1
|
Kaneshige M, Obara K, Suzuki M, Tazoe T, Nishimura Y. Tuning of motor outputs produced by spinal stimulation during voluntary control of torque directions in monkeys. eLife 2022; 11:78346. [PMID: 36512395 PMCID: PMC9747157 DOI: 10.7554/elife.78346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Spinal stimulation is a promising method to restore motor function after impairment of descending pathways. While paresis, a weakness of voluntary movements driven by surviving descending pathways, can benefit from spinal stimulation, the effects of descending commands on motor outputs produced by spinal stimulation are unclear. Here, we show that descending commands amplify and shape the stimulus-induced muscle responses and torque outputs. During the wrist torque tracking task, spinal stimulation, at a current intensity in the range of balanced excitation and inhibition, over the cervical enlargement facilitated and/or suppressed activities of forelimb muscles. Magnitudes of these effects were dependent on directions of voluntarily produced torque and positively correlated with levels of voluntary muscle activity. Furthermore, the directions of evoked wrist torque corresponded to the directions of voluntarily produced torque. These results suggest that spinal stimulation is beneficial in cases of partial lesion of descending pathways by compensating for reduced descending commands through activation of excitatory and inhibitory synaptic connections to motoneurons.
Collapse
Affiliation(s)
- Miki Kaneshige
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan,The Japan Society for the Promotion of ScienceTokyoJapan
| | - Kei Obara
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan,Division of Neural Engineering, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Michiaki Suzuki
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Toshiki Tazoe
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Yukio Nishimura
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| |
Collapse
|
2
|
Moore RT, Cluff T. Individual Differences in Sensorimotor Adaptation Are Conserved Over Time and Across Force-Field Tasks. Front Hum Neurosci 2021; 15:692181. [PMID: 34916916 PMCID: PMC8669441 DOI: 10.3389/fnhum.2021.692181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
Sensorimotor adaptation enables the nervous system to modify actions for different conditions and environments. Many studies have investigated factors that influence adaptation at the group level. There is growing recognition that individuals vary in their ability to adapt motor skills and that a better understanding of individual differences in adaptation may inform how motor skills are taught and rehabilitated. Here we examined individual differences in the adaptation of upper-limb reaching movements. We quantified the extent to which participants adapted their movements to a velocity-dependent force field during an initial session, at 24 h, and again 1-week later. Participants (n = 28) displayed savings, which was expressed as greater initial adaptation when re-exposed to the force field. Individual differences in adaptation across various stages of the experiment displayed weak-strong reliability, such that individuals who adapted to a greater extent in the initial session tended to do so when re-exposed to the force field. Our second experiment investigated if individual differences in adaptation are also present when participants adapt to different force fields or a force field and visuomotor rotation. Separate groups of participants adapted to position- and velocity-dependent force fields (Experiment 2a; n = 20) or a velocity-dependent force field and visuomotor rotation in a single session (Experiment 2b; n = 20). Participants who adapted to a greater extent to velocity-dependent forces tended to show a greater extent of adaptation when exposed to position-dependent forces. In contrast, correlations were weak between various stages of adaptation to the force-field and visuomotor rotation. Collectively, our study reveals individual differences in adaptation that are reliable across repeated exposure to the same force field and present when adapting to different force fields.
