1
|
Buaron B, Reznik D, Mukamel R. High or low expectations: Expected intensity of action outcome is embedded in action kinetics. Cognition 2024; 251:105887. [PMID: 39018636 DOI: 10.1016/j.cognition.2024.105887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Goal-directed actions are performed in order to attain certain sensory consequences in the world. However, expected attributes of these consequences can affect the kinetics of the action. In a set of three studies (n = 120), we examined how expected attributes of stimulus outcome (intensity) shape the kinetics of the triggering action (applied force), even when the action kinetic and attribute are independent. We show that during action execution (button presses), the expected intensity of sensory outcome affects the applied force of the stimulus-producing action in an inverse fashion. Thus, participants applied more force when the expected intensity of the outcome was low (vs. high intensity outcome). In the absence of expectations or when actions were performed in response to the sensory event, no intensity-dependent force modulations were found. Thus, expectations of stimulus intensity and causality play an important role in shaping action kinetics. Finally, we examined the relationship between kinetics and perception and found no influence of applied force level on perceptual detection of low intensity (near-threshold) outcome stimuli, suggesting no causal link between the two. Taken together, our results demonstrate that action kinetics are embedded with high-level context such as the expectation of consequence intensity and the causal relationship with environmental cues.
Collapse
Affiliation(s)
- Batel Buaron
- Sagol School of Neuroscience and School of Psychological Sciences, Tel-Aviv University, Israel
| | - Daniel Reznik
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipizg, Germany
| | - Roy Mukamel
- Sagol School of Neuroscience and School of Psychological Sciences, Tel-Aviv University, Israel.
| |
Collapse
|
2
|
Kukkar KK, Rao N, Huynh D, Shah S, Contreras-Vidal JL, Parikh PJ. Context-dependent reduction in corticomuscular coupling for balance control in chronic stroke survivors. Exp Brain Res 2024; 242:2093-2112. [PMID: 38963559 DOI: 10.1007/s00221-024-06884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Balance control is an important indicator of mobility and independence in activities of daily living. How the functional coupling between the cortex and the muscle for balance control is affected following stroke remains to be known. We investigated the changes in coupling between the cortex and leg muscles during a challenging balance task over multiple frequency bands in chronic stroke survivors. Fourteen participants with stroke and ten healthy controls performed a challenging balance task. They stood on a computerized support surface that was either fixed (low difficulty condition) or sway-referenced with varying gain (medium and high difficulty conditions). We computed corticomuscular coherence between electrodes placed over the sensorimotor area (electroencephalography) and leg muscles (electromyography) and assessed balance performance using clinical and laboratory-based tests. We found significantly lower delta frequency band coherence in stroke participants when compared with healthy controls under medium difficulty condition, but not during low and high difficulty conditions. These differences were found for most of the distal but not for proximal leg muscle groups. No differences were found at other frequency bands. Participants with stroke showed poor balance clinical scores when compared with healthy controls, but no differences were found for laboratory-based tests. The observation of effects at distal but not at proximal muscle groups suggests differences in the (re)organization of the descending connections across two muscle groups for balance control. We argue that the observed group difference in delta band coherence indicates balance context-dependent alteration in mechanisms for the detection of somatosensory modulation resulting from sway-referencing of the support surface for balance maintenance following stroke.
Collapse
Affiliation(s)
- Komal K Kukkar
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA
| | - Nishant Rao
- Yale Child Study Center, Yale University, New Haven, Connecticut, USA
| | - Diana Huynh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA
| | - Sheel Shah
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA
| | - Jose L Contreras-Vidal
- Laboratory for Noninvasive Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Pranav J Parikh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA.
| |
Collapse
|
3
|
Sabu S, Parmentier FBR, Horváth J. Involuntary motor responses are elicited both by rare sounds and rare pitch changes. Sci Rep 2024; 14:20235. [PMID: 39215115 PMCID: PMC11364668 DOI: 10.1038/s41598-024-70776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Unpredictable deviations from an otherwise regular auditory sequence, as well as rare sounds following a period of silence, are detected automatically. Recent evidence suggests that the latter also elicit quick involuntary modulations of ongoing motor activity emerging as early as 100 ms following sound onset, which was attributed to supramodal processing. We explored such force modulations for both rare and deviant sounds. Participants (N = 29) pinched a force sensitive device and maintained a force of 1-2 N for periods of 1 min. Task-irrelevant tones were presented under two conditions. In the Rare condition, 4000 Hz tones were presented every 8-to-16 s. In the Roving condition, 4000 Hz and 2996 Hz tones were presented at rate of 1 s, with infrequent (p = 1/12) frequency changes. In the Rare condition, transient force modulations were observed with a significant increase at ~ 234 ms, and a decrease at ~ 350 ms. In the Roving condition with low frequency deviant tones, an increase in force was observed at ~ 277 ms followed by a decrease at ~ 413 ms. No significant modulations were observed during perception of high frequency deviants. These results suggest that both rare silence-breaking sounds and low-pitched deviants evoke automatic fluctuations of motor responses, which opens up the possibility that these force modulations are triggered by stimulus-specific change-detection processes.
Collapse
Affiliation(s)
- Simily Sabu
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, P.O.B. 286, Budapest, 1519, Hungary
| | - Fabrice B R Parmentier
- Department of Psychology and Research Institute of Health Sciences (IdISBa), University of the Balearic Islands, Ctra. De Valldemossa, Km 7.5, Palma de Mallorca, Balearic Islands, Spain
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - János Horváth
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, P.O.B. 286, Budapest, 1519, Hungary.
- Institute of Psychology, Károli Gáspár University of the Reformed Church in Hungary, Budapest, Hungary.
| |
Collapse
|
4
|
Del Fante E, Piovesan F, Sarasso P, Barbieri P, Villa MC, Sacco K, Ronga I. Virtual Social Interaction in a Multiplayer-Online Video Game Increases Implicit Learning: An EEG Study. CYBERPSYCHOLOGY, BEHAVIOR AND SOCIAL NETWORKING 2024; 27:599-605. [PMID: 38905139 DOI: 10.1089/cyber.2023.0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
It is well known that social interaction enhances learning processes, improving abilities such as attention and memorization. However, it is not clear whether similar advantages may be obtained even in virtual environments. Here, we investigate whether virtual interactions in a video game, similarly to real-life social interactions, may improve individuals' performance in a subsequent implicit learning task. Twenty-one healthy participants were asked to play a cooperative video game for 20 minutes in three different gaming modalities: alone (Single-Player); together with someone without verbal interactions (Multi-Player -); and with someone with verbal interactions (Multi-Player +). After each gaming session, participants were presented with an EEG paradigm directed to measure mismatch negativity (MMN) responses, a well-validated index of implicit learning. MMN responses were significantly larger following Multi-Player +, as compared with Single-Player, and Multi-Player - conditions. No significant difference was found between Single-Player, and Multi-Player - conditions. These results indicate that implicit learning processes are enhanced following communicative virtual interactions. Verbal interaction in a virtual environment seems necessary to elicit social copresence and its positive effects on learning performances. This finding may have important implications for the design of virtual rehabilitation protocols and distance learning programs.
Collapse
Affiliation(s)
- Elena Del Fante
- BIP (BraIn Plasticity and behavior changes) Research Group, Department of Psychology, University of Turin, Torino, Italy
- "Play Better" Association, Ome, Italy
| | - Francesca Piovesan
- BIP (BraIn Plasticity and behavior changes) Research Group, Department of Psychology, University of Turin, Torino, Italy
| | - Pietro Sarasso
- BIP (BraIn Plasticity and behavior changes) Research Group, Department of Psychology, University of Turin, Torino, Italy
| | - Paolo Barbieri
- BIP (BraIn Plasticity and behavior changes) Research Group, Department of Psychology, University of Turin, Torino, Italy
| | - Maria-Chiara Villa
- BIP (BraIn Plasticity and behavior changes) Research Group, Department of Psychology, University of Turin, Torino, Italy
| | - Katiuscia Sacco
- BIP (BraIn Plasticity and behavior changes) Research Group, Department of Psychology, University of Turin, Torino, Italy
| | - Irene Ronga
- BIP (BraIn Plasticity and behavior changes) Research Group, Department of Psychology, University of Turin, Torino, Italy
| |
Collapse
|
5
|
de Filippis R, Aloi M, Liuzza MT, Pugliese V, Carbone EA, Rania M, Segura-Garcia C, De Fazio P. Aberrant salience mediates the interplay between emotional abuse and positive symptoms in schizophrenia. Compr Psychiatry 2024; 133:152496. [PMID: 38718481 DOI: 10.1016/j.comppsych.2024.152496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 06/22/2024] Open
Abstract
INTRODUCTION Childhood trauma and adversities (CTA) and aberrant salience (AS) have a pivotal role in schizophrenia development, but their interplay with psychotic symptoms remains vague. We explored the mediation performed by AS between CTA and psychotic symptomatology in schizophrenia. METHODS We approached 241 adults suffering from schizophrenia spectrum disorders (SSDs), who have been in the unit for at least 12 consecutive months, excluding the diagnosis of dementia, and recent substance abuse disorder, and cross-sectional evaluated through the Aberrant Salience Inventory (ASI), Childhood Trauma Questionnaire Short-Form (CTQ-SF), and Positive and Negative Symptom Scale (PANSS). We tested a path-diagram where AS mediated the relationship between CTA and psychosis, after verifying each measure one-dimensionality through confirmatory factor analysis. RESULTS The final sample comprised 222 patients (36.9% female), with a mean age of 42.4 (± 13.3) years and an average antipsychotic dose of 453.6 (± 184.2) mg/day (chlorpromazine equivalents). The mean duration of untreated psychosis was 1.8 (± 2.0) years while the mean onset age was 23.9 (± 8.2) years. Significant paths were found from emotional abuse to ASI total score (β = 0.39; p < .001) and from ASI total score to PANSS positive (β = 0.17; p = .019). Finally, a statistically significant indirect association was found from emotional abuse to PANSS positive mediated by ASI total score (β = 0.06; p = .041; CI 95% [0.01, 0.13]). CONCLUSION Emotional abuse has an AS-mediated effect on positive psychotic symptomatology. AS evaluation could allow a better characterization of psychosis as well as explain the presence of positive symptoms in adults with SSDs who experienced CTA.
Collapse
Affiliation(s)
- Renato de Filippis
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Matteo Aloi
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Clinical and Experimental Medicine, University of Messina, Italy.
| | | | - Valentina Pugliese
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Elvira Anna Carbone
- Psychiatry Unit, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Italy.
| | - Marianna Rania
- Outpatient Unit for Clinical Research and Treatment of Eating Disorders, University Hospital Renato Dulbecco, Catanzaro, Italy
| | - Cristina Segura-Garcia
- Psychiatry Unit, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Italy.
| | - Pasquale De Fazio
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| |
Collapse
|
6
|
Rangel BO, Novembre G, Wessel JR. Measuring the nonselective effects of motor inhibition using isometric force recordings. Behav Res Methods 2024; 56:4486-4503. [PMID: 37550468 DOI: 10.3758/s13428-023-02197-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Inhibition is a key cognitive control mechanism humans use to enable goal-directed behavior. When rapidly exerted, inhibitory control has broad, nonselective motor effects, typically demonstrated using corticospinal excitability measurements (CSE) elicited by transcranial magnetic stimulation (TMS). For example, during rapid action-stopping, CSE is suppressed at both stopped and task-unrelated muscles. While such TMS-based CSE measurements have provided crucial insights into the fronto-basal ganglia circuitry underlying inhibitory control, they have several downsides. TMS is contraindicated in many populations (e.g., epilepsy or deep-brain stimulation patients), has limited temporal resolution, produces distracting auditory and haptic stimulation, is difficult to combine with other imaging methods, and necessitates expensive, immobile equipment. Here, we attempted to measure the nonselective motor effects of inhibitory control using a method unaffected by these shortcomings. Thirty male and female human participants exerted isometric force on a high-precision handheld force transducer while performing a foot-response stop-signal task. Indeed, when foot movements were successfully stopped, force output at the task-irrelevant hand was suppressed as well. Moreover, this nonselective reduction of isometric force was highly correlated with stop-signal performance and showed frequency dynamics similar to established inhibitory signatures typically found in neural and muscle recordings. Together, these findings demonstrate that isometric force recordings can reliably capture the nonselective effects of motor inhibition, opening the door to many applications that are hard or impossible to realize with TMS.
