1
|
Plano SA, Alessandro MS, Trebucq LL, Endo S, Golombek DA, Chiesa JJ. Role of G-Substrate in the NO/cGMP/PKG Signal Transduction Pathway for Photic Entrainment of the Hamster Circadian Clock. ASN Neuro 2021; 13:1759091420984920. [PMID: 33430619 PMCID: PMC7809303 DOI: 10.1177/1759091420984920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mammalian circadian clock at the hypothalamic suprachiasmatic nuclei (SCN) entrains biological rhythms to the 24-h cyclic environment, by encoding light-dark transitions in SCN neurons. Light pulses induce phase shifts in the clock and in circadian rhythms; photic signaling for circadian phase advances involves a nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (PKG) pathway, increasing the expression of Period (Per) genes. Effectors downstream of PKG remain unknown. Here we investigate the role of G-substrate (GS), a PKG substrate, in the hamster SCN. GS and phosphorylated G-substrate (p-GS) were present in a subset of SCN cells. Moreover, GS phosphorylation (p-GS/GS ratio) increased in SCN homogenates after light pulses delivered at circadian time (CT) 18 and intraperitoneal treatment with sildenafil, an inhibitor of phosphodiesterase 5 (a cGMP-specific phosphodiesterase). On the other hand, intracerebroventricular treatment with the PKG inhibitor KT5823, reduced photic phosphorylation of GS to basal levels. Since p-GS could act as a protein phosphatase 2 A (PP2A) inhibitor, we demonstrated physical interaction between p-GS and PP2A in SCN homogenates, and also a light-pulse dependent decrease of PP2A activity. Intracerebroventricular treatment with okadaic acid, a PP2A inhibitor, increased the magnitude of light-induced phase advances of locomotor rhythms. We provide evidence on the physiological phosphorylation of GS as a new downstream effector in the NO/cGMP/PKG photic pathway in the hamster SCN, including its role as a PP2A inhibitor.
Collapse
Affiliation(s)
- Santiago Andrés Plano
- Institute for Biomedical Research (BIOMED), Catholic University of Argentina (UCA) and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Soledad Alessandro
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura Lucía Trebucq
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Diego Andrés Golombek
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan José Chiesa
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
Mogavero F, Jager A, Glennon JC. Clock genes, ADHD and aggression. Neurosci Biobehav Rev 2018; 91:51-68. [DOI: 10.1016/j.neubiorev.2016.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 12/25/2022]
|
3
|
Wang F, Liu Q, Zhang J, Liu K, Li K, Liu G, Dong C. Comparative Transcriptome Analysis Between a Spontaneous Albino Mutant and Its Sibling Strain of Cordyceps militaris in Response to Light Stress. Front Microbiol 2018; 9:1237. [PMID: 29937763 PMCID: PMC6002663 DOI: 10.3389/fmicb.2018.01237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/23/2018] [Indexed: 12/22/2022] Open
Abstract
Albinism has been used for new variety screening in some edible mushrooms and the underlying mechanisms are fascinating. Albino fruiting body of Cordyceps militaris, a well-known edible fungus and model organism for Cordyceps, has the potential to be a nutraceutical or functional food due to its high content of metabolites and antioxidant activities. In this study, a spontaneous albino mutant strain (505) of C. militaris was obtained. In comparison to its normal sibling strain (498), the albino strain stably remained white in response to light and had significantly decreased conidia and carotenoid production but accumulated more cordycepin. Transcriptome analysis of both strains revealed that all the seven photoreceptors were expressed similarly in response to light. However, many more genes in the albino strain were differentially expressed in response to light than its sibling strain. The significantly enriched pathways in 498L vs. 505L were mainly associated with replication and repair. Some secondary metabolite backbone genes including those encoding DMAT, two NRPS-like proteins, three NPRS, and lanosterol synthase were differentially expressed in the albino when compared with that of the normal strains. Transcriptome and real-time quantitative PCR analyses indicated that some cytochrome P450s and methyltransferases might be related to the phenotypic differences observed between the two strains. This study compared the genome-wide transcriptional responses to light irradiation in a spontaneous albino mutant and its normal sibling strain of an edible fungus, and these findings potentially pave the way for further investigation of the pigment biosynthetic pathway.