Collapse
Affiliation(s)
- Robert T Moore
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tyler Cluff
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Kimoto Y, Hirano M, Furuya S. Adaptation of the Corticomuscular and Biomechanical Systems of Pianists. Cereb Cortex 2021; 32:709-724. [PMID: 34426838 DOI: 10.1093/cercor/bhab229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Independent control of movements between the fingers plays a role in hand dexterity characterizing skilled individuals. However, it remains unknown whether and in what manner neuromuscular and biomechanical constraints on the movement independence of the fingers depend on motor expertise. Here, we compared motor dexterity, corticospinal excitability of multiple muscles, muscular activation, and anatomical features of the fingers between the pianists and nonpianists. When the ring finger was passively moved by a robot, passive motions produced at the adjacent fingers were smaller for the pianists than the nonpianists, indicating reduced biomechanical constraint of fingers in the pianists. In contrast, when the ring finger moved actively, we found no group difference in passive motions produced at the adjacent fingers; however, reduced inhibition of corticospinal excitability of the adjacent fingers in the pianists compared with the nonpianists. This suggests strengthened neuromuscular coupling between the fingers of the pianists, enhancing the production of coordinated finger movements. These group differences were not evident during the index and little finger movements. Together, pianists show expertise-dependent biomechanical and neurophysiological adaptations, specifically at the finger with innately low movement independence. Such contrasting adaptations of pianists may subserve dexterous control of both the individuated and coordinated finger movements.
Collapse
Affiliation(s)
- Yudai Kimoto
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| | - Masato Hirano
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| | - Shinichi Furuya
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| |
Collapse
|
4
|
Sato D, Yamazaki Y, Yamashiro K, Onishi H, Baba Y, Ikarashi K, Maruyama A. Elite competitive swimmers exhibit higher motor cortical inhibition and superior sensorimotor skills in a water environment. Behav Brain Res 2020; 395:112835. [PMID: 32750463 DOI: 10.1016/j.bbr.2020.112835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 01/24/2023]
Abstract
Motor skill learning leads to task-related contextual behavioral changes that are underpinned by neuroplastic cortical reorganization. Short-term training induces environment-related contextual behavioral changes and neuroplastic changes in the primary motor cortex (M1). However, it is unclear whether environment-related contextual behavioral changes persist after long-term training and how cortical plastic changes are involved in behavior. To address these issues, we examined 14 elite competitive swimmers and 14 novices. We hypothesized that the sensorimotor skills of swimmers would be higher in a water environment than those of novices, and the recruitment of corticospinal and intracortical projections would be different between swimmers and novices. We assessed joint angle modulation performance as a behavioral measure and motor cortical excitation and inhibition using transcranial magnetic stimulation (TMS) at rest and during the tasks that were performed before, during, and after water immersion (WI). Motor cortical inhibition was measured with short-interval intracortical inhibition and long-interval intracortical inhibition by a paired-pulse TMS paradigm. We found that 1) the sensorimotor skills of swimmers who underwent long-term training in a water environment were superior and robustly unchanged compared with those of novices with respect to baseline on land, during WI, on land post-WI and 2) intracortical inhibition in water environments was increased in swimmers but was decreased in non-swimmers at rest compared to that on land; however, the latter alterations in intracortical inhibition in water environment were insufficient to account for the superior sensorimotor skills of swimmers. In conclusion, we demonstrate that environment-related contextual behavioral and neural changes occur even with long-term training experience.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Health and Sports, Niigata University of Health and Welfare, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan.
| | - Yudai Yamazaki
- Research Fellow of Japan Society for the Promotion of Science, Japan; Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Japan; Sports Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Japan
| | - Koya Yamashiro
- Department of Health and Sports, Niigata University of Health and Welfare, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Japan
| | - Yasuhiro Baba
- Department of Health and Sports, Niigata University of Health and Welfare, Japan
| | - Koyuki Ikarashi
- Field of Health and Sports, Graduate School of Niigata University of Health and Welfare, Japan
| | - Atsuo Maruyama
- Department of Rehabilitation Medicine, Kagoshima University, Japan
| |
Collapse
|
5
|
Vesia M, Pellicciari R, Cash RFH, Isayama R, Kunaratnam N, Jegatheeswaran G, Chen R. Learning from Goal and Action Based Observations Differentially Modulates Functional Motor Cortical Plasticity. Neuroscience 2019; 404:387-395. [PMID: 30797894 DOI: 10.1016/j.neuroscience.2019.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 11/17/2022]
Abstract
Action observation can facilitate motor skill learning and lead to a memory trace in motor representations of action. However, it remains unclear whether the action itself or the goal of the action drive changes in motor representations after learning by observation. We performed two experiments. In Experiment 1, using serial reaction time task and transcranial magnetic stimulation, we showed that observation of right-hand actions during skill learning only increased left motor cortical excitability, leading to behavioral gains in the same hand as the observed hand. In contrast, observing a sequence of visual cue positions devoid of hand action increases motor cortical excitability in both hemispheres and facilitates motor skill learning in the right hand (Experiment 1) and left hand for a mirror-symmetric sequence (Experiment 2). We propose that the encoding of observed movements maps onto motor representations of the same action to form a limb-specific motor memory, whereas the learning of spatial goals forms memory traces in the motor representations in both hemispheres to prepare for potential action in either hand.