Collapse
Affiliation(s)
- Benjamin O Rangel
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, 52245, USA.
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA, 52245, USA.
- University of Iowa, 444 Medical Research Center, Iowa City, IA, 52242, USA.
| | - Giacomo Novembre
- Neuroscience of Perception & Action Laboratory, Italian Institute of Technology, Rome, Italy
| | - Jan R Wessel
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA, 52245, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52245, USA
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| |
Collapse
|
7
|
Rossi Sebastiano A, Poles K, Gualtiero S, Romeo M, Galigani M, Bruno V, Fossataro C, Garbarini F. Balancing the Senses: Electrophysiological Responses Reveal the Interplay between Somatosensory and Visual Processing During Body-Related Multisensory Conflict. J Neurosci 2024; 44:e1397232024. [PMID: 38508711 PMCID: PMC11079966 DOI: 10.1523/jneurosci.1397-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 03/22/2024] Open
Abstract
In the study of bodily awareness, the predictive coding theory has revealed that our brain continuously modulates sensory experiences to integrate them into a unitary body representation. Indeed, during multisensory illusions (e.g., the rubber hand illusion, RHI), the synchronous stroking of the participant's concealed hand and a fake visible one creates a visuotactile conflict, generating a prediction error. Within the predictive coding framework, through sensory processing modulation, prediction errors are solved, inducing participants to feel as if touches originated from the fake hand, thus ascribing the fake hand to their own body. Here, we aimed to address sensory processing modulation under multisensory conflict, by disentangling somatosensory and visual stimuli processing that are intrinsically associated during the illusion induction. To this aim, we designed two EEG experiments, in which somatosensory- (SEPs; Experiment 1; N = 18; F = 10) and visual-evoked potentials (VEPs; Experiment 2; N = 18; F = 9) were recorded in human males and females following the RHI. Our results show that, in both experiments, ERP amplitude is significantly modulated in the illusion as compared with both control and baseline conditions, with a modality-dependent diametrical pattern showing decreased SEP amplitude and increased VEP amplitude. Importantly, both somatosensory and visual modulations occur in long-latency time windows previously associated with tactile and visual awareness, thus explaining the illusion of perceiving touch at the sight location. In conclusion, we describe a diametrical modulation of somatosensory and visual processing as the neural mechanism that allows maintaining a stable body representation, by restoring visuotactile congruency under the occurrence of multisensory conflicts.
Collapse
Affiliation(s)
| | - Karol Poles
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10124, Italy
| | - Stefano Gualtiero
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10124, Italy
| | - Marcella Romeo
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10124, Italy
- IMT School for Advanced Studies Lucca, Lucca 55100, Italy
| | - Mattia Galigani
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10124, Italy
| | - Valentina Bruno
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10124, Italy
| | - Carlotta Fossataro
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10124, Italy
| | - Francesca Garbarini
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10124, Italy
- Neuroscience Institute of Turin (NIT), Turin 10124, Italy
| |
Collapse
|
8
|
de Wit MM, Faseyitan O, Coslett HB. Always expect the unexpected: eye position modulates visual cortex excitability in a stimulus-free environment. J Neurophysiol 2024; 131:937-944. [PMID: 38568480 PMCID: PMC11383376 DOI: 10.1152/jn.00169.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 05/15/2024] Open
Abstract
Stimuli that potentially require a rapid defensive or avoidance action can appear from the periphery at any time in natural environments. de Wit et al. (Cortex 127: 120-130, 2020) recently reported novel evidence suggestive of a fundamental neural mechanism that allows organisms to effectively deal with such situations. In the absence of any task, motor cortex excitability was found to be greater whenever gaze was directed away from either hand. If modulation of cortical excitability as a function of gaze location is a fundamental principle of brain organization, then one would expect its operation to be present outside of motor cortex, including brain regions involved in perception. To test this hypothesis, we applied single-pulse transcranial magnetic stimulation (TMS) to the right lateral occipital lobe while participants directed their eyes to the left, straight-ahead, or to the right, and reported the presence or absence of a phosphene. No external stimuli were presented. Cortical excitability as reflected by the proportion of trials on which phosphenes were elicited from stimulation of the right visual cortex was greater with eyes deviated to the right as compared with the left. In conjunction with our previous findings of change in motor cortex excitability when gaze and effector are not aligned, this eye position-driven change in visual cortex excitability presumably serves to facilitate the detection of stimuli and subsequent readiness to act in nonfoveated regions of space. The existence of this brain-wide mechanism has clear adaptive value given the unpredictable nature of natural environments in which human beings are situated and have evolved.NEW & NOTEWORTHY For many complex tasks, humans focus attention on the site relevant to the task at hand. Humans evolved and live in dangerous environments, however, in which threats arise from outside the attended site; this fact necessitates a process by which the periphery is monitored. Using single-pulse transcranial magnetic stimulation (TMS), we demonstrated for the first time that eye position modulates visual cortex excitability. We argue that this underlies at least in part what we term "surveillance attention."
Collapse
Affiliation(s)
- Matthieu M de Wit
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Olufunsho Faseyitan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - H Branch Coslett
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
9
|
Bundt C, Huster RJ. Corticospinal excitability reductions during action preparation and action stopping in humans: Different sides of the same inhibitory coin? Neuropsychologia 2024; 195:108799. [PMID: 38218313 DOI: 10.1016/j.neuropsychologia.2024.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Motor functions and cognitive processes are closely associated with each other. In humans, this linkage is reflected in motor system state changes both when an action must be prepared and stopped. Single-pulse transcranial magnetic stimulation showed that both action preparation and action stopping are accompanied by a reduction of corticospinal excitability, referred to as preparatory and response inhibition, respectively. While previous efforts have been made to describe both phenomena extensively, an updated and comprehensive comparison of the two phenomena is lacking. To ameliorate such deficit, this review focuses on the role and interpretation of single-coil (single-pulse and paired-pulse) and dual-coil TMS outcome measures during action preparation and action stopping in humans. To that effect, it aims to identify commonalities and differences, detailing how TMS-based outcome measures are affected by states, traits, and psychopathologies in both processes. Eventually, findings will be compared, and open questions will be addressed to aid future research.
Collapse
Affiliation(s)
- Carsten Bundt
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway.
| | - René J Huster
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Varga S, Pfister R, Neszmélyi B, Kunde W, Horváth J. Task-relevance and change detection in action-effect binding. Acta Psychol (Amst) 2024; 243:104147. [PMID: 38237474 DOI: 10.1016/j.actpsy.2024.104147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/08/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
Features of actions are bound to coincidentally occurring stimuli so that re-encountering a stimulus retrieves a previous action episode. One hallmark of the purported mechanism in binding/retrieval tasks is a reliable reaction time advantage for repeating a previous response if tone stimuli repeat rather than alternate across trials. Other measures than reaction times yielded surprisingly mixed results, however. This is particularly true for continuous response features like force or response duration. We therefore conducted two experiments to resolve this disconnect between different measures. Experiment 1 tested for a potentially inflated effect in reaction time data, whereas Experiment 2 took the converse approach of studying conditions that would elicit similarly strong effects on alternative measures. Our results show that confounds in terms of auditory change detection do not inflate reaction time differences, reinforcing an interpretation of these effects as reflecting binding and retrieval. Moreover, strong effects on alternative measures appeared if these features were rendered task-relevant and came with sufficient variability. These observations provide critical evidence for binding and retrieval accounts, especially by showing that these accounts extend from binary decisions to continuous features of an actual motor response.
Collapse
Affiliation(s)
- Sámuel Varga
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary; Department of Cognitive Science, Faculty of Natural Sciences, Budapest University of Technology and Economics, Hungary.
| | - Roland Pfister
- Department of Psychology, Trier University, Germany; Institute for Cognitive and Affective Neuroscience (ICAN), Trier University, Germany
| | - Bence Neszmélyi
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Wilfried Kunde
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - János Horváth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary; Institute of Psychology, Károli Gáspár University of the Reformed Church in Hungary, Budapest, Hungary
| |
Collapse
|
11
|
Novembre G, Lacal I, Benusiglio D, Quarta E, Schito A, Grasso S, Caratelli L, Caminiti R, Mayer AB, Iannetti GD. A Cortical Mechanism Linking Saliency Detection and Motor Reactivity in Rhesus Monkeys. J Neurosci 2024; 44:e0422232023. [PMID: 37949654 PMCID: PMC10851684 DOI: 10.1523/jneurosci.0422-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Sudden and surprising sensory events trigger neural processes that swiftly adjust behavior. To study the phylogenesis and the mechanism of this phenomenon, we trained two male rhesus monkeys to keep a cursor inside a visual target by exerting force on an isometric joystick. We examined the effect of surprising auditory stimuli on exerted force, scalp electroencephalographic (EEG) activity, and local field potentials (LFPs) recorded from the dorsolateral prefrontal cortex. Auditory stimuli elicited (1) a biphasic modulation of isometric force, a transient decrease followed by a corrective tonic increase, and (2) EEG and LFP deflections dominated by two large negative-positive waves (N70 and P130). The EEG potential was symmetrical and maximal at the scalp vertex, highly reminiscent of the human "vertex potential." Electrocortical potentials and force were tightly coupled: the P130 amplitude predicted the magnitude of the corrective force increase, particularly in the LFPs recorded from deep rather than superficial cortical layers. These results disclose a phylogenetically preserved corticomotor mechanism supporting adaptive behavior in response to salient sensory events.Significance Statement Survival in the natural world depends on an animal's capacity to adapt ongoing behavior to abrupt unexpected events. To study the neural mechanisms underlying this capacity, we trained monkeys to apply constant force on a joystick while we recorded their brain activity from the scalp and the prefrontal cortex contralateral to the hand holding the joystick. Unexpected auditory stimuli elicited a biphasic force modulation: a transient reduction followed by a corrective adjustment. The same stimuli also elicited EEG and LFP responses, dominated by a biphasic wave that predicted the magnitude of the behavioral adjustment. These results disclose a phylogenetically preserved corticomotor mechanism supporting adaptive behavior in response to unexpected events.
Collapse
Affiliation(s)
- Giacomo Novembre
- Neuroscience of Perception & Action Lab, Italian Institute of Technology, Rome 00161, Italy
| | - Irene Lacal
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz-Institute for Primate Research, 37077 Göttingen, Germany
| | - Diego Benusiglio
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
- European Molecular Biology Laboratory (EMBL), Epigenetics and Neurobiology Unit, Rome 00015, Italy
| | - Eros Quarta
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Andrea Schito
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Stefano Grasso
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Ludovica Caratelli
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
| | | | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London WC1E6BT, United Kingdom
| |
Collapse
|
12
|
Kukkar KK, Rao N, Huynh D, Shah S, Contreras-Vidal JL, Parikh PJ. Task-dependent Alteration in Delta Band Corticomuscular Coherence during Standing in Chronic Stroke Survivors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.17.23292472. [PMID: 37503096 PMCID: PMC10371181 DOI: 10.1101/2023.07.17.23292472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Balance control is an important indicator of mobility and independence in activities of daily living. How the changes in functional integrity of corticospinal tract due to stroke affects the maintenance of upright stance remains to be known. We investigated the changes in functional coupling between the cortex and lower limb muscles during a challenging balance task over multiple frequency bands in chronic stroke survivors. Eleven stroke patients and nine healthy controls performed a challenging balance task. They stood on a computerized platform with/without somatosensory input distortion created by sway-referencing the support surface, thereby varying the difficulty levels of the task. We computed corticomuscular coherence between Cz (electroencephalography) and leg muscles and assessed balance performance using Berg Balance scale (BBS), Timed-up and go (TUG) and center of pressure (COP) measures. We found lower delta frequency band coherence in stroke patients when compared with healthy controls under medium difficulty condition for distal but not proximal leg muscles. For both groups, we found similar coherence at other frequency bands. On BBS and TUG, stroke patients showed poor balance. However, similar group differences were not consistently observed across COP measures. The presence of distal versus proximal effect suggests differences in the (re)organization of the corticospinal connections across the two muscles groups for balance control. We argue that the observed group difference in the delta coherence might be due to altered mechanisms for the detection of somatosensory modulation resulting from sway-referencing of the support platform for balance control.