Collapse
Affiliation(s)
- Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qing Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaojiao Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kuanbo Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guijun Liu
- Beijing Radiation Center, Beijing, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
López JM, Morona R, González A. Immunohistochemical Localization of DARPP-32 in the Brain of Two Lungfishes: Further Assessment of Its Relationship with the Dopaminergic System. BRAIN, BEHAVIOR AND EVOLUTION 2017; 90:289-310. [PMID: 29161694 DOI: 10.1159/000481929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/03/2017] [Indexed: 01/23/2023]
Abstract
The distribution of DARPP-32 (a phosphoprotein related to the dopamine D1 receptor) has been widely used as a means to clarify the brain regions with dopaminoceptive cells, primarily in representative species of tetrapods. The relationship between dopaminergic and dopaminoceptive elements is frequently analyzed using the catecholamine marker tyrosine hydroxylase (TH). In the present study, by means of combined immunohistochemistry, we have analyzed these relationships in lungfishes, the only group of sarcopterygian fishes represented by 6 extant species that are the phylogenetically closest living relatives of tetrapods. We used the Australian lungfish Neoceratodus forsteri and the African lungfish Protopterus dolloi. The DARPP-32 antibody yields a distinct and consistent pattern of neuronal staining in brain areas that, in general, coincide with areas that are densely innervated by TH-immunoreactive fibers. The striatum, thalamus, optic tectum, and torus semicircularis contain intensely DARPP-32-immunoreactive cell bodies and fibers. Cells are also located in the olfactory bulbs, amygdaloid complex, lateral septum, pallidum, preoptic area, suprachiasmatic nucleus, tuberal hypothalamic region, rostral rhombencephalic reticular formation, superior raphe nucleus, octavolateral area, solitary tract nucleus, and spinal cord. Remarkably, DARPP-32-immunoreactive fibers originating in the striatum reach the region of the dopaminergic cells in the mesencephalic tegmentum and represent a well-established striatonigral pathway in lungfishes. Double immunolabeling reveals that DARPP-32 is present in neurons that most likely receive TH input, but it is absent from the catecholaminergic neurons themselves, with the only exception of a few cells in the suprachiasmatic nucleus of Neoceratodus and the solitary tract nucleus of Protopterus. In addition, some species differences exist in the localization of DARPP-32 cells in the pallium, lateral amygdala, thalamus, prethalamus, and octavolateral area. In general, the present study demonstrates that the distribution pattern of DARPP-32, and its relationship with TH, is largely comparable to those reported for tetrapods, highlighting a shared situation among all sarcopterygians.
Collapse
Affiliation(s)
- Jesús M López
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|
5
|
Orozco-Solis R, Sassone-Corsi P. Epigenetic control and the circadian clock: linking metabolism to neuronal responses. Neuroscience 2014; 264:76-87. [PMID: 24486964 DOI: 10.1016/j.neuroscience.2014.01.043] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 01/01/2023]
Abstract
Experimental and epidemiological evidence reveal the profound influence that industrialized modern society has imposed on human social habits and physiology during the past 50 years. This drastic change in life-style is thought to be one of the main causes of modern diseases including obesity, type 2 diabetes, mental illness such as depression, sleep disorders, and certain types of cancer. These disorders have been associated to disruption of the circadian clock, an intrinsic time-keeper molecular system present in virtually all cells and tissues. The circadian clock is a key element in homeostatic regulation by controlling a large array of genes implicated in cellular metabolism. Importantly, intimate links between epigenetic regulation and the circadian clock exist and are likely to prominently contribute to the plasticity of the response to the environment. In this review, we summarize some experimental and epidemiological evidence showing how environmental factors such as stress, drugs of abuse and changes in circadian habits, interact through different brain areas to modulate the endogenous clock. Furthermore we point out the pivotal role of the deacetylase silent mating-type information regulation 2 homolog 1 (SIRT1) as a molecular effector of the environment in shaping the circadian epigenetic landscape.