Collapse
Affiliation(s)
- Michael Vesia
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.
| | - Roberta Pellicciari
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Robin F H Cash
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Reina Isayama
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Nirsan Kunaratnam
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | | | - Robert Chen
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
6
|
Hirano M, Kubota S, Koizume Y, Funase K. Acquisition of motor memory determines the interindividual variability of learning-induced plasticity in the primary motor cortex. J Appl Physiol (1985) 2018; 125:990-998. [PMID: 29975602 DOI: 10.1152/japplphysiol.00470.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acquisition of new motor skills induces plastic reorganization in the primary motor cortex (M1). Previous studies have demonstrated the increases in the M1 excitability through motor skill learning. However, this M1 reorganization is highly variable between individuals even though they improve their skill performance through the same training protocol. To reveal the source of this interindividual variability, we examined the relationship between an acquisition of memory-guided feedforward movements and the learning-induced increases in the M1 excitability. Twenty-eight subjects participated in experiment 1. We asked subjects to learn a visuomotor tracking task. The subjects controlled a cursor on a PC monitor to pursue a target line by performing ankle dorsiflexion and plantar flexion. In experiment 1, we removed the online visual feedback provided by the cursor movement once every six trials, which enabled us to assess whether the subjects could perform accurate memory-guided movements. Motor-evoked potentials (MEP) were elicited in the tibialis anterior muscle by transcranial magnetic stimulation of the relevant M1 before and after the learning of the visuomotor tracking task and after half the trials. We found that the MEP amplitude was increased along with the improvement in memory-guided movements. In experiment 2 ( n = 10), we confirmed this relationship by examining whether the improvement in memory-guided movements induces increases in MEP amplitude. The results of this study indicate that the plastic reorganization of the M1 induced by the learning of a visuomotor skill is associated with the acquisition of memory-guided movements. NEW & NOTEWORTHY Acquisition of novel motor skills increases excitability of the primary motor cortex (M1). We recently reported that the amount of increases in the M1 excitability is highly variable between individuals even though they learned the same skill to the similar extent, yet the sources of this interindividual variability still remain unclear. The present study revealed that this interindividual variability is associated with whether individuals acquire a motor memory, which enables them to produce accurate memory-guided movements.