Collapse
Affiliation(s)
- Komal K. Kukkar
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, Texas
| | - Nishant Rao
- Haskins Laboratories, Yale University, New Haven, Connecticut
| | - Diana Huynh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, Texas
| | - Sheel Shah
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, Texas
| | - Jose L. Contreras-Vidal
- Laboratory for Noninvasive Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, Texas
| | - Pranav J. Parikh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, Texas
| |
Collapse
|
13
|
Tatz JR, Mather A, Wessel JR. β-Bursts over Frontal Cortex Track the Surprise of Unexpected Events in Auditory, Visual, and Tactile Modalities. J Cogn Neurosci 2023; 35:485-508. [PMID: 36603039 PMCID: PMC9894628 DOI: 10.1162/jocn_a_01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
One of the fundamental ways in which the brain regulates and monitors behavior is by making predictions about the sensory environment and adjusting behavior when those expectations are violated. As such, surprise is one of the fundamental computations performed by the human brain. In recent years, it has been well established that one key aspect by which behavior is adjusted during surprise is inhibitory control of the motor system. Moreover, because surprise automatically triggers inhibitory control without much proactive influence, it can provide unique insights into largely reactive control processes. Recent years have seen tremendous interest in burst-like β frequency events in the human (and nonhuman) local field potential-especially over (p)FC-as a potential signature of inhibitory control. To date, β-bursts have only been studied in paradigms involving a substantial amount of proactive control (such as the stop-signal task). Here, we used two cross-modal oddball tasks to investigate whether surprise processing is accompanied by increases in scalp-recorded β-bursts. Indeed, we found that unexpected events in all tested sensory domains (haptic, auditory, visual) were followed by low-latency increases in β-bursting over frontal cortex. Across experiments, β-burst rates were positively correlated with estimates of surprise derived from Shannon's information theory, a type of surprise that represents the degree to which a given stimulus violates prior expectations. As such, the current work clearly implicates frontal β-bursts as a signature of surprise processing. We discuss these findings in the context of common frameworks of inhibitory and cognitive control after unexpected events.
Collapse
Affiliation(s)
- Joshua R. Tatz
- University of Iowa,University of Iowa Hospital and Clinics
| | | | - Jan R. Wessel
- University of Iowa,University of Iowa Hospital and Clinics
| |
Collapse
|
14
|
Interpersonal synchronization of spontaneously generated body movements. iScience 2023; 26:106104. [PMID: 36852275 PMCID: PMC9958360 DOI: 10.1016/j.isci.2023.106104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Interpersonal movement synchrony (IMS) is central to social behavior in several species. In humans, IMS is typically studied using structured tasks requiring participants to produce specific body movements. Instead, spontaneously generated (i.e., not instructed) movements have received less attention. To test whether spontaneous movements synchronize interpersonally, we recorded full-body kinematics from dyads of participants who were only asked to sit face-to-face and to look at each other. We manipulated interpersonal (i) visual contact and (ii) spatial proximity. We found that spontaneous movements synchronized across participants only when they could see each other and regardless of interpersonal spatial proximity. This synchronization emerged very rapidly and did not selectively entail homologous body parts (as in mimicry); rather, the synchrony generalized to nearly all possible combinations of body parts. Hence, spontaneous behavior alone can lead to IMS. More generally, our results highlight that IMS can be studied under natural and unconstrained conditions.
Collapse
|
15
|
Choo Y, Matzke D, Bowren MD, Tranel D, Wessel JR. Right inferior frontal gyrus damage is associated with impaired initiation of inhibitory control, but not its implementation. eLife 2022; 11:e79667. [PMID: 36583378 PMCID: PMC9803357 DOI: 10.7554/elife.79667] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Inhibitory control is one of the most important control functions in the human brain. Much of our understanding of its neural basis comes from seminal work showing that lesions to the right inferior frontal gyrus (rIFG) increase stop-signal reaction time (SSRT), a latent variable that expresses the speed of inhibitory control. However, recent work has identified substantial limitations of the SSRT method. Notably, SSRT is confounded by trigger failures: stop-signal trials in which inhibitory control was never initiated. Such trials inflate SSRT, but are typically indicative of attentional, rather than inhibitory deficits. Here, we used hierarchical Bayesian modeling to identify stop-signal trigger failures in human rIFG lesion patients, non-rIFG lesion patients, and healthy comparisons. Furthermore, we measured scalp-EEG to detect β-bursts, a neurophysiological index of inhibitory control. rIFG lesion patients showed a more than fivefold increase in trigger failure trials and did not exhibit the typical increase of stop-related frontal β-bursts. However, on trials in which such β-bursts did occur, rIFG patients showed the typical subsequent upregulation of β over sensorimotor areas, indicating that their ability to implement inhibitory control, once triggered, remains intact. These findings suggest that the role of rIFG in inhibitory control has to be fundamentally reinterpreted.
Collapse
Affiliation(s)
- Yoojeong Choo
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Cognitive Control Collaborative, University of IowaIowa CityUnited States
| | - Dora Matzke
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
| | - Mark D Bowren
- Department of Clinical and Health Psychology, University of FloridaGainesvilleUnited States
| | - Daniel Tranel
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Department of Neurology, University of Iowa Hospitals and ClinicsIowa CityUnited States
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Cognitive Control Collaborative, University of IowaIowa CityUnited States
- Department of Neurology, University of Iowa Hospitals and ClinicsIowa CityUnited States
| |
Collapse
|
16
|
Fossataro C, Galigani M, Rossi Sebastiano A, Bruno V, Ronga I, Garbarini F. Spatial proximity to others induces plastic changes in the neural representation of the peripersonal space. iScience 2022; 26:105879. [PMID: 36654859 PMCID: PMC9840938 DOI: 10.1016/j.isci.2022.105879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Peripersonal space (PPS) is a highly plastic "invisible bubble" surrounding the body whose boundaries are mapped through multisensory integration. Yet, it is unclear how the spatial proximity to others alters PPS boundaries. Across five experiments (N = 80), by recording behavioral and electrophysiological responses to visuo-tactile stimuli, we demonstrate that the proximity to others induces plastic changes in the neural PPS representation. The spatial proximity to someone else's hand shrinks the portion of space within which multisensory responses occur, thus reducing the PPS boundaries. This suggests that PPS representation, built from bodily and multisensory signals, plastically adapts to the presence of conspecifics to define the self-other boundaries, so that what is usually coded as "my space" is recoded as "your space". When the space is shared with conspecifics, it seems adaptive to move the other-space away from the self-space to discriminate whether external events pertain to the self-body or to other-bodies.
Collapse
Affiliation(s)
- Carlotta Fossataro
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Mattia Galigani
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | | | - Valentina Bruno
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Irene Ronga
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Francesca Garbarini
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy,Neuroscience Institute of Turin (NIT), Turin 10123, Italy,Corresponding author
| |
Collapse
|
17
|
Sarasso P, Ronga I, Del Fante E, Barbieri P, Lozzi I, Rosaia N, Cicerale A, Neppi-Modona M, Sacco K. Physical but not virtual presence of others potentiates implicit and explicit learning. Sci Rep 2022; 12:21205. [PMID: 36481679 PMCID: PMC9732282 DOI: 10.1038/s41598-022-25273-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
E-learning activities are becoming more and more common. Whilst it is well known that the physical presence of others motivates individuals to engage in perceptual and learning tasks, systematic investigations comparing the effects of physical and virtual co-presence of others on knowledge acquisition are still scarce. Here we investigate the effects of physical and virtual co-presence of others on explicit and implicit learning. In Experiment 1 (discovery sample), retrieval accuracy in a spatial memory task and EEG indexes (mismatch negativity-MMN) of implicit perceptual learning were recorded when participants were alone or in presence of another individual. In Experiment 2 (replicating sample), we added a "virtual" condition, where the same tasks were performed during a video-conference call. In both experiments, MMN was demonstrated to encode for perceptual learning as revealed by the significant correlation with Bayesian Surprise (a consolidated information-theoretic index of Bayesian learning). Furthermore, In Experiments 1 and 2 physical co-presence systematically ameliorated memorization performances and increased MMN indexes related to implicit learning. These positive effects were absent in the virtual condition, thus suggesting that only physical, but not virtual co-presence is effective in potentiating learning dynamics.
Collapse
Affiliation(s)
- Pietro Sarasso
- grid.7605.40000 0001 2336 6580BIP (BraIn Plasticity and Behaviour Changes) Research Group, Department of Psychology, University of Turin, Via Verdi, 10, 10124 Turin, Italy
| | - Irene Ronga
- grid.7605.40000 0001 2336 6580BIP (BraIn Plasticity and Behaviour Changes) Research Group, Department of Psychology, University of Turin, Via Verdi, 10, 10124 Turin, Italy
| | - Elena Del Fante
- grid.7605.40000 0001 2336 6580BIP (BraIn Plasticity and Behaviour Changes) Research Group, Department of Psychology, University of Turin, Via Verdi, 10, 10124 Turin, Italy
| | - Paolo Barbieri
- grid.7605.40000 0001 2336 6580BIP (BraIn Plasticity and Behaviour Changes) Research Group, Department of Psychology, University of Turin, Via Verdi, 10, 10124 Turin, Italy
| | - Irene Lozzi
- grid.7605.40000 0001 2336 6580BIP (BraIn Plasticity and Behaviour Changes) Research Group, Department of Psychology, University of Turin, Via Verdi, 10, 10124 Turin, Italy
| | - Nicola Rosaia
- grid.38142.3c000000041936754XDepartment of Economics, Harvard University, Cambridge, MA USA
| | - Alessandro Cicerale
- grid.7605.40000 0001 2336 6580BIP (BraIn Plasticity and Behaviour Changes) Research Group, Department of Psychology, University of Turin, Via Verdi, 10, 10124 Turin, Italy
| | - Marco Neppi-Modona
- grid.7605.40000 0001 2336 6580BIP (BraIn Plasticity and Behaviour Changes) Research Group, Department of Psychology, University of Turin, Via Verdi, 10, 10124 Turin, Italy
| | - Katiuscia Sacco
- grid.7605.40000 0001 2336 6580BIP (BraIn Plasticity and Behaviour Changes) Research Group, Department of Psychology, University of Turin, Via Verdi, 10, 10124 Turin, Italy
| |
Collapse
|
18
|
Zhang LB, Lu XJ, Huang G, Zhang HJ, Tu YH, Kong YZ, Hu L. Selective and replicable neuroimaging-based indicators of pain discriminability. Cell Rep Med 2022; 3:100846. [PMID: 36473465 PMCID: PMC9798031 DOI: 10.1016/j.xcrm.2022.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/18/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Neural indicators of pain discriminability have far-reaching theoretical and clinical implications but have been largely overlooked previously. Here, to directly identify the neural basis of pain discriminability, we apply signal detection theory to three EEG (Datasets 1-3, total N = 366) and two fMRI (Datasets 4-5, total N = 399) datasets where participants receive transient stimuli of four sensory modalities (pain, touch, audition, and vision) and two intensities (high and low) and report perceptual ratings. Datasets 1 and 4 are used for exploration and others for validation. We find that most pain-evoked EEG and fMRI brain responses robustly encode pain discriminability, which is well replicated in validation datasets. The neural indicators are also pain selective since they cannot track tactile, auditory, or visual discriminability, even though perceptual ratings and sensory discriminability are well matched between modalities. Overall, we provide compelling evidence that pain-evoked brain responses can serve as replicable and selective neural indicators of pain discriminability.
Collapse
Affiliation(s)
- Li-Bo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Jing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gan Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Hui-Juan Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Heng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Zhuo Kong
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding author
| |
Collapse
|
19
|
Somervail R, Bufacchi RJ, Salvatori C, Neary-Zajiczek L, Guo Y, Novembre G, Iannetti GD. Brain Responses to Surprising Stimulus Offsets: Phenomenology and Functional Significance. Cereb Cortex 2022; 32:2231-2244. [PMID: 34668519 PMCID: PMC9113248 DOI: 10.1093/cercor/bhab352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/15/2022] Open
Abstract
Abrupt increases of sensory input (onsets) likely reflect the occurrence of novel events or objects in the environment, potentially requiring immediate behavioral responses. Accordingly, onsets elicit a transient and widespread modulation of ongoing electrocortical activity: the Vertex Potential (VP), which is likely related to the optimisation of rapid behavioral responses. In contrast, the functional significance of the brain response elicited by abrupt decreases of sensory input (offsets) is more elusive, and a detailed comparison of onset and offset VPs is lacking. In four experiments conducted on 44 humans, we observed that onset and offset VPs share several phenomenological and functional properties: they (1) have highly similar scalp topographies across time, (2) are both largely comprised of supramodal neural activity, (3) are both highly sensitive to surprise and (4) co-occur with similar modulations of ongoing motor output. These results demonstrate that the onset and offset VPs largely reflect the activity of a common supramodal brain network, likely consequent to the activation of the extralemniscal sensory system which runs in parallel with core sensory pathways. The transient activation of this system has clear implications in optimizing the behavioral responses to surprising environmental changes.
Collapse
Affiliation(s)
- R Somervail
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), WC1E 6BT, London, UK
| | - R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - C Salvatori
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - L Neary-Zajiczek
- Department of Computer Science, University College London (UCL), WC1E 6BT, London, UK
| | - Y Guo
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - G Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), WC1E 6BT, London, UK
| |
Collapse
|
20
|
Parmigiani S, Mikulan EP, Russo S, Sarasso S, Zauli FM, Rubino A, Cattani A, Fecchio M, Giampiccolo D, Lanzone J, D'Orio P, Del Vecchio M, Avanzini P, Nobili L, Sartori I, Massimini M, Pigorini A. Simultaneous stereo-EEG and high-density scalp EEG recordings to study the effects of intracerebral stimulation parameters. Brain Stimul 2022; 15:664-675. [PMID: 35421585 DOI: 10.1016/j.brs.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cortico-cortical evoked potentials (CCEPs) recorded by stereo-electroencephalography (SEEG) are a valuable tool to investigate brain reactivity and effective connectivity. However, invasive recordings are spatially sparse since they depend on clinical needs. This sparsity hampers systematic comparisons across-subjects, the detection of the whole-brain effects of intracortical stimulation, as well as their relationships to the EEG responses evoked by non-invasive stimuli. OBJECTIVE To demonstrate that CCEPs recorded by high-density electroencephalography (hd-EEG) provide additional information with respect SEEG alone and to provide an open, curated dataset to allow for further exploration of their potential. METHODS The dataset encompasses SEEG and hd-EEG recordings simultaneously acquired during Single Pulse Electrical Stimulation (SPES) in drug-resistant epileptic patients (N = 36) in whom stimulations were delivered with different physical, geometrical, and topological parameters. Differences in CCEPs were assessed by amplitude, latency, and spectral measures. RESULTS While invasively and non-invasively recorded CCEPs were generally correlated, differences in pulse duration, angle and stimulated cortical area were better captured by hd-EEG. Further, intracranial stimulation evoked site-specific hd-EEG responses that reproduced the spectral features of EEG responses to transcranial magnetic stimulation (TMS). Notably, SPES, albeit unperceived by subjects, elicited scalp responses that were up to one order of magnitude larger than the responses typically evoked by sensory stimulation in awake humans. CONCLUSIONS CCEPs can be simultaneously recorded with SEEG and hd-EEG and the latter provides a reliable descriptor of the effects of SPES as well as a common reference to compare the whole-brain effects of intracortical stimulation to those of non-invasive transcranial or sensory stimulations in humans.
Collapse
Affiliation(s)
- S Parmigiani
- Department of Biomedical and Clinical Sciences "L. Sacco" Università degli Studi di Milano, Milan, Italy
| | - E P Mikulan
- Department of Biomedical and Clinical Sciences "L. Sacco" Università degli Studi di Milano, Milan, Italy
| | - S Russo
- Department of Biomedical and Clinical Sciences "L. Sacco" Università degli Studi di Milano, Milan, Italy; Department of Philosophy "Piero Martinetti", Università degli Studi di Milano, Milan, Italy
| | - S Sarasso
- Department of Biomedical and Clinical Sciences "L. Sacco" Università degli Studi di Milano, Milan, Italy
| | - F M Zauli
- Department of Biomedical and Clinical Sciences "L. Sacco" Università degli Studi di Milano, Milan, Italy; Department of Philosophy "Piero Martinetti", Università degli Studi di Milano, Milan, Italy
| | - A Rubino
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan, Italy
| | - A Cattani
- Department of Mathematics & Statistics, Boston University, Boston, MA, USA
| | - M Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - D Giampiccolo
- Department of Neurosurgery, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK; Institute of Neurosciences, Cleveland Clinic London, London, UK
| | - J Lanzone
- Department of Systems Medicine, Neuroscience, University of Rome Tor Vergata, Rome, Italy; Istituti Clinici Scientifici Maugeri, IRCCS, Neurorehabilitation Department of Milano Institute, Milan, Italy
| | - P D'Orio
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan, Italy; Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - M Del Vecchio
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - P Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - L Nobili
- Child Neuropsychiatry, IRCCS Istituto G. Gaslini, Genova, Italy
| | - I Sartori
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan, Italy
| | - M Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco" Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy; Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada
| | - A Pigorini
- Department of Biomedical and Clinical Sciences "L. Sacco" Università degli Studi di Milano, Milan, Italy; Department of Biomedical, V, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
21
|
González‐Villar A, Galdo‐Álvarez S, Carrillo‐de‐la‐Peña MT. Neural correlates of unpredictable Stop and non‐Stop cues in overt and imagined execution. Psychophysiology 2022; 59:e14019. [PMID: 35224733 PMCID: PMC9286458 DOI: 10.1111/psyp.14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/08/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
The ability to inhibit incorrect behaviors is crucial for survival. In real contexts, cues that require stopping usually appear intermixed with indications to continue the ongoing action. However, in the classical Stop‐signal task (SST), the unpredictable stimuli are always signals that require inhibition. To understand the neural mechanisms activated by low‐probability nonstop cues, we recorded the electroencephalography from 23 young volunteers while they performed a modified SST where the unpredictable stimuli could be either Stop or confirmatory Go signals (CGo). To isolate the influence of motor output, the SST was performed during overt and covert execution. We found that, paradoxically, CGo stimuli activated motor inhibition processes, and evoked patterns of brain activity similar to those obtained after Stop signals (N2/P3 event‐related potentials and midfrontal theta power increase), though in lesser magnitude. These patterns were also observed during the imagined performance. Finally, applying machine learning procedures, we found that the brain activity evoked after CGo versus Stop signals can be classified above chance during both, overt and imagined execution. Our results provide evidence that unpredictable signals cause motor inhibition even when they require to continue an ongoing action. This study advances our understanding of the neural correlates of inhibition by using a modified Stop‐signal task where Stop signals were intermixed with cues to continue the ongoing action (CGo signals). CGo signals produced motor inhibition and EEG activity similar to Stop signals (both during overt and imagined performance). The neural activity related to CGo vs Stop signals could be decoded using a machine learning algorithm, indicating that Stop signals evoke a specific pattern of EEG activity.
Collapse
Affiliation(s)
- Alberto González‐Villar
- Psychological Neuroscience Lab, CIPsi, School of Psychology University of Minho Braga Portugal
| | - Santiago Galdo‐Álvarez
- Department of Clinical Psychology and Psychobiology University of Santiago de Compostela Santiago de Compostela Spain
| | - María T. Carrillo‐de‐la‐Peña
- BaP (Brain and Pain) Lab, Department of Clinical Psychology and Psychobiology University of Santiago de Compostela Santiago de Compostela Spain
| |
Collapse
|
22
|
Preferred music listening is associated with perceptual learning enhancement at the expense of self-focused attention. Psychon Bull Rev 2022; 29:2108-2121. [PMID: 35668293 PMCID: PMC9722857 DOI: 10.3758/s13423-022-02127-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 12/14/2022]
Abstract
Can preferred music listening improve following attentional and learning performances? Here we suggest that this may be the case. In Experiment 1, following preferred and non-preferred musical-piece listening, we recorded electrophysiological responses to an auditory roving-paradigm. We computed the mismatch negativity (MMN - the difference between responses to novel and repeated stimulation), as an index of perceptual learning, and we measured the correlation between trial-by-trial EEG responses and the fluctuations in Bayesian Surprise, as a quantification of the neural attunement with stimulus informational value. Furthermore, during music listening, we recorded oscillatory cortical activity. MMN and trial-by-trial correlation with Bayesian surprise were significantly larger after subjectively preferred versus non-preferred music, indicating the enhancement of perceptual learning. The analysis on oscillatory activity during music listening showed a selective alpha power increased in response to preferred music, an effect often related to cognitive enhancements. In Experiment 2, we explored whether this learning improvement was realized at the expense of self-focused attention. Therefore, after preferred versus non-preferred music listening, we collected Heart-Beat Detection (HBD) accuracy, as a measure of the attentional focus toward the self. HBD was significantly lowered following preferred music listening. Overall, our results suggest the presence of a specific neural mechanism that, in response to aesthetically pleasing stimuli, and through the modulation of alpha oscillatory activity, redirects neural resources away from the self and toward the environment. This attentional up-weighting of external stimuli might be fruitfully exploited in a wide area of human learning activities, including education, neurorehabilitation and therapy.
Collapse
|
23
|
Ross JM, Comstock DC, Iversen JR, Makeig S, Balasubramaniam R. Cortical mu rhythms during action and passive music listening. J Neurophysiol 2022; 127:213-224. [PMID: 34936516 PMCID: PMC8794057 DOI: 10.1152/jn.00346.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Brain systems supporting body movement are active during music listening in the absence of overt movement. This covert motor activity is not well understood, but some theories propose a role in auditory timing prediction facilitated by motor simulation. One question is how music-related covert motor activity relates to motor activity during overt movement. We address this question using scalp electroencephalogram by measuring mu rhythms-cortical field phenomena associated with the somatomotor system that appear over sensorimotor cortex. Lateralized mu enhancement over hand sensorimotor cortex during/just before foot movement in foot versus hand movement paradigms is thought to reflect hand movement inhibition during current/prospective movement of another effector. Behavior of mu during music listening with movement suppressed has yet to be determined. We recorded 32-channel EEG (n = 17) during silence without movement, overt movement (foot/hand), and music listening without movement. Using an independent component analysis-based source equivalent dipole clustering technique, we identified three mu-related clusters, localized to left primary motor and right and midline premotor cortices. Right foot tapping was accompanied by mu enhancement in the left lateral source cluster, replicating previous work. Music listening was accompanied by similar mu enhancement in the left, as well as midline, clusters. We are the first, to our knowledge, to report, and also to source-resolve, music-related mu modulation in the absence of overt movements. Covert music-related motor activity has been shown to play a role in beat perception (Ross JM, Iversen JR, Balasubramaniam R. Neurocase 22: 558-565, 2016). Our current results show enhancement in somatotopically organized mu, supporting overt motor inhibition during beat perception.NEW & NOTEWORTHY We are the first to report music-related mu enhancement in the absence of overt movements and the first to source-resolve mu activity during music listening. We suggest that music-related mu modulation reflects overt motor inhibition during passive music listening. This work is relevant for the development of theories relating to the involvement of covert motor system activity for predictive beat perception.
Collapse
Affiliation(s)
- Jessica M. Ross
- 1Veterans Affairs Palo Alto Heathcare System, the Sierra Pacific Mental Illness, Research Education, and Clinical Center (MIRECC), Palo Alto, California,2Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California,3Berenson-Allen Center for Noninvasive Brain Stimulation,
Beth Israel Deaconess Medical Center, Boston, Massachusetts,4Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Daniel C. Comstock
- 5Cognitive and Information Sciences, University of California, Merced, California
| | - John R. Iversen
- 6Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California, San Diego, California
| | - Scott Makeig
- 6Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California, San Diego, California
| | | |
Collapse
|
24
|
Common and Unique Inhibitory Control Signatures of Action-Stopping and Attentional Capture Suggest That Actions Are Stopped in Two Stages. J Neurosci 2021; 41:8826-8838. [PMID: 34493541 DOI: 10.1523/jneurosci.1105-21.2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/03/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022] Open
Abstract
The ability to stop an already initiated action is paramount to adaptive behavior. Much scientific debate in the field of human action-stopping currently focuses on two interrelated questions. (1) Which cognitive and neural processes uniquely underpin the implementation of inhibitory control when actions are stopped after explicit stop signals, and which processes are instead commonly evoked by all salient signals, even those that do not require stopping? (2) Why do purported (neuro)physiological signatures of inhibition occur at two different latencies after stop signals? Here, we address both questions via two preregistered experiments that combined measurements of corticospinal excitability, EMG, and whole-scalp EEG. Adult human subjects performed a stop signal task that also contained "ignore" signals: equally salient signals that did not require stopping but rather completion of the Go response. We found that both stop- and ignore signals produced equal amounts of early-latency inhibition of corticospinal excitability and EMG, which took place ∼150 ms following either signal. Multivariate pattern analysis of the whole-scalp EEG data further corroborated that this early processing stage was shared between stop- and ignore signals, as neural activity following the two signals could not be decoded from each other until a later time period. In this later period, unique activity related to stop signals emerged at frontocentral scalp sites, reflecting an increased stop signal P3. These findings suggest a two-step model of action-stopping, according to which an initial, universal inhibitory response to the saliency of the stop signal is followed by a slower process that is unique to outright stopping.SIGNIFICANCE STATEMENT Humans often have to stop their ongoing actions when indicated by environmental stimuli (stop signals). Successful action-stopping requires both the ability to detect these salient stop signals and to subsequently inhibit ongoing motor programs. Because of this tight entanglement of attentional control and motor inhibition, identifying unique neurophysiological signatures of action-stopping is difficult. Indeed, we report that recently proposed early-latency signatures of motor inhibition during action-stopping are also found after salient signals that do not require stopping. However, using multivariate pattern analysis of scalp-recorded neural data, we also identified subsequent neural activity that uniquely distinguished action-stopping from saliency detection. These results suggest that actions are stopped in two stages: the first common to all salient events and the second unique to action-stopping.
Collapse
|
25
|
Ronga I, Galigani M, Bruno V, Castellani N, Rossi Sebastiano A, Valentini E, Fossataro C, Neppi-Modona M, Garbarini F. Seeming confines: Electrophysiological evidence of peripersonal space remapping following tool-use in humans. Cortex 2021; 144:133-150. [PMID: 34666298 DOI: 10.1016/j.cortex.2021.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/05/2021] [Accepted: 08/07/2021] [Indexed: 11/29/2022]
Abstract
The peripersonal space (PPS) is a special portion of space immediately surrounding the body, where the integration between tactile stimuli delivered on the body and auditory or visual events emanating from the environment occurs. Interestingly, PPS can widen if a tool is employed to interact with objects in the far space. However, electrophysiological evidence of such tool-use dependent plasticity in the human brain is scarce. Here, in a series of three experiments, participants were asked to respond to tactile stimuli, delivered to their right hand, either in isolation (unimodal condition) or combined with auditory stimulation, which could occur near (bimodal-near) or far from the stimulated hand (bimodal-far). According to multisensory integration spatial rule, when bimodal stimuli are presented at the same location, we expected a response enhancement (response time - RT - facilitation and event-related potential - ERP - super-additivity). In Experiment 1, we verified that RT facilitation was driven by bimodal input spatial congruency, independently from auditory stimulus intensity. In Experiment 2, we showed that our bimodal task was effective in eliciting the magnification of ERPs in bimodal conditions, with significantly larger responses in the near as compared to far condition. In Experiment 3 (main experiment), we explored tool-use driven PPS plasticity. Our audio-tactile task was performed either following tool-use (a 20-min reaching task, performed using a 145 cm-long rake) or after a control cognitive training (a 20-min visual discrimination task) performed in the far space. Following the control training, faster RTs and greater super-additive ERPs were found in bimodal-near as compared to bimodal-far condition (replicating Experiment 2 results). Crucially, this far-near differential response was significantly reduced after tool-use. Altogether our results indicate a selective effect of tool-use remapping in extending the boundaries of PPS. The present finding might be considered as an electrophysiological evidence of tool-use dependent plasticity in the human brain.
Collapse
Affiliation(s)
- Irene Ronga
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Mattia Galigani
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Valentina Bruno
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Nicolò Castellani
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy; Molecular Mind Lab, IMT School for Advanced Studies, Lucca, Italy
| | | | - Elia Valentini
- Department of Psychology and Centre for Brain Science, University of Essex, UK
| | - Carlotta Fossataro
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Marco Neppi-Modona
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Francesca Garbarini
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy.
| |
Collapse
|
26
|
Diesburg DA, Wessel JR. The Pause-then-Cancel model of human action-stopping: Theoretical considerations and empirical evidence. Neurosci Biobehav Rev 2021; 129:17-34. [PMID: 34293402 PMCID: PMC8574992 DOI: 10.1016/j.neubiorev.2021.07.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022]
Abstract
The ability to stop already-initiated actions is a key cognitive control ability. Recent work on human action-stopping has been dominated by two controversial debates. First, the contributions (and neural signatures) of attentional orienting and motor inhibition after stop-signals are near-impossible to disentangle. Second, the timing of purportedly inhibitory (neuro)physiological activity after stop-signals has called into question which neural signatures reflect processes that actually contribute to action-stopping. Here, we propose that a two-stage model of action-stopping - proposed by Schmidt and Berke (2017) based on subcortical rodent recordings - may resolve these controversies. Translating this model to humans, we first argue that attentional orienting and motor inhibition are inseparable because orienting to salient events like stop-signals automatically invokes broad motor inhibition, reflecting a fast-acting, ubiquitous Pause process. We then argue that inhibitory signatures after stop-signals differ in latency because they map onto two sequential stages: the salience-related Pause and a slower, stop-specific Cancel process. We formulate the model, discuss recent supporting evidence in humans, and interpret existing data within its context.
Collapse
Affiliation(s)
- Darcy A Diesburg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA.
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
27
|
Novembre G, Iannetti GD. Towards a unified neural mechanism for reactive adaptive behaviour. Prog Neurobiol 2021; 204:102115. [PMID: 34175406 PMCID: PMC7611662 DOI: 10.1016/j.pneurobio.2021.102115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/27/2022]
Abstract
Surviving in natural environments requires animals to sense sudden events and swiftly adapt behaviour accordingly. The study of such Reactive Adaptive Behaviour (RAB) has been central to a number of research streams, all orbiting around movement science but progressing in parallel, with little cross-field fertilization. We first provide a concise review of these research streams, independently describing four types of RAB: (1) cortico-muscular resonance, (2) stimulus locked response, (3) online motor correction and (4) action stopping. We then highlight remarkable similarities across these four RABs, suggesting that they might be subserved by the same neural mechanism, and propose directions for future research on this topic.
Collapse
Affiliation(s)
- Giacomo Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London, UK.
| | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London, UK.
| |
Collapse
|
28
|
Kimoto Y, Hirano M, Furuya S. Adaptation of the Corticomuscular and Biomechanical Systems of Pianists. Cereb Cortex 2021; 32:709-724. [PMID: 34426838 DOI: 10.1093/cercor/bhab229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Independent control of movements between the fingers plays a role in hand dexterity characterizing skilled individuals. However, it remains unknown whether and in what manner neuromuscular and biomechanical constraints on the movement independence of the fingers depend on motor expertise. Here, we compared motor dexterity, corticospinal excitability of multiple muscles, muscular activation, and anatomical features of the fingers between the pianists and nonpianists. When the ring finger was passively moved by a robot, passive motions produced at the adjacent fingers were smaller for the pianists than the nonpianists, indicating reduced biomechanical constraint of fingers in the pianists. In contrast, when the ring finger moved actively, we found no group difference in passive motions produced at the adjacent fingers; however, reduced inhibition of corticospinal excitability of the adjacent fingers in the pianists compared with the nonpianists. This suggests strengthened neuromuscular coupling between the fingers of the pianists, enhancing the production of coordinated finger movements. These group differences were not evident during the index and little finger movements. Together, pianists show expertise-dependent biomechanical and neurophysiological adaptations, specifically at the finger with innately low movement independence. Such contrasting adaptations of pianists may subserve dexterous control of both the individuated and coordinated finger movements.
Collapse
Affiliation(s)
- Yudai Kimoto
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| | - Masato Hirano
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| | - Shinichi Furuya
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| |
Collapse
|
29
|
Lisi G, Raballo A, Ribolsi M, Niolu C, Siracusano A, Preti A. Aberrant salience in adolescents is related to indicators of psychopathology that are relevant in the prodromal phases of psychosis. Early Interv Psychiatry 2021; 15:856-864. [PMID: 32893966 DOI: 10.1111/eip.13022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/20/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022]
Abstract
AIM Aberrant salience has been considered as a predisposing factor during prodromal phases of psychosis and in ultra high-risk subjects. Most studies investigated the presence of aberrant salience in general population as a measure of vulnerability to psychosis. This study aimed atinvestigating the level of aberrant salience in a sample of Italian high-school students. METHODS Aberrant salience was measured with the Aberrant Salience Inventory (ASI) and its association with measures of general psychopathology (Youth Self Report [YSR]) was tested. A sample of 312 high school students (115 boys, 197 girls; age range: 14 to 19) was recruited. RESULTS Within the ASI and the YSR, the subscales did associate with each other at medium to large effect size, while the associations of the ASI subscales to the YRS scales had small effect sizes, indicating that the two tools measure different constructs. Latent Class Analysis revealed a distribution of aberrant salience across three classes with the intermediate class corresponding to more than half of the sample (58.3%). The class with the highest endorsement of the ASI items included 101 subjects (32.4%). Greater differences by classes were found in the "increased significance" and the "impending understanding" subscales. Higher aberrant salience was found on the anxious/depressed, the somatic complaints, and the thought problems scales of the YSR. CONCLUSIONS Aberrant salience represents a common experience in the adolescent population and is associated with various psychopathological disorders, in particular, thought disorder. Aberrant salience might be involved in proneness to psychosis.
Collapse
Affiliation(s)
- Giulia Lisi
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Mental Health Department, Azienda Sanitaria Locale Roma 1, Rome, Italy
| | - Andrea Raballo
- Department of Medicine, Division of Psychiatry, University of Perugia, Perugia, Italy.,Center for Translational, Phenomenological and Developmental Psychopathology, Perugia University Hospital, Perugia, Italy
| | - Michele Ribolsi
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Psychiatry and Clinical Psychology Unit, Department of Neurosciences, Fondazione Policlinico "Tor Vergata,", Rome, Italy
| | - Cinzia Niolu
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Psychiatry and Clinical Psychology Unit, Department of Neurosciences, Fondazione Policlinico "Tor Vergata,", Rome, Italy
| | - Alberto Siracusano
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Psychiatry and Clinical Psychology Unit, Department of Neurosciences, Fondazione Policlinico "Tor Vergata,", Rome, Italy
| | - Antonio Preti
- Center for Liaison Psychiatry and Psychosomatics, University Hospital, University of Cagliari, Cagliari, Italy.,Genneruxi Medical Center, Cagliari, Italy
| |
Collapse
|
30
|
Hirano M, Kimoto Y, Furuya S. Specialized Somatosensory-Motor Integration Functions in Musicians. Cereb Cortex 2021; 30:1148-1158. [PMID: 31342056 DOI: 10.1093/cercor/bhz154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Somatosensory signals play roles in the fine control of dexterous movements through a somatosensory-motor integration mechanism. While skilled individuals are typically characterized by fine-tuned somatosensory functions and dexterous motor skills, it remains unknown whether and in what manner their bridging mechanism, the tactile-motor and proprioceptive-motor integration functions, plastically changes through extensive sensorimotor experiences. Here, we addressed this issue by comparing physiological indices of these functions between pianists and nonmusicians. Both tactile and proprioceptive stimuli to the right index finger inhibited corticospinal excitability measured by a transcranial magnetic stimulation method. However, the tactile and proprioceptive stimuli exerted weaker and stronger inhibitory effects, respectively, on corticospinal excitability in pianists than in nonmusicians. The results of the electroencephalogram measurements revealed no significant group difference in the amplitude of cortical responses to the somatosensory stimuli around the motor and somatosensory cortices, suggesting that the group difference in the inhibitory effects reflects neuroplastic adaptation of the somatosensory-motor integration functions in pianists. Penalized regression analyses further revealed an association between these integration functions and motor performance in the pianists, suggesting that extensive piano practice reorganizes somatosensory-motor integration functions so as to enable fine control of dexterous finger movements during piano performances.
Collapse
Affiliation(s)
- Masato Hirano
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| | - Yudai Kimoto
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| | - Shinichi Furuya
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| |
Collapse
|
31
|
Memorisation and implicit perceptual learning are enhanced for preferred musical intervals and chords. Psychon Bull Rev 2021; 28:1623-1637. [PMID: 33945127 PMCID: PMC8500890 DOI: 10.3758/s13423-021-01922-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 11/22/2022]
Abstract
Is it true that we learn better what we like? Current neuroaesthetic and neurocomputational models of aesthetic appreciation postulate the existence of a correlation between aesthetic appreciation and learning. However, even though aesthetic appreciation has been associated with attentional enhancements, systematic evidence demonstrating its influence on learning processes is still lacking. Here, in two experiments, we investigated the relationship between aesthetic preferences for consonance versus dissonance and the memorisation of musical intervals and chords. In Experiment 1, 60 participants were first asked to memorise and evaluate arpeggiated triad chords (memorisation phase), then, following a distraction task, chords’ memorisation accuracy was measured (recognition phase). Memorisation resulted to be significantly enhanced for subjectively preferred as compared with non-preferred chords. To explore the possible neural mechanisms underlying these results, we performed an EEG study, directed to investigate implicit perceptual learning dynamics (Experiment 2). Through an auditory mismatch detection paradigm, electrophysiological responses to standard/deviant intervals were recorded, while participants were asked to evaluate the beauty of the intervals. We found a significant trial-by-trial correlation between subjective aesthetic judgements and single trial amplitude fluctuations of the ERP attention-related N1 component. Moreover, implicit perceptual learning, expressed by larger mismatch detection responses, was enhanced for more appreciated intervals. Altogether, our results showed the existence of a relationship between aesthetic appreciation and implicit learning dynamics as well as higher-order learning processes, such as memorisation. This finding might suggest possible future applications in different research domains such as teaching and rehabilitation of memory and attentional deficits.
Collapse
|
32
|
Waller DA, Hazeltine E, Wessel JR. Common neural processes during action-stopping and infrequent stimulus detection: The frontocentral P3 as an index of generic motor inhibition. Int J Psychophysiol 2021; 163:11-21. [PMID: 30659867 PMCID: PMC6640083 DOI: 10.1016/j.ijpsycho.2019.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
Abstract
The stop-signal task (SST) is used to study action-stopping in the laboratory. In SSTs, the P3 event-related potential following stop-signals is considered to be a neural index of motor inhibition. However, a similar P3 deflection is often observed following infrequent events in non-inhibition tasks. Moreover, within SSTs, stop-signals are indeed infrequent events, presenting a systematic confound that hampers the interpretation of the stop-signal P3 (and other candidate neural indices of motor inhibition). Therefore, we performed two studies to test whether the stop-signal P3 is uniquely related to motor inhibition or reflects infrequency detection. In Study 1, participants completed the SST and a visually identical change-detection task requiring the detection of a task-relevant, frequent signal (but not motor inhibition). We observed a P3 associated with motor inhibition in the SST, but no such positivity in the change-detection task. In Study 2, we modified the change-detection task. Some task-relevant events were now infrequent, matching the frequency of stop-signals in the SST. These events indeed evoked a P3, though of smaller amplitude than the P3 in the SST. Independent component analysis suggested that stop-signal P3 and infrequency-P3 ERPs were non-independent and shared a common neural generator. Further analyses suggested that this common neural process likely reflects motor inhibition in both tasks: infrequent events in the change-detection task lead to a non-instructed, incidental slowing of motor responding, the degree of which was strongly correlated with P3 amplitude. These results have wide-reaching implications for the interpretation of neural signals in both stop-signal and infrequency/oddball-tasks.
Collapse
Affiliation(s)
- Darcy A Waller
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States of America.
| | - Eliot Hazeltine
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States of America
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States of America; Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, IA, United States of America.
| |
Collapse
|
33
|
Zhang H, Lu X, Bi Y, Hu L. A modality selective effect of functional laterality in pain detection sensitivity. Sci Rep 2021; 11:6883. [PMID: 33767243 PMCID: PMC7994376 DOI: 10.1038/s41598-021-85111-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/24/2021] [Indexed: 12/30/2022] Open
Abstract
The ability to detect environmental changes is essential to determine the appropriate reaction when facing potential threats. Both detection and reaction functions are critical to survival, and the superior performance of motor reaction for the dominant hand is well recognized in humans. However, it is not clear whether there exists laterality in sensitivity to detect external changes and whether the possible laterality is associated with sensory modality and stimulus intensity. Here, we tested whether the perceptual sensitivity and electrophysiological responses elicited by graded sensory stimuli (i.e., nociceptive somatosensory, non-nociceptive somatosensory, auditory, and visual) that were delivered on/near the left and right hands would be different for right-handed individuals. We observed that perceived intensities and most brain responses were significantly larger when nociceptive stimuli were delivered to the left side (i.e., the non-dominant hand) than to the right side (i.e., the dominant hand). No significant difference was observed between the two sides for other modalities. The higher sensitivity to detect nociceptive stimuli for the non-dominant hand would be important to provide a prompt reaction to noxious events, thus compensating for its worse motor performance. This laterality phenomenon should be considered when designing experiments for pain laboratory studies and evaluating regional sensory abnormalities for pain patients.
Collapse
Affiliation(s)
- Huijuan Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yanzhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
34
|
Soh C, Wessel JR. Unexpected Sounds Nonselectively Inhibit Active Visual Stimulus Representations. Cereb Cortex 2021; 31:1632-1646. [PMID: 33140100 DOI: 10.1093/cercor/bhaa315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/31/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
The brain's capacity to process unexpected events is key to cognitive flexibility. The most well-known effect of unexpected events is the interruption of attentional engagement (distraction). We tested whether unexpected events interrupt attentional representations by activating a neural mechanism for inhibitory control. This mechanism is most well characterized within the motor system. However, recent work showed that it is automatically activated by unexpected events and can explain some of their nonmotor effects (e.g., on working memory representations). Here, human participants attended to lateralized flickering visual stimuli, producing steady-state visual evoked potentials (SSVEPs) in the scalp electroencephalogram. After unexpected sounds, the SSVEP was rapidly suppressed. Using a functional localizer (stop-signal) task and independent component analysis, we then identified a fronto-central EEG source whose activity indexes inhibitory motor control. Unexpected sounds in the SSVEP task also activated this source. Using single-trial analyses, we found that subcomponents of this source differentially relate to sound-induced SSVEP changes: While its N2 component predicted the subsequent suppression of the attended-stimulus SSVEP, the P3 component predicted the suppression of the SSVEP to the unattended stimulus. These results shed new light on the processes underlying fronto-central control signals and have implications for phenomena such as distraction and the attentional blink.
Collapse
Affiliation(s)
- Cheol Soh
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52245, USA
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52245, USA.,Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
35
|
Hynd M, Soh C, Rangel BO, Wessel JR. Paired-pulse TMS and scalp EEG reveal systematic relationship between inhibitory GABA a signaling in M1 and fronto-central cortical activity during action stopping. J Neurophysiol 2021; 125:648-660. [PMID: 33439759 DOI: 10.1152/jn.00571.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
By stopping actions even after their initiation, humans can flexibly adapt ongoing behavior to changing circumstances. The neural processes underlying the inhibition of movement during action stopping are still controversial. In the 90s, a fronto-central event-related potential (ERP) was discovered in the human EEG response to stop signals in the classic stop-signal task, alongside a proposal that this "stop-signal P3" reflects an inhibitory process. Indeed, both amplitude and onset of the stop-signal P3 relate to overt behavior and movement-related EEG activity in ways predicted by the dominant models of action-stopping. However, neither EEG nor behavior allow direct inferences about the presence or absence of neurophysiological inhibition of the motor cortex, making it impossible to definitively relate the stop-signal P3 to inhibition. Here, we therefore present a multimethod investigation of the relationship between the stop-signal P3 and GABAergic signaling in primary motor cortex, as indexed by paired-pulse transcranial magnetic stimulation (TMS). In detail, we measured short-interval intracortical inhibition (SICI), a marker of inhibitory GABAa activity in M1, in a group of 41 human participants who also performed the stop-signal task while undergoing EEG recordings. In line with the P3-inhibition hypothesis, we found that subjects with stronger inhibitory GABA activity in M1 also showed both faster onsets and larger amplitudes of the stop-signal P3. This provides direct evidence linking the properties of this ERP to a true physiological index of motor system inhibition. We discuss these findings in the context of recent theoretical developments and empirical findings regarding the neural implementation of motor inhibition.NEW & NOTEWORTHY The neural mechanisms underlying rapid action stopping in humans are subject to intense debate, in part because recordings of neural signals purportedly reflecting inhibitory motor control are hard to directly relate to the true, physiological inhibition of motor cortex. For the first time, the current study combines EEG and transcranial magnetic stimulation (TMS) methods to demonstrate a direct correspondence between fronto-central control-related EEG activity following signals to cancel an action and the physiological inhibition of primary motor cortex.
Collapse
Affiliation(s)
- Megan Hynd
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Cheol Soh
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Benjamin O Rangel
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa.,Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| |
Collapse
|
36
|
Pyasik M, Ronga I, Burin D, Salatino A, Sarasso P, Garbarini F, Ricci R, Pia L. I'm a believer: Illusory self-generated touch elicits sensory attenuation and somatosensory evoked potentials similar to the real self-touch. Neuroimage 2021; 229:117727. [PMID: 33434613 DOI: 10.1016/j.neuroimage.2021.117727] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Sensory attenuation (i.e., the phenomenon whereby self-produced sensations are perceived as less intense compared to externally occurring ones) is among the neurocognitive processes that help distinguishing ourselves from others. It is thought to be rooted in the motor system (e.g., related to motor intention and prediction), while the role of body awareness, which necessarily accompanies any voluntary movement, in this phenomenon is largely unknown. To fill this gap, here we compared the perceived intensity, somatosensory evoked potentials, and alpha-band desynchronization for self-generated, other-generated, and embodied-fake-hand-generated somatosensory stimuli. We showed that sensory attenuation triggered by the own hand and by the embodied fake hand had the same behavioral and neurophysiological signatures (reduced subjective intensity, reduced of N140 and P200 SEP components and post-stimulus alpha-band desynchronization). Therefore, signals subserving body ownership influenced attenuation of somatosensory stimuli, possibly in a postdictive manner. This indicates that body ownership is crucial for distinguishing the source of the perceived sensations.
Collapse
Affiliation(s)
- Maria Pyasik
- SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, Department of Psychology, University of Turin, 10123 Turin, Italy; NPSY-Lab.VR, Department of Human Sciences, University of Verona, 37129 Verona, Italy
| | - Irene Ronga
- MANIBUS - Movement ANd body In Behavioral and physiological neUroScience research group, Department of Psychology, University of Turin, 10123 Turin, Italy
| | - Dalila Burin
- IDAC - Institute of Development, Aging and Cancer, SARC - Smart-Aging Research Center, Kawashima Laboratory, Tohoku University, Sendai, Japan
| | - Adriana Salatino
- SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, Department of Psychology, University of Turin, 10123 Turin, Italy
| | - Pietro Sarasso
- SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, Department of Psychology, University of Turin, 10123 Turin, Italy
| | - Francesca Garbarini
- MANIBUS - Movement ANd body In Behavioral and physiological neUroScience research group, Department of Psychology, University of Turin, 10123 Turin, Italy
| | - Raffaella Ricci
- SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, Department of Psychology, University of Turin, 10123 Turin, Italy; NIT (Neuroscience Institute of Turin), 10123 Turin, Italy
| | - Lorenzo Pia
- SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, Department of Psychology, University of Turin, 10123 Turin, Italy; NIT (Neuroscience Institute of Turin), 10123 Turin, Italy.
| |
Collapse
|
37
|
Somervail R, Zhang F, Novembre G, Bufacchi RJ, Guo Y, Crepaldi M, Hu L, Iannetti GD. Waves of Change: Brain Sensitivity to Differential, not Absolute, Stimulus Intensity is Conserved Across Humans and Rats. Cereb Cortex 2021; 31:949-960. [PMID: 33026425 PMCID: PMC7786352 DOI: 10.1093/cercor/bhaa267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022] Open
Abstract
Living in rapidly changing environments has shaped the mammalian brain toward high sensitivity to abrupt and intense sensory events-often signaling threats or affordances requiring swift reactions. Unsurprisingly, such events elicit a widespread electrocortical response (the vertex potential, VP), likely related to the preparation of appropriate behavioral reactions. Although the VP magnitude is largely determined by stimulus intensity, the relative contribution of the differential and absolute components of intensity remains unknown. Here, we dissociated the effects of these two components. We systematically varied the size of abrupt intensity increases embedded within continuous stimulation at different absolute intensities, while recording brain activity in humans (with scalp electroencephalography) and rats (with epidural electrocorticography). We obtained three main results. 1) VP magnitude largely depends on differential, and not absolute, stimulus intensity. This result held true, 2) for both auditory and somatosensory stimuli, indicating that sensitivity to differential intensity is supramodal, and 3) in both humans and rats, suggesting that sensitivity to abrupt intensity differentials is phylogenetically well-conserved. Altogether, the current results show that these large electrocortical responses are most sensitive to the detection of sensory changes that more likely signal the sudden appearance of novel objects or events in the environment.
Collapse
Affiliation(s)
- R Somervail
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - F Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, 100101 Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - G Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Y Guo
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - M Crepaldi
- Electronic Design Laboratory, Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - L Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, 100101 Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - G D Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| |
Collapse
|
38
|
Galigani M, Ronga I, Bruno V, Castellani N, Rossi Sebastiano A, Fossataro C, Garbarini F. Face-like configurations modulate electrophysiological mismatch responses. Eur J Neurosci 2020; 53:1869-1884. [PMID: 33332658 DOI: 10.1111/ejn.15088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/30/2022]
Abstract
The human face is one of the most salient stimuli in the environment. It has been suggested that even basic face-like configurations (three dots composing a downward pointing triangle) may convey salience. Interestingly, stimulus salience can be signaled by mismatch detection phenomena, characterized by greater amplitudes of event-related potentials (ERPs) in response to relevant novel stimulation as compared to non-relevant repeated events. Here, we investigate whether basic face-like stimuli are salient enough to modulate mismatch detection phenomena. ERPs are elicited by a pair of sequentially presented visual stimuli (S1-S2), delivered at a constant 1-s interval, representing either a face-like stimulus (Upright configuration) or three neutral configurations (Inverted, Leftwards, and Rightwards configurations), that are obtained by rotating the Upright configuration along the three different axes. In pairs including a canonical face-like stimulus, we observe a more effective mismatch detection mechanism, with significantly larger N270 and P300 components when S2 is different from S1 as compared to when S2 is identical to S1. This ERP modulation, not significant in pairs excluding face-like stimuli, reveals that mismatch detection phenomena are significantly affected by basic face-like configurations. Even though further experiments are needed to ascertain whether this effect is specifically elicited by face-like configuration rather than by particular orientation changes, our findings suggest that face essential, structural attributes are salient enough to affect change detection processes.
Collapse
Affiliation(s)
- Mattia Galigani
- MANIBUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Irene Ronga
- MANIBUS Lab, Department of Psychology, University of Turin, Turin, Italy.,BIP Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - Valentina Bruno
- MANIBUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Nicolò Castellani
- MANIBUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | | | - Carlotta Fossataro
- MANIBUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Francesca Garbarini
- MANIBUS Lab, Department of Psychology, University of Turin, Turin, Italy.,Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
39
|
Bufacchi RJ, Magri C, Novembre G, Iannetti GD. Local spatial analysis: an easy-to-use adaptive spatial EEG filter. J Neurophysiol 2020; 125:509-521. [PMID: 33174497 PMCID: PMC7948137 DOI: 10.1152/jn.00560.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Spatial EEG filters are widely used to isolate event-related potential (ERP) components. The most commonly used spatial filters (e.g., the average reference and the surface Laplacian) are “stationary.” Stationary filters are conceptually simple, easy to use, and fast to compute, but all assume that the EEG signal does not change across sensors and time. Given that ERPs are intrinsically nonstationary, applying stationary filters can lead to misinterpretations of the measured neural activity. In contrast, “adaptive” spatial filters (e.g., independent component analysis, ICA; and principal component analysis, PCA) infer their weights directly from the spatial properties of the data. They are, thus, not affected by the shortcomings of stationary filters. The issue with adaptive filters is that understanding how they work and how to interpret their output require advanced statistical and physiological knowledge. Here, we describe a novel, easy-to-use, and conceptually simple adaptive filter (local spatial analysis, LSA) for highlighting local components masked by large widespread activity. This approach exploits the statistical information stored in the trial-by-trial variability of stimulus-evoked neural activity to estimate the spatial filter parameters adaptively at each time point. Using both simulated data and real ERPs elicited by stimuli of four different sensory modalities (audition, vision, touch, and pain), we show that this method outperforms widely used stationary filters and allows to identify novel ERP components masked by large widespread activity. Implementation of the LSA filter in MATLAB is freely available to download. NEW & NOTEWORTHY EEG spatial filtering is important for exploring brain function. Two classes of filters are commonly used: stationary and adaptive. Stationary filters are simple to use but wrongly assume that stimulus-evoked EEG responses (ERPs) are stationary. Adaptive filters do not make this assumption but require solid statistical and physiological knowledge. Bridging this gap, we present local spatial analysis (LSA), an adaptive, yet computationally simple, spatial filter based on linear regression that separates local and widespread brain activity (https://www.iannettilab.net/lsa.html or https://github.com/rorybufacchi/LSA-filter).
Collapse
Affiliation(s)
- R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - C Magri
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - G Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
40
|
Tomassini A, Maris E, Hilt P, Fadiga L, D’Ausilio A. Visual detection is locked to the internal dynamics of cortico-motor control. PLoS Biol 2020; 18:e3000898. [PMID: 33079930 PMCID: PMC7598921 DOI: 10.1371/journal.pbio.3000898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/30/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Movements overtly sample sensory information, making sensory analysis an active-sensing process. In this study, we show that visual information sampling is not just locked to the (overt) movement dynamics but to the internal (covert) dynamics of cortico-motor control. We asked human participants to perform continuous isometric contraction while detecting unrelated and unpredictable near-threshold visual stimuli. The motor output (force) shows zero-lag coherence with brain activity (recorded via electroencephalography) in the beta-band, as previously reported. In contrast, cortical rhythms in the alpha-band systematically forerun the motor output by 200 milliseconds. Importantly, visual detection is facilitated when cortico-motor alpha (not beta) synchronization is enhanced immediately before stimulus onset, namely, at the optimal phase relationship for sensorimotor communication. These findings demonstrate an ongoing coupling between visual sampling and motor control, suggesting the operation of an internal and alpha-cycling visuomotor loop.
Collapse
Affiliation(s)
- Alice Tomassini
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
- * E-mail:
| | - Eric Maris
- Radboud University, Donders Institute for Brain, Cognition and Behavior, Centre for Cognition (DCC), Nijmegen, The Netherlands
| | - Pauline Hilt
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
| | - Luciano Fadiga
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
- Università di Ferrara, Dipartimento di Scienze Biomediche e Chirurgico Specialistiche, Ferrara, Italy
| | - Alessandro D’Ausilio
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
- Università di Ferrara, Dipartimento di Scienze Biomediche e Chirurgico Specialistiche, Ferrara, Italy
| |
Collapse
|
41
|
Iacullo C, Diesburg DA, Wessel JR. Non-selective inhibition of the motor system following unexpected and expected infrequent events. Exp Brain Res 2020; 238:2701-2710. [PMID: 32948892 DOI: 10.1007/s00221-020-05919-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/02/2020] [Indexed: 01/16/2023]
Abstract
Motor inhibition is a key control mechanism that allows humans to rapidly adapt their actions in response to environmental events. One of the hallmark signatures of rapidly exerted, reactive motor inhibition is the non-selective suppression of cortico-spinal excitability (CSE): unexpected sensory stimuli lead to a suppression of CSE across the entire motor system, even in muscles that are inactive. Theories suggest that this reflects a fast, automatic, and broad engagement of inhibitory control, which facilitates behavioral adaptations to unexpected changes in the sensory environment. However, it is an open question whether such non-selective CSE suppression is truly due to the unexpected nature of the sensory event, or whether it is sufficient for an event to be merely infrequent (but not unexpected). Here, we report data from two experiments in which human subjects experienced both unexpected and expected infrequent events during a two-alternative forced-choice reaction time task while CSE was measured from a task-unrelated muscle. We found that expected infrequent events can indeed produce non-selective CSE suppression-but only when they occur during movement initiation. In contrast, unexpected infrequent events produce non-selective CSE suppression relative to frequent, expected events even in the absence of movement initiation. Moreover, CSE suppression due to unexpected events occurs at shorter latencies compared to expected infrequent events. These findings demonstrate that unexpectedness and stimulus infrequency have qualitatively different suppressive effects on the motor system. They also have key implications for studies that seek to disentangle neural and psychological processes related to motor inhibition and stimulus detection.
Collapse
Affiliation(s)
- Carly Iacullo
- Department of Psychological and Brain Sciences, University of Iowa, 376 Psychological and Brain Sciences Building, 340 Iowa Avenue, Iowa City, IA, 52240, USA
| | - Darcy A Diesburg
- Department of Psychological and Brain Sciences, University of Iowa, 376 Psychological and Brain Sciences Building, 340 Iowa Avenue, Iowa City, IA, 52240, USA
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, 376 Psychological and Brain Sciences Building, 340 Iowa Avenue, Iowa City, IA, 52240, USA.
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
42
|
Long-term limb immobilization modulates inhibition-related electrophysiological brain activity. Neuroimage 2020; 218:116911. [DOI: 10.1016/j.neuroimage.2020.116911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/18/2022] Open
|
43
|
Abstract
Working memory bridges perception to action over extended delays, enabling flexible goal-directed behaviour. To date, studies of visual working memory – concerned with detailed visual representations such as shape and colour – have considered visual memory predominantly in the context of visual task demands, such as visual identification and search. Another key purpose of visual working memory is to directly inform and guide upcoming actions. Taking this as a starting point, I review emerging evidence for the pervasive bi-directional links between visual working memory and (planned) action, and discuss these links from the perspective of their common goal of enabling flexible and precise behaviour.
Collapse
Affiliation(s)
- Freek van Ede
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Nguyen AT, Albrecht MA, Lipp OV, Marinovic W. Motor output matters: Evidence of a continuous relationship between Stop/No-go P300 amplitude and peak force on failed inhibitions at the trial-level. Psychophysiology 2020; 57:e13558. [PMID: 32129505 DOI: 10.1111/psyp.13558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/09/2020] [Accepted: 02/12/2020] [Indexed: 01/02/2023]
Abstract
Motor actions can be suppressed with varying degrees of success, but this variability is not often captured as responses are typically represented as binary (response vs. no-response). Although the Stop/No-go P300 has been implicated as an index of inhibitory-control, it is unclear how the range of motor outputs relates to the P300. We examined the nature of this association in two experiments using an Anticipatory Timing and a Go/No-go Task, while measuring peak force, movement onset time, and P300. In both experiments, our results showed that trial-by-trial P300 amplitude on Failed Inhibitions were continuously related to peak force, where higher force (reflecting a greater degree of error) was associated with smaller P300 amplitude. Compared to Successful Inhibitions, P300 amplitude and onset latency on Failed Inhibitions were significantly reduced and delayed. Although the binary categorization of inhibition-success (Successful vs. Failed) accounts for significant variance in the P300, it misses a reliable linear relationship that can be captured by continuous measures of motor output. Overall, the results provide evidence that P300 may reflect the continuously varying engagement of inhibitory-control. We present an activation model to visualize the P300-force association and to illustrate how motor output might be modeled in the context of inhibitory-control. Our results highlight the relevance of P300 amplitude and the importance of studying the spectrum of motor output and the need for future models to account for motor output.
Collapse
Affiliation(s)
- An T Nguyen
- School of Psychology, Curtin University, Perth, WA, Australia
| | | | - Ottmar V Lipp
- School of Psychology, Curtin University, Perth, WA, Australia
| | | |
Collapse
|
45
|
Sarasso P, Ronga I, Pistis A, Forte E, Garbarini F, Ricci R, Neppi-Modona M. Aesthetic appreciation of musical intervals enhances behavioural and neurophysiological indexes of attentional engagement and motor inhibition. Sci Rep 2019; 9:18550. [PMID: 31811225 PMCID: PMC6898439 DOI: 10.1038/s41598-019-55131-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/25/2019] [Indexed: 12/27/2022] Open
Abstract
From Kant to current perspectives in neuroaesthetics, the experience of beauty has been described as disinterested, i.e. focusing on the stimulus perceptual features while neglecting self-referred concerns. At a neurophysiological level, some indirect evidence suggests that disinterested aesthetic appreciation might be associated with attentional enhancement and inhibition of motor behaviour. To test this hypothesis, we performed three auditory-evoked potential experiments, employing consonant and dissonant two-note musical intervals. Twenty-two volunteers judged the beauty of intervals (Aesthetic Judgement task) or responded to them as fast as possible (Detection task). In a third Go-NoGo task, a different group of twenty-two participants had to refrain from responding when hearing intervals. Individual aesthetic judgements positively correlated with response times in the Detection task, with slower motor responses for more appreciated intervals. Electrophysiological indexes of attentional engagement (N1/P2) and motor inhibition (N2/P3) were enhanced for more appreciated intervals. These findings represent the first experimental evidence confirming the disinterested interest hypothesis and may have important applications in research areas studying the effects of stimulus features on learning and motor behaviour.
Collapse
Affiliation(s)
- P Sarasso
- SAMBA (SpAtial, Motor & Bodily Awareness) Research Group, Department of Psychology, University of Turin, Turin, Italy.
| | - I Ronga
- MANIBUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - A Pistis
- SAMBA (SpAtial, Motor & Bodily Awareness) Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - E Forte
- SAMBA (SpAtial, Motor & Bodily Awareness) Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - F Garbarini
- MANIBUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - R Ricci
- SAMBA (SpAtial, Motor & Bodily Awareness) Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - M Neppi-Modona
- SAMBA (SpAtial, Motor & Bodily Awareness) Research Group, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
46
|
Sarasso P, Ronga I, Kobau P, Bosso T, Artusio I, Ricci R, Neppi-Modona M. Beauty in mind: Aesthetic appreciation correlates with perceptual facilitation and attentional amplification. Neuropsychologia 2019; 136:107282. [PMID: 31770549 DOI: 10.1016/j.neuropsychologia.2019.107282] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022]
Abstract
Neuroaesthetic research suggests that aesthetic appreciation results from the interaction between the object perceptual features and the perceiver's sensory processing dynamics. In the present study, we investigated the relationship between aesthetic appreciation and attentional modulation at a behavioural and psychophysiological level. In a first experiment, fifty-eight healthy participants performed a visual search task with abstract stimuli containing more or less natural spatial frequencies and subsequently were asked to give an aesthetic evaluation of the images. The results evidenced that response times were faster for more appreciated stimuli. In a second experiment, we recorded visual evoked potentials (VEPs) during exposure to the same stimuli. The results showed, only for more appreciated images, an enhancement in C1 and N1, P3 and N4 VEP components. Moreover, we found increased attention-related occipital alpha desynchronization for more appreciated images. We interpret these data as indicative of the existence of a correlation between aesthetic appreciation and perceptual processing enhancement, both at a behavioural and at a neurophysiological level.
Collapse
Affiliation(s)
- P Sarasso
- SAMBA (SpAtial Motor & Bodily Awareness) Research Group, Department of Psychology, University of Turin, Italy; Imaging and Cerebral Plasticity Research Group, Department of Psychology, University of Turin, Italy.
| | - I Ronga
- Imaging and Cerebral Plasticity Research Group, Department of Psychology, University of Turin, Italy.
| | - P Kobau
- Department of Philosophy and Education Sciences, University of Turin, Italy
| | - T Bosso
- SAMBA (SpAtial Motor & Bodily Awareness) Research Group, Department of Psychology, University of Turin, Italy
| | - I Artusio
- SAMBA (SpAtial Motor & Bodily Awareness) Research Group, Department of Psychology, University of Turin, Italy
| | - R Ricci
- SAMBA (SpAtial Motor & Bodily Awareness) Research Group, Department of Psychology, University of Turin, Italy
| | - M Neppi-Modona
- SAMBA (SpAtial Motor & Bodily Awareness) Research Group, Department of Psychology, University of Turin, Italy
| |
Collapse
|
47
|
The role of auditory context in action-effect-related motor adaptation. Hum Mov Sci 2019; 67:102503. [DOI: 10.1016/j.humov.2019.102503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 11/17/2022]
|
48
|
Novembre G, Pawar VM, Kilintari M, Bufacchi RJ, Guo Y, Rothwell JC, Iannetti GD. The effect of salient stimuli on neural oscillations, isometric force, and their coupling. Neuroimage 2019; 198:221-230. [PMID: 31085301 PMCID: PMC6610333 DOI: 10.1016/j.neuroimage.2019.05.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/06/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Survival in a suddenly-changing environment requires animals not only to detect salient stimuli, but also to promptly respond to them by initiating or revising ongoing motor processes. We recently discovered that the large vertex brain potentials elicited by sudden supramodal stimuli are strongly coupled with a multiphasic modulation of isometric force, a phenomenon that we named cortico-muscular resonance (CMR). Here, we extend our investigation of the CMR to the time-frequency domain. We show that (i) both somatosensory and auditory stimuli evoke a number of phase-locked and non-phase-locked modulations of EEG spectral power. Remarkably, (ii) some of these phase-locked and non-phase-locked modulations are also present in the Force spectral power. Finally, (iii) EEG and Force time-frequency responses are correlated in two distinct regions of the power spectrum. An early, low-frequency region (∼4 Hz) reflects the previously-described coupling between the phase-locked EEG vertex potential and force modulations. A late, higher-frequency region (beta-band, ∼20 Hz) reflects a second coupling between the non-phase-locked increase of power observed in both EEG and Force. In both time-frequency regions, coupling was maximal over the sensorimotor cortex contralateral to the hand exerting the force, suggesting an effect of the stimuli on the tonic corticospinal drive. Thus, stimulus-induced CMR occurs across at least two different types of cortical activities, whose functional significance in relation to the motor system should be investigated further. We propose that these different types of corticomuscular coupling are important to alter motor behaviour in response to salient environmental events.
Collapse
Affiliation(s)
- Giacomo Novembre
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), UK; Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), Rome, Italy.
| | - Vijay M Pawar
- Department of Computer Science, University College London (UCL), UK
| | - Marina Kilintari
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), UK
| | - Rory J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Yifei Guo
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), UK; Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | | | - Gian Domenico Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), UK; Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| |
Collapse
|
49
|
Wessel JR, Huber DE. Frontal cortex tracks surprise separately for different sensory modalities but engages a common inhibitory control mechanism. PLoS Comput Biol 2019; 15:e1006927. [PMID: 31356593 PMCID: PMC6687204 DOI: 10.1371/journal.pcbi.1006927] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/08/2019] [Accepted: 05/24/2019] [Indexed: 01/30/2023] Open
Abstract
The brain constantly generates predictions about the environment to guide action. Unexpected events lead to surprise and can necessitate the modification of ongoing behavior. Surprise can occur for any sensory domain, but it is not clear how these separate surprise signals are integrated to affect motor output. By applying a trial-to-trial Bayesian surprise model to human electroencephalography data recorded during a cross-modal oddball task, we tested whether there are separate predictive models for different sensory modalities (visual, auditory), or whether expectations are integrated across modalities such that surprise in one modality decreases surprise for a subsequent unexpected event in the other modality. We found that while surprise was represented in a common frontal signature across sensory modalities (the fronto-central P3 event-related potential), the single-trial amplitudes of this signature more closely conformed to a model with separate surprise terms for each sensory domain. We then investigated whether surprise-related fronto-central P3 activity indexes the rapid inhibitory control of ongoing behavior after surprise, as suggested by recent theories. Confirming this prediction, the fronto-central P3 amplitude after both auditory and visual unexpected events was highly correlated with the fronto-central P3 found after stop-signals (measured in a separate stop-signal task). Moreover, surprise-related and stopping-related activity loaded onto the same component in a cross-task independent components analysis. Together, these findings suggest that medial frontal cortex maintains separate predictive models for different sensory domains, but engages a common mechanism for inhibitory control of behavior regardless of the source of surprise. Surprise is an elementary cognitive computation that the brain performs to guide behavior. We investigated how the brain tracks surprise across different senses: Do unexpected sounds make subsequent unexpected visual stimuli less surprising? Or does the brain maintain separate expectations of environmental regularities for different senses? We found that the latter is the case. However, even though surprise was separately tracked for auditory and visual events, it elicited a common signature over frontal cortex in both sensory domains. Importantly, we observed the same neural signature when actions had to be stopped after non-surprising stop-signals in a motor inhibition task. This suggests that this signature reflects a rapid interruption of ongoing behavior when our surroundings do not conform to our expectations.
Collapse
Affiliation(s)
- Jan R. Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States of America
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
- * E-mail:
| | - David E. Huber
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, United States of America
| |
Collapse
|
50
|
Benedetto A, Morrone MC, Tomassini A. The Common Rhythm of Action and Perception. J Cogn Neurosci 2019; 32:187-200. [PMID: 31210564 DOI: 10.1162/jocn_a_01436] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Research in the last decade has undermined the idea of perception as a continuous process, providing strong empirical support for its rhythmic modulation. More recently, it has been revealed that the ongoing motor processes influence the rhythmic sampling of sensory information. In this review, we will focus on a growing body of evidence suggesting that oscillation-based mechanisms may structure the dynamic interplay between the motor and sensory system and provide a unified temporal frame for their effective coordination. We will describe neurophysiological data, primarily collected in animals, showing phase-locking of neuronal oscillations to the onset of (eye) movements. These data are complemented by novel evidence in humans, which demonstrate the behavioral relevance of these oscillatory modulations and their domain-general nature. Finally, we will discuss the possible implications of these modulations for action-perception coupling mechanisms.
Collapse
|