Collapse
Affiliation(s)
- R Orozco-Solis
- Center for Epigenetics and Metabolism, Unite 904 INSERM, Department of Biological Chemistry, University of California, Irvine, CA 92697, United States
| | - P Sassone-Corsi
- Center for Epigenetics and Metabolism, Unite 904 INSERM, Department of Biological Chemistry, University of California, Irvine, CA 92697, United States.
| |
Collapse
|
6
|
Plano SA, Agostino PV, de la Iglesia HO, Golombek DA. cGMP-phosphodiesterase inhibition enhances photic responses and synchronization of the biological circadian clock in rodents. PLoS One 2012; 7:e37121. [PMID: 22590651 PMCID: PMC3349644 DOI: 10.1371/journal.pone.0037121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/13/2012] [Indexed: 12/13/2022] Open
Abstract
The master circadian clock in mammals is located in the hypothalamic suprachiasmatic nuclei (SCN) and is synchronized by several environmental stimuli, mainly the light-dark (LD) cycle. Light pulses in the late subjective night induce phase advances in locomotor circadian rhythms and the expression of clock genes (such as Per1-2). The mechanism responsible for light-induced phase advances involves the activation of guanylyl cyclase (GC), cGMP and its related protein kinase (PKG). Pharmacological manipulation of cGMP by phosphodiesterase (PDE) inhibition (e.g., sildenafil) increases low-intensity light-induced circadian responses, which could reflect the ability of the cGMP-dependent pathway to directly affect the photic sensitivity of the master circadian clock within the SCN. Indeed, sildenafil is also able to increase the phase-shifting effect of saturating (1200 lux) light pulses leading to phase advances of about 9 hours, as well as in C57 a mouse strain that shows reduced phase advances. In addition, sildenafil was effective in both male and female hamsters, as well as after oral administration. Other PDE inhibitors (such as vardenafil and tadalafil) also increased light-induced phase advances of locomotor activity rhythms and accelerated reentrainment after a phase advance in the LD cycle. Pharmacological inhibition of the main downstream target of cGMP, PKG, blocked light-induced expression of Per1. Our results indicate that the cGMP-dependent pathway can directly modulate the light-induced expression of clock-genes within the SCN and the magnitude of light-induced phase advances of overt rhythms, and provide promising tools to design treatments for human circadian disruptions.
Collapse
Affiliation(s)
- Santiago A. Plano
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| | - Patricia V. Agostino
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| | | | - Diego A. Golombek
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
7
|
Protein phosphatase 1 (PP1) is a post-translational regulator of the mammalian circadian clock. PLoS One 2011; 6:e21325. [PMID: 21712997 PMCID: PMC3119686 DOI: 10.1371/journal.pone.0021325] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/25/2011] [Indexed: 01/25/2023] Open
Abstract
Circadian clocks coordinate the timing of important biological processes. Interconnected transcriptional and post-translational feedback loops based on a set of clock genes generate and maintain these rhythms with a period of about 24 hours. Many clock proteins undergo circadian cycles of post-translational modifications. Among these modifications, protein phosphorylation plays an important role in regulating activity, stability and intracellular localization of clock components. Several protein kinases were characterized as regulators of the circadian clock. However, the function of protein phosphatases, which balance phosphorylation events, in the mammalian clock mechanism is less well understood. Here, we identify protein phosphatase 1 (PP1) as regulator of period and light-induced resetting of the mammalian circadian clock. Down-regulation of PP1 activity in cells by RNA interference and in vivo by expression of a specific inhibitor in the brain of mice tended to lengthen circadian period. Moreover, reduction of PP1 activity in the brain altered light-mediated clock resetting behavior in mice, enhancing the phase shifts in either direction. At the molecular level, diminished PP1 activity increased nuclear accumulation of the clock component PER2 in neurons. Hence, PP1, may reduce PER2 phosphorylation thereby influencing nuclear localization of this protein. This may at least partially influence period and phase shifting properties of the mammalian circadian clock.
Collapse
|
8
|
López JM, Morona R, González A. Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system. J Chem Neuroanat 2010; 40:325-38. [DOI: 10.1016/j.jchemneu.2010.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 09/22/2010] [Accepted: 09/22/2010] [Indexed: 01/10/2023]
|
9
|
Zocchi L, Sassone-Corsi P. Joining the dots: from chromatin remodeling to neuronal plasticity. Curr Opin Neurobiol 2010; 20:432-40. [PMID: 20471240 PMCID: PMC3375208 DOI: 10.1016/j.conb.2010.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/07/2010] [Accepted: 04/09/2010] [Indexed: 01/26/2023]
Abstract
In recent years spectacular advances in the field of epigenetics have taken place. Multiple lines of evidence that connect epigenetic regulation to brain functions have been accumulating. Neurons daily convert a variety of external stimuli into rapid or long-lasting changes in gene expression. Control is achieved through several covalent modifications that occur both on DNA and chromatin. Specific modifications mediate many developmental processes and adult brain functions, such as synaptic plasticity and memory. In this review, we focus on crucial chromatin remodeling events that mediate long-lasting neuronal responses. The challenging goal is to reach sufficient understanding of these epigenetic pathways in the brain so that they may be useful for future development of specific pharmacological strategies.
Collapse
Affiliation(s)
- Loredana Zocchi
- Department of Pharmacology, School of Medicine, University of California, Irvine, 92697 Irvine, California
| | - Paolo Sassone-Corsi
- Department of Pharmacology, School of Medicine, University of California, Irvine, 92697 Irvine, California
| |
Collapse
|
10
|
Stadler F, Schmutz I, Schwaller B, Albrecht U. Lack of calbindin-D28k alters response of the murine circadian clock to light. Chronobiol Int 2010; 27:68-82. [PMID: 20205558 DOI: 10.3109/07420521003648554] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A strong stimulus adjusting the circadian clock to the prevailing light-dark cycle is light. However, the circadian clock is reset by light only at specific times of the day. The mechanisms mediating such gating of light input to the CNS are not well understood. There is evidence that Ca(2+) ions play an important role in intracellular signaling mechanisms, including signaling cascades stimulated by light. Therefore, Ca(2+) is hypothesized to play a role in the light-mediated resetting of the circadian clock. Calbindin-D28k (CB; gene symbol: Calb1) is a Ca(2+) binding protein implicated in Ca(2+) homeostasis and sensing. The absence of this protein influences Ca(2+) buffering capacity of a cell, alters spatio-temporal aspects of intracellular Ca(2+) signaling, and hence might alter transmission of light information to the circadian clock in neurons of the suprachiasmatic nuclei (SCN). We tested mice lacking a functional Calb1 gene (Calb1(-/-)) and found an increased phase-delay response to light applied at circadian time (CT) 14 in these animals. This is accompanied by elevated induction of Per2 gene expression in the SCN. Period length and circadian rhythmicity were comparable between Calb1(-/-) and wild-type animals. Our findings indicate an involvement of CB in the signaling pathway that modulates the behavioral and molecular response to light.
Collapse
Affiliation(s)
- Frédéric Stadler
- Department of Medicine, Unit of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland
| | | | | | | |
Collapse
|
11
|
Sleep disturbance as transdiagnostic: consideration of neurobiological mechanisms. Clin Psychol Rev 2010; 31:225-35. [PMID: 20471738 DOI: 10.1016/j.cpr.2010.04.003] [Citation(s) in RCA: 379] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/11/2010] [Accepted: 04/09/2010] [Indexed: 01/04/2023]
Abstract
Sleep disturbance is increasingly recognized as an important, but understudied, mechanism in the complex and multi-factorial causation of the symptoms and functional disability associated with psychiatric disorders. This review proposes that it is biologically plausible for sleep disturbance to be mechanistically transdiagnostic. More specifically, we propose that sleep disturbance is aetiologically linked to various forms of psychopathology through: its reciprocal relationship with emotion regulation and its shared/interacting neurobiological substrates in (a) genetics--genes known to be important in the generation and regulation of circadian rhythms have been linked to a range of disorders and (b) dopaminergic and serotonergic function--we review evidence for the interplay between these systems and sleep/circadian biology. The clinical implications include potentially powerful and inexpensive interventions including interventions targeting light exposure, dark exposure, the regulation of social rhythms and the reduction of anxiety. We also consider the possibility of developing a 'transdiagnostic' treatment; one treatment that would reduce sleep disturbance across psychiatric disorders.