Collapse
Affiliation(s)
- Masato Hirano
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University , Hiroshima , Japan
| | - Shinji Kubota
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University , Hiroshima , Japan
| | - Yoshiki Koizume
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University , Hiroshima , Japan
| | - Kozo Funase
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University , Hiroshima , Japan
| |
Collapse
|
7
|
Hironaga N, Kimura T, Mitsudo T, Gunji A, Iwata M. Proposal for an accurate TMS-MRI co-registration process via 3D laser scanning. Neurosci Res 2018; 144:30-39. [PMID: 30170008 DOI: 10.1016/j.neures.2018.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/06/2018] [Accepted: 08/27/2018] [Indexed: 01/20/2023]
Abstract
An important technical issue in transcranial magnetic stimulation (TMS) usage is how accurately the specific brain areas activated by TMS are assessed. However, in practice, electric field induced in TMS is dispersed and therefore actual estimation is still difficult. As a preliminary step, the projection line which is perpendicular to the TMS stimulation coil beneath the center of the coil must be accurately estimated into the brain. Therefore, we have developed a new TMS-MRI co-registration procedure that employs a 3D laser-scanner system that is very useful for general hand-manipulated TMS, and which easily estimates the TMS projection point onto the brain. The proposed system accurately captures the positional relationship between the TMS coil and anatomical images. The results of 3D image processing revealed that the registration error at each stage was kept within the submillimeter level. In addition, a motor evoked potential experiment examining the right finger motor area revealed that understandable responses were obtained when stimulation was targeted to the three different motor areas according to Penfield's map. 3D laser scanning is a technique of substantial recent interest for anatomical co-registration. The proposed method demonstrated submillimeter level accuracy of TMS-MRI co-registration.
Collapse
Affiliation(s)
- Naruhito Hironaga
- Brain Center, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Takahiro Kimura
- Research Institute, Kochi University of Technology, Tosayamada, Kami, Kochi, 782-8502, Japan; Institute of Liberal Arts and Science, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Takako Mitsudo
- Department of Clinical Neurophysiology, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Atsuko Gunji
- College of Education, Yokohama National University, 79-2 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 Japan; National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Makoto Iwata
- Research Institute, Kochi University of Technology, Tosayamada, Kami, Kochi, 782-8502, Japan
| |
Collapse
|
8
|
Furuya S, Furukawa Y, Uehara K, Oku T. Probing sensorimotor integration during musical performance. Ann N Y Acad Sci 2018; 1423:211-218. [PMID: 29524356 DOI: 10.1111/nyas.13619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/29/2017] [Accepted: 01/05/2018] [Indexed: 11/29/2022]
Abstract
An integration of afferent sensory information from the visual, auditory, and proprioceptive systems into execution and update of motor programs plays crucial roles in control and acquisition of skillful sequential movements in musical performance. However, conventional behavioral and neurophysiological techniques that have been applied to study simplistic motor behaviors limit elucidating online sensorimotor integration processes underlying skillful musical performance. Here, we propose two novel techniques that were developed to investigate the roles of auditory and proprioceptive feedback in piano performance. First, a closed-loop noninvasive brain stimulation system that consists of transcranial magnetic stimulation, a motion sensor, and a microcomputer enabled to assess time-varying cortical processes subserving auditory-motor integration during piano playing. Second, a force-field system capable of manipulating the weight of a piano key allowed for characterizing movement adaptation based on the feedback obtained, which can shed light on the formation of an internal representation of the piano. Results of neurophysiological and psychophysics experiments provided evidence validating these systems as effective means for disentangling computational and neural processes of sensorimotor integration in musical performance.
Collapse
Affiliation(s)
- Shinichi Furuya
- Sony Computer Science Laboratories Inc. (Sony CSL), Tokyo, Japan
- Musical Skill and Injury Center, Sophia University, Tokyo, Japan
| | - Yuta Furukawa
- Musical Skill and Injury Center, Sophia University, Tokyo, Japan
| | - Kazumasa Uehara
- Musical Skill and Injury Center, Sophia University, Tokyo, Japan
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona
| | - Takanori Oku
- Sony Computer Science Laboratories Inc. (Sony CSL), Tokyo, Japan
- Musical Skill and Injury Center, Sophia University, Tokyo, Japan
| |
Collapse
|
9
|
Nozaki D, Yokoi A, Kimura T, Hirashima M, Orban de Xivry JJ. Tagging motor memories with transcranial direct current stimulation allows later artificially-controlled retrieval. eLife 2016; 5. [PMID: 27472899 PMCID: PMC5010385 DOI: 10.7554/elife.15378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/28/2016] [Indexed: 11/30/2022] Open
Abstract
We demonstrate that human motor memories can be artificially tagged and later retrieved by noninvasive transcranial direct current stimulation (tDCS). Participants learned to adapt reaching movements to two conflicting dynamical environments that were each associated with a different tDCS polarity (anodal or cathodal tDCS) on the sensorimotor cortex. That is, we sought to determine whether divergent background activity levels within the sensorimotor cortex (anodal: higher activity; cathodal: lower activity) give rise to distinct motor memories. After a training session, application of each tDCS polarity automatically resulted in the retrieval of the motor memory corresponding to that polarity. These results reveal that artificial modulation of neural activity in the sensorimotor cortex through tDCS can act as a context for the formation and recollection of motor memories. DOI:http://dx.doi.org/10.7554/eLife.15378.001 Memory is strongly affected by the context in which a particular memory is formed and remembered. For example, visiting a familiar place can often trigger memories associated or “tagged” with that place. Such tagging also exists for memories related to movement: for instance, distinct motor memories for a limb movement are formed depending on whether the other limb is stationary or moving. However, little is known about how the tagging of such motor memories takes place. Nozaki et al. have now used a technique known as transcranial direct current stimulation to generate artificial “tags” for motor memories. In the experiments, volunteers tried to move a robotic arm towards a goal while the robot pushed their hand off-course. Sometimes the robot pushed the participant’s hand to the left, and sometimes to the right. This makes the task difficult to learn, even when the cue for the direction is provided, as the motor memories that are made to counteract each push overwrite each other. Nozaki et al. used transcranial stimulation to alter the background electrical activity in the sensorimotor regions of the participants’ brains as they performed the robotic arm task. Artificially generating a different pattern of background brain electrical activity for each push direction caused the motor memories associated with leftward and rightward pushes to be tagged differently. Once this association had been learnt, applying the artificial brain stimulation pattern associated with one of the pushes resulted in the participants unconsciously compensating for a push in that direction, even when it was not there. Overall, the results presented by Nozaki et al. suggest that the background electrical activity seen in the brain can influence how a motor memory is created and later recalled. A future challenge is to investigate whether this technique could be used to help athletes improve their performance or to treat people with movement disorders. Further experiments are also needed to test whether the same approach can influence the formation and recollection of other kinds of memories, such as those related to fear. DOI:http://dx.doi.org/10.7554/eLife.15378.002
Collapse
Affiliation(s)
- Daichi Nozaki
- Division of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Atsushi Yokoi
- The Brain and Mind Institute, University of Western Ontario, London, Canada.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Takahiro Kimura
- Research Institute, Kochi University of Technology, Kami City, Japan
| | - Masaya Hirashima
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, and Osaka University, Suita, Japan
| | - Jean-Jacques Orban de Xivry
- Institute of Information and Communication Technologies, Electronics, and Applied Mathematics, Université catholique de Louvain, Louvain-La-Neuve, Belgium.,Institute of Neuroscience, Université catholique de Louvain, Louvain-La-Neuve, Belgium.,Department of Kinesiology, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Hayashi T, Nozaki D. Improving a Bimanual Motor Skill Through Unimanual Training. Front Integr Neurosci 2016; 10:25. [PMID: 27471452 PMCID: PMC4944083 DOI: 10.3389/fnint.2016.00025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/28/2016] [Indexed: 11/27/2022] Open
Abstract
When we learn a bimanual motor skill (e.g., rowing a boat), we often break it down into unimanual practices (e.g., a rowing drill with the left or right arm). Such unimanual practice is thought to be useful for learning bimanual motor skills efficiently because the learner can concentrate on learning to perform a simpler component. However, it is not so straightforward to assume that unimanual training (UT) improves bimanual performance. We have previously demonstrated that motor memories for reaching movements consist of three different parts: unimanual-specific, bimanual-specific, and overlapping parts. According to this scheme, UT appears to be less effective, as its training effect is only partially transferred to the same limb for bimanual movement. In the present study, counter-intuitively, we demonstrate that, even after the bimanual skill is almost fully learned by means of bimanual training (BT), additional UT could further improve bimanual skill. We hypothesized that this effect occurs because UT increases the memory content in the overlapping part, which might contribute to an increase in the memory for bimanual movement. To test this hypothesis, we examined whether the UT performed after sufficient BT could improve the bimanual performance. Participants practiced performing bimanual reaching movements (BM) in the presence of a novel force-field imposed only on their left arm. As an index for the motor performance, we used the error-clamp method (i.e., after-effect of the left arm) to evaluate the force output to compensate for the force-field during the reaching movement. After sufficient BT, the training effect reached a plateau. However, UT performed subsequently improved the bimanual performance significantly. In contrast, when the same amount of BT was continued, the bimanual performance remained unchanged, highlighting the beneficial effect of UT on bimanual performance. Considering memory structure, we also expected that BT could improve unimanual performance, which was confirmed by another experiment. These results provide a new interpretation of why UT was useful for improving a bimanual skill, and propose a practical strategy for enhancing performance by performing training in various contexts.
Collapse
Affiliation(s)
- Takuji Hayashi
- Division of Physical and Health Education, Graduate School of Education, The University of TokyoTokyo, Japan; Japan Society for the Promotion of ScienceTokyo, Japan
| | - Daichi Nozaki
- Division of Physical and Health Education, Graduate School of Education, The University of TokyoTokyo, Japan; Center for Barrier-Free Education, Graduate School of Education, The University of TokyoTokyo, Japan
| |
Collapse
|
11
|
Neef NE, Hoang TNL, Neef A, Paulus W, Sommer M. Speech dynamics are coded in the left motor cortex in fluent speakers but not in adults who stutter. ACTA ACUST UNITED AC 2015; 138:712-25. [PMID: 25595146 DOI: 10.1093/brain/awu390] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The precise excitability regulation of neuronal circuits in the primary motor cortex is central to the successful and fluent production of speech. Our question was whether the involuntary execution of undesirable movements, e.g. stuttering, is linked to an insufficient excitability tuning of neural populations in the orofacial region of the primary motor cortex. We determined the speech-related time course of excitability modulation in the left and right primary motor tongue representation. Thirteen fluent speakers (four females, nine males; aged 23-44) and 13 adults who stutter (four females, nine males, aged 21-55) were asked to build verbs with the verbal prefix 'auf'. Single-pulse transcranial magnetic stimulation was applied over the primary motor cortex during the transition phase between a fixed labiodental articulatory configuration and immediately following articulatory configurations, at different latencies after transition onset. Bilateral electromyography was recorded from self-adhesive electrodes placed on the surface of the tongue. Off-line, we extracted the motor evoked potential amplitudes and normalized these amplitudes to the individual baseline excitability during the fixed configuration. Fluent speakers demonstrated a prominent left hemisphere increase of motor cortex excitability in the transition phase (P = 0.009). In contrast, the excitability of the right primary motor tongue representation was unchanged. Interestingly, adults afflicted with stuttering revealed a lack of left-hemisphere facilitation. Moreover, the magnitude of facilitation was negatively correlated with stuttering frequency. Although orofacial midline muscles are bilaterally innervated from corticobulbar projections of both hemispheres, our results indicate that speech motor plans are controlled primarily in the left primary speech motor cortex. This speech motor planning-related asymmetry towards the left orofacial motor cortex is missing in stuttering. Moreover, a negative correlation between the amount of facilitation and stuttering severity suggests that we discovered a main physiological principle of fluent speech production and its role in stuttering.
Collapse
Affiliation(s)
- Nicole E Neef
- 1 Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany 2 Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany
| | - T N Linh Hoang
- 1 Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany
| | - Andreas Neef
- 3 Max Planck Institute for Dynamics and Self-Organization, Department of Nonlinