulation in a human subject, shows that cortical response properties may be similar to those obtained in normal-hearing individuals, and provides a basis for future comparisons with extracranial recordings.
Collapse
|
35
|
Kral A, Hubka P, Heid S, Tillein J. Single-sided deafness leads to unilateral aural preference within an early sensitive period. ACTA ACUST UNITED AC 2012; 136:180-93. [PMID: 23233722 DOI: 10.1093/brain/aws305] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Unilateral deafness has a high incidence in children. In addition to children who are born without hearing in one ear, children with bilateral deafness are frequently equipped only with one cochlear implant, leaving the other ear deaf. The present study investigates the effects of such single-sided deafness during development in the congenitally deaf cat. The investigated animals were either born with unilateral deafness or received a cochlear implant in one ear and were subjected to chronic monaural stimulation. In chronically stimulated animals, implantation ages were at the following three critical developmental points: 'early' during the peak of functional cortical synaptogenesis in deaf animals; 'intermediate' at the age when synaptic activity in the deaf cats dropped to the level of hearing control cats and finally, 'late' at the age when the evoked synaptic activity fell below the level of hearing control cats. After periods of unilateral hearing, local field potentials were recorded from the cortical surface using a microelectrode at ∼100 recording positions. Stimulation was with cochlear implants at both ears. The measures evaluated were dependent only on the symmetry of aural input: paired differences of onset latencies and paired relations of peak amplitudes of local field potentials. A massive reorganization of aural preference in favour of the hearing ear was found in these measures if the onset of unilateral hearing was early (before or around the peak of functional synaptogenesis). The effect was reduced if onset of unilateral hearing was in the intermediate period, and it disappeared if the onset was late. In early onset of unilateral deafness, the used ear became functionally dominant with respect to local field potential onset latency and amplitude. This explains the inferior outcome of implantations at the second-implanted ear compared with first-implanted ear in children. However, despite a central disadvantage for the deaf ear, it still remained capable of activating the auditory cortex. Appropriate training may thus help to improve the performance at the second-implanted ear. In conclusion, periods of monaural stimulation should be kept as short as possible, and training focused on the deaf ear should be introduced after delayed second implantation in children.
Collapse
Affiliation(s)
- Andrej Kral
- Institute of Audioneurotechnology, Feodor-Lynen-Strasse 35, D-30625 Hannover, Germany.
| | | | | | | |
Collapse
|
36
|
Cortical processing of musical sounds in children with Cochlear Implants. Clin Neurophysiol 2012; 123:1966-79. [DOI: 10.1016/j.clinph.2012.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 02/26/2012] [Accepted: 03/04/2012] [Indexed: 11/23/2022]
|
37
|
Litovsky RY, Goupell MJ, Godar S, Grieco-Calub T, Jones GL, Garadat SN, Agrawal S, Kan A, Todd A, Hess C, Misurelli S. Studies on bilateral cochlear implants at the University of Wisconsin's Binaural Hearing and Speech Laboratory. J Am Acad Audiol 2012; 23:476-94. [PMID: 22668767 DOI: 10.3766/jaaa.23.6.9] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This report highlights research projects relevant to binaural and spatial hearing in adults and children. In the past decade we have made progress in understanding the impact of bilateral cochlear implants (BiCIs) on performance in adults and children. However, BiCI users typically do not perform as well as normal hearing (NH) listeners. In this article we describe the benefits from BiCIs compared with a single cochlear implant (CI), focusing on measures of spatial hearing and speech understanding in noise. We highlight the fact that in BiCI listening the devices in the two ears are not coordinated; thus binaural spatial cues that are available to NH listeners are not available to BiCI users. Through the use of research processors that carefully control the stimulus delivered to each electrode in each ear, we are able to preserve binaural cues and deliver them with fidelity to BiCI users. Results from those studies are discussed as well, with a focus on the effect of age at onset of deafness and plasticity of binaural sensitivity. Our work with children has expanded both in number of subjects tested and age range included. We have now tested dozens of children ranging in age from 2 to 14 yr. Our findings suggest that spatial hearing abilities emerge with bilateral experience. While we originally focused on studying performance in free field, where real world listening experiments are conducted, more recently we have begun to conduct studies under carefully controlled binaural stimulation conditions with children as well. We have also studied language acquisition and speech perception and production in young CI users. Finally, a running theme of this research program is the systematic investigation of the numerous factors that contribute to spatial and binaural hearing in BiCI users. By using CI simulations (with vocoders) and studying NH listeners under degraded listening conditions, we are able to tease apart limitations due to the hardware/software of the CI systems from limitations due to neural pathology.
Collapse
Affiliation(s)
- Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Muller L, Destexhe A. Propagating waves in thalamus, cortex and the thalamocortical system: Experiments and models. ACTA ACUST UNITED AC 2012; 106:222-38. [PMID: 22863604 DOI: 10.1016/j.jphysparis.2012.06.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/07/2012] [Indexed: 11/26/2022]
Abstract
Propagating waves of activity have been recorded in many species, in various brain states, brain areas, and under various stimulation conditions. Here, we review the experimental literature on propagating activity in thalamus and neocortex across various levels of anesthesia and stimulation conditions. We also review computational models of propagating waves in networks of thalamic cells, cortical cells and of the thalamocortical system. Some discrepancies between experiments can be explained by the "network state", which differs vastly between anesthetized and awake conditions. We introduce a network model displaying different states and investigate their effect on the spatial structure of self-sustained and externally driven activity. This approach is a step towards understanding how the intrinsically-generated ongoing activity of the network affects its ability to process and propagate extrinsic input.
Collapse
Affiliation(s)
- Lyle Muller
- Unité de Neurosciences, Information, et Complexité, CNRS, Gif-sur-Yvette, France.
| | | |
Collapse
|
39
|
Tillein J, Hubka P, Kral A. Sensitivity to interaural time differences with binaural implants: is it in the brain? Cochlear Implants Int 2011; 12 Suppl 1:S44-50. [PMID: 21756472 DOI: 10.1179/146701011x13001035753344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
40
|
Kral A, Sharma A. Developmental neuroplasticity after cochlear implantation. Trends Neurosci 2011; 35:111-22. [PMID: 22104561 DOI: 10.1016/j.tins.2011.09.004] [Citation(s) in RCA: 359] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/27/2011] [Accepted: 09/27/2011] [Indexed: 10/15/2022]
Abstract
Cortical development is dependent on stimulus-driven learning. The absence of sensory input from birth, as occurs in congenital deafness, affects normal growth and connectivity needed to form a functional sensory system, resulting in deficits in oral language learning. Cochlear implants bypass cochlear damage by directly stimulating the auditory nerve and brain, making it possible to avoid many of the deleterious effects of sensory deprivation. Congenitally deaf animals and children who receive implants provide a platform to examine the characteristics of cortical plasticity in the auditory system. In this review, we discuss the existence of time limits for, and mechanistic constraints on, sensitive periods for cochlear implantation and describe the effects of multimodal and cognitive reorganization that result from long-term auditory deprivation.
Collapse
Affiliation(s)
- Andrej Kral
- Institute of Audioneurotechnology & Department of Experimental Otology, ENT Clinics, Medical University Hannover, Germany
| | | |
Collapse
|
41
|
Lu T, Litovsky R, Zeng FG. Binaural unmasking with multiple adjacent masking electrodes in bilateral cochlear implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:3934-45. [PMID: 21682415 PMCID: PMC3135149 DOI: 10.1121/1.3570948] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 03/02/2011] [Accepted: 03/04/2011] [Indexed: 05/25/2023]
Abstract
Bilateral cochlear implant (BiCI) users gain an advantage in noisy situations from a second implant, but their bilateral performance falls short of normal hearing listeners. Channel interactions due to overlapping electrical fields between electrodes can impair speech perception, but its role in limiting binaural hearing performance has not been well characterized. To address the issue, binaural masking level differences (BMLD) for a 125 Hz tone in narrowband noise were measured using a pair of pitch-matched electrodes while simultaneously presenting the same masking noise to adjacent electrodes, representing a more realistic stimulation condition compared to prior studies that used only a single electrode pair. For five subjects, BMLDs averaged 8.9 ± 1.0 dB (mean ± s.e.) in single electrode pairs but dropped to 2.1 ± 0.4 dB when presenting noise on adjacent masking electrodes, demonstrating a negative impact of the additional maskers. Removing the masking noise from only the pitch-matched electrode pair not only lowered thresholds but also resulted in smaller BMLDs. The degree of channel interaction estimated from auditory nerve evoked potentials in three subjects was significantly and negatively correlated with BMLD. The data suggest that if the amount of channel interactions can be reduced, BiCI users may experience some performance improvements related to binaural hearing.
Collapse
Affiliation(s)
- Thomas Lu
- Department of Otolaryngology - Head and Neck Surgery, University of California, Irvine, California 92697, USA.
| | | | | |
Collapse
|
42
|
Multiple effects of childhood deafness on cortical activity in children receiving bilateral cochlear implants simultaneously. Clin Neurophysiol 2011; 122:823-33. [DOI: 10.1016/j.clinph.2010.10.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 10/21/2010] [Accepted: 10/26/2010] [Indexed: 11/22/2022]
|
43
|
Lomber SG, Meredith MA, Kral A. Adaptive crossmodal plasticity in deaf auditory cortex. PROGRESS IN BRAIN RESEARCH 2011; 191:251-70. [DOI: 10.1016/b978-0-444-53752-2.00001-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
|
45
|
Sevy ABG, Bortfeld H, Huppert TJ, Beauchamp MS, Tonini RE, Oghalai JS. Neuroimaging with near-infrared spectroscopy demonstrates speech-evoked activity in the auditory cortex of deaf children following cochlear implantation. Hear Res 2010; 270:39-47. [PMID: 20888894 DOI: 10.1016/j.heares.2010.09.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/24/2010] [Accepted: 09/26/2010] [Indexed: 10/19/2022]
Abstract
Cochlear implants (CI) are commonly used to treat deafness in young children. While many factors influence the ability of a deaf child who is hearing through a CI to develop speech and language skills, an important factor is that the CI has to stimulate the auditory cortex. Obtaining behavioral measurements from young children with CIs can often be unreliable. While a variety of noninvasive techniques can be used for detecting cortical activity in response to auditory stimuli, many have critical limitations when applied to the pediatric CI population. We tested the ability of near-infrared spectroscopy (NIRS) to detect cortical responses to speech stimuli in pediatric CI users. Neuronal activity leads to changes in blood oxy- and deoxy-hemoglobin concentrations that can be detected by measuring the transmission of near-infrared light through the tissue. To verify the efficacy of NIRS, we first compared auditory cortex responses measured with NIRS and fMRI in normal-hearing adults. We then examined four different participant cohorts with NIRS alone. Speech-evoked cortical activity was observed in 100% of normal-hearing adults (11 of 11), 82% of normal-hearing children (9 of 11), 78% of deaf children who have used a CI > 4 months (28 of 36), and 78% of deaf children who completed NIRS testing on the day of CI initial activation (7 of 9). Therefore, NIRS can measure cortical responses in pediatric CI users, and has the potential to be a powerful adjunct to current CI assessment tools.
Collapse
Affiliation(s)
- Alexander B G Sevy
- Bobby R. Alford Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
46
|
Hartley DEH, Vongpaisal T, Xu J, Shepherd RK, King AJ, Isaiah A. Bilateral cochlear implantation in the ferret: a novel animal model for behavioral studies. J Neurosci Methods 2010; 190:214-28. [PMID: 20576507 PMCID: PMC2938482 DOI: 10.1016/j.jneumeth.2010.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/12/2010] [Accepted: 05/19/2010] [Indexed: 11/24/2022]
Abstract
Bilateral cochlear implantation has recently been introduced with the aim of improving both speech perception in background noise and sound localization. Although evidence suggests that binaural perception is possible with two cochlear implants, results in humans are variable. To explore potential contributing factors to these variable outcomes, we have developed a behavioral animal model of bilateral cochlear implantation in a novel species, the ferret. Although ferrets are ideally suited to psychophysical and physiological assessments of binaural hearing, cochlear implantation has not been previously described in this species. This paper describes the techniques of deafening with aminoglycoside administration, surgical implantation of an intracochlear array and chronic intracochlear electrical stimulation with monitoring for electrode integrity and efficacy of stimulation. Experiments have been presented elsewhere to show that the model can be used to study behavioral and electrophysiological measures of binaural hearing in chronically implanted animals. This paper demonstrates that cochlear implantation and chronic intracochlear electrical stimulation are both safe and effective in ferrets, opening up the possibility of using this model to study potential protective effects of bilateral cochlear implantation on the developing central auditory pathway. Since ferrets can be used to assess psychophysical and physiological aspects of hearing along with the structure of the auditory pathway in the same animals, we anticipate that this model will help develop novel neuroprosthetic therapies for use in humans.
Collapse
|
47
|
Reimer A, Hubka P, Engel AK, Kral A. Fast propagating waves within the rodent auditory cortex. ACTA ACUST UNITED AC 2010; 21:166-77. [PMID: 20444841 DOI: 10.1093/cercor/bhq073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Central processing of acoustic signals is assumed to take place in a stereotypical spatial and temporal pattern involving different fields of auditory cortex. So far, cortical propagating waves representing such patterns have mainly been demonstrated by optical imaging, repeatedly in the visual and somatosensory cortex. In this study, the surface of rat auditory cortex was mapped by recording local field potentials (LFPs) in response to a broadband acoustic stimulus. From the peak amplitudes of LFPs, cortical activation maps were constructed over 4 cortical auditory fields. Whereas response onset had same latencies across primary auditory field (A1), anterior auditory field (AAF), and ventral auditory field and longer latencies in posterior auditory field, activation maps revealed a reproducible wavelike pattern of activity propagating for ∼45 ms poststimulus through all cortical fields. The movement observed started with 2 waves within the primary auditory fields A1 and AAF moving from ventral to dorsal followed by a motion from rostral to caudal, passing continuously through higher-order fields. The pattern of propagating waves was well reproducible and showed only minor changes if different anesthetics were used. The results question the classical "hierarchical" model of cortical areas and demonstrate that the different fields process incoming information as a functional unit.
Collapse
Affiliation(s)
- Antonia Reimer
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | |
Collapse
|
48
|
Tillein J, Hubka P, Syed E, Hartmann R, Engel A, Kral A. Cortical Representation of Interaural Time Difference in Congenital Deafness. Cereb Cortex 2009; 20:492-506. [DOI: 10.1093/cercor/bhp222] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
49
|
Fallon JB, Shepherd RK, Brown M, Irvine DRF. Effects of neonatal partial deafness and chronic intracochlear electrical stimulation on auditory and electrical response characteristics in primary auditory cortex. Hear Res 2009; 257:93-105. [PMID: 19703532 PMCID: PMC2803318 DOI: 10.1016/j.heares.2009.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
The use of cochlear implants in patients with severe hearing losses but residual low-frequency hearing raises questions concerning the effects of chronic intracochlear electrical stimulation (ICES) on cortical responses to auditory and electrical stimuli. We investigated these questions by studying responses to tonal and electrical stimuli in primary auditory cortex (AI) of two groups of neonatally deafened cats with residual high-threshold, low-frequency hearing. One group were implanted with a multi-channel intracochlear electrode at 8 weeks of age, and received chronic ICES for up to 9 months before cortical recording. Cats in the other group were implanted immediately prior to cortical recording as adults. In all cats in both groups, multi-neuron responses throughout the rostro-caudal extent of AI had low characteristic frequencies (CFs), in the frequency range of the residual hearing, and high-thresholds. Threshold and minimum latency at CF did not differ between the groups, but in the chronic ICES animals there was a higher proportion of electrically but not acoustically excited recording sites. Electrical response thresholds were higher and latencies shorter in the chronically stimulated animals. Thus, chronic implantation and ICES affected the extent of AI that could be activated by acoustic stimuli and resulted in changes in electrical response characteristics.
Collapse
Affiliation(s)
- James B Fallon
- The Bionic Ear Institute, Melbourne, Vic. 3002, Australia.
| | | | | | | |
Collapse
|
50
|
Takesian AE, Kotak VC, Sanes DH. Developmental hearing loss disrupts synaptic inhibition: implications for auditory processing. FUTURE NEUROLOGY 2009; 4:331-349. [PMID: 20161214 PMCID: PMC2716048 DOI: 10.2217/fnl.09.5] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hearing loss during development leads to central deficits that persist even after the restoration of peripheral function. One key class of deficits is due to changes in central inhibitory synapses, which play a fundamental role in all aspects of auditory processing. This review focuses on the anatomical and physiological alterations of inhibitory connections at several regions within the central auditory pathway following hearing loss. Such aberrant inhibitory synaptic function may be linked to deficits in encoding binaural and spectral cues. Understanding the cellular changes that occur at inhibitory synapses following hearing loss may provide specific loci that can be targeted to improve function.
Collapse
Affiliation(s)
- Anne E Takesian
- Center for Neural Science, New York, University, NY 10003, USA, Tel.: +1 212 998 3914, Fax: +1 212 995 4011,
| | - Vibhakar C Kotak
- Center for Neural Science, New York, University, NY 10003, USA, Tel.: +1 212 998 3916, Fax: +1 212 995 4011,
| | - Dan H Sanes
- Center for Neural Science & Department of Biology, New York, University, NY 10003, USA, Tel.: +1 212 998 3924, Fax: +1 212 998 4348,
| |
Collapse
|