Collapse
|
12
|
Abstract
Neurons are submitted to an exceptional variety of stimuli and are able to convert these into high-order functions, such as storing memories, controlling behavior, and governing consciousness. These unique properties are based on the highly flexible nature of neurons, a characteristic that can be regulated by the complex molecular machinery that controls gene expression. Epigenetic control, which largely involves events of chromatin remodeling, appears to be one way in which transcriptional regulation of gene expression can be modified in neurons. This review will focus on how epigenetic control in the mature nervous system may guide dynamic plasticity processes and long-lasting cellular neuronal responses. We outline the molecular pathways underlying chromatin transitions, propose the presence of an "epigenetic indexing code," and discuss how central findings accumulating at an exponential pace in the field of epigenetics are conceptually changing our perspective of adult brain function.
Collapse
|
13
|
Rollo CD. Dopamine and Aging: Intersecting Facets. Neurochem Res 2008; 34:601-29. [DOI: 10.1007/s11064-008-9858-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
|
14
|
Abstract
Daily rhythms are a ubiquitous feature of living systems. Generally, these rhythms are not just passive consequences of cyclic fluctuations in the environment, but instead originate within the organism. In mammals, including humans, the master pacemaker controlling 24-hour rhythms is localized in the suprachiasmatic nuclei of the hypothalamus. This circadian clock is responsible for the temporal organization of a wide variety of functions, ranging from sleep and food intake, to physiological measures such as body temperature, heart rate and hormone release. The retinal circadian clock was the first extra-SCN circadian oscillator to be discovered in mammals and several studies have now demonstrated that many of the physiological, cellular and molecular rhythms that are present within the retina are under the control of a retinal circadian clock, or more likely a network of hierarchically organized circadian clocks that are present within this tissue. BioEssays 30:624-633, 2008. (c) 2008 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gianluca Tosini
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute. Morehouse School of Medicine, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
15
|
Gannon RL, Millan MJ. Evaluation of serotonin, noradrenaline and dopamine reuptake inhibitors on light-induced phase advances in hamster circadian activity rhythms. Psychopharmacology (Berl) 2007; 195:325-32. [PMID: 17694388 DOI: 10.1007/s00213-007-0903-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 07/18/2007] [Indexed: 10/22/2022]
Abstract
RATIONALE Selective serotonin reuptake inhibitors (SSRIs) are widely prescribed for the treatment of anxiodepressive states that are often associated with perturbed circadian rhythms including, in certain patients, phase advances. Surprisingly, the influence of SSRIs upon circadian activity rhythms has been little studied in experimental models. OBJECTIVES Accordingly, this study examined the ability of SSRIs to modulate the phase-setting properties of light on circadian activity rhythms in hamsters. Their actions were compared to those of the mixed serotonin/noradrenaline reuptake inhibitor (SNRI), venlafaxine, the selective noradrenaline reuptake inhibitor, reboxetine, and the dopamine reuptake inhibitor, bupropion. MATERIALS AND METHODS Wheel-running activity rhythms were recorded in male Syrian hamsters. Drugs were administered systemically before a light stimulus that was used to advance the timing of the hamster running rhythms. RESULTS Four chemically diverse SSRIs, citalopram (1-10 mg/kg, intraperitoneally), fluvoxamine (1-10), paroxetine (1-10), and fluoxetine (10 and 20), all robustly and significantly inhibited the ability of light to phase advance hamster circadian wheel-running activity rhythms. Their actions were mimicked by venlafaxine (1-10) that likewise elicited a marked reduction in phase advances. Conversely, reboxetine (1-20) and bupropion (1-20) did not exert significant effects. CONCLUSIONS These data suggest that suppression of serotonin (but not noradrenaline or dopamine) reuptake by SSRIs and SNRIs modifies circadian locomotor activity rhythms in hamsters. Further, they support the notion that an inhibitory influence upon the early-morning light-induced advance in circadian activity contributes to the therapeutic effects of serotonin uptake inhibitors in certain depressed patients.
Collapse
Affiliation(s)
- Robert L Gannon
- Department of Biology, Valdosta State University, Valdosta, GA 31698, USA.
| | | |
Collapse
|
16
|
Witkovsky P, Svenningsson P, Yan L, Bateup H, Silver R. Cellular localization and function of DARPP-32 in the rodent retina. Eur J Neurosci 2007; 25:3233-42. [PMID: 17552992 PMCID: PMC3285295 DOI: 10.1111/j.1460-9568.2007.05571.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The goal of the present study was to elucidate the role of DARPP-32 (dopamine- and cyclic adenosine 3'-5'-monophosphate-regulated phosphoprotein, 32 kDa) in retinal function. We examined mouse and rat retinas for the presence of DARPP-32 by immunocytochemistry. In both rodent retinas DARPP-32 immunoreactivity was localized to horizontal and AII amacrine neurons and to the Mueller glial cells, using immuno-double labelling. Additional unidentified neurons in the amacrine cell layer also showed DARPP-32 immunoreactivity. Using mice entrained to a 12-12 h light-dark cycle, we found that exposure to light presented during the dark phase significantly enhanced phosphorylation of DARPP-32 at threonine (Thr) 34 and phosphorylation of the ionotropic glutamate receptor subunit GluR1 at serine (Ser) 845, as measured by immunoblots. However, light also increased Ser 845-GluR1 phosphorylation in DARPP-32-knockout mice. When a dopamine D1 receptor antagonist was injected into the eye prior to light exposure, phosphorylation of both Thr 34-DARPP-32 and Ser 845-GluR1 was significantly reduced. These data indicate that DARPP-32 participates in dopamine-mediated modifications of retinal function. We also tested for a possible circadian rhythm of Thr 34- and Thr 75-DARPP-32 and Ser 845-GluR1 expression. No significant circadian rhythm of either DARPP-32 or GluR1 phosphorylation was found.
Collapse
Affiliation(s)
- Paul Witkovsky
- Department of Ophthalmology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
17
|
Agostino PV, Plano SA, Golombek DA. Sildenafil accelerates reentrainment of circadian rhythms after advancing light schedules. Proc Natl Acad Sci U S A 2007; 104:9834-9. [PMID: 17519328 PMCID: PMC1887561 DOI: 10.1073/pnas.0703388104] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian circadian rhythms are generated by a master clock located in the suprachiasmatic nuclei and entrained by light-activated signaling pathways. In hamsters, the mechanism responsible for light-induced phase advances involves the activation of guanylyl cyclase, cGMP and its related kinase (PKG). It is not completely known whether interference with this pathway affects entrainment of the clock, including adaptation to changing light schedules. Here we report that cGMP-specific phosphodiesterase 5 is present in the hamster suprachiasmatic nuclei, and administration of the inhibitor sildenafil (3.5 mg/kg, i.p.) enhances circadian responses to light and decreases the amount of time necessary for reentrainment after phase advances of the light-dark cycle. These results suggest that sildenafil may be useful for treatment of circadian adaptation to environmental changes, including transmeridian eastbound flight schedules.
Collapse
Affiliation(s)
- Patricia V. Agostino
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, 1876 Buenos Aires, Argentina
| | - Santiago A. Plano
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, 1876 Buenos Aires, Argentina
| | - Diego A. Golombek
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, 1876 Buenos Aires, Argentina
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Peng ZW, Chen XG, Wei Z. Cryptochrome1 maybe a candidate gene of schizophrenia. Med Hypotheses 2007; 69:849-51. [PMID: 17376600 DOI: 10.1016/j.mehy.2007.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
During the last 10 years, we have witnessed major progress in the genetic study of schizophrenia, but gene-mapping efforts have been hampered by the complex mode of inheritance and the likelihood of multiple genes of small effect. In view of the complexity, it may be instructive to understand the biological bases for pathogenesis. Extensive disruption in circadian function is known to occur among schizophrenia patients. If circadian dysfunction can be established as an 'endophenotype' for schizophrenia, it may not only enable the identification of more homogenous sub-groups, but also facilitate the genetic analyses. Therefore, circadian dysfunction maybe underlies the pathogenesis of schizophrenia and would be logical to investigate polymorphisms of genes encoding key proteins that mediate circadian rhythms. Cryptochrome1 (Cry1), located in a chromosomal region 12q23-q24.1, performs predominantly regulatory function in circadian clock and which is close to a linkage hotspot (12q24) of schizophrenia. Recent studies also found that Cry1 gene interacted with antipsychotic drugs and dopamine system which played a core role in the pathophysiology of schizophrenia. Based on these findings, we speculate that Cry1 was the candidate gene of schizophrenia. The proposition may have new clues on the development of genetic study on complex diseases.
Collapse
Affiliation(s)
- Zi-wen Peng
- Mental Health Institute of The 2nd Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011 Hunan Province, China
| | | | | |
Collapse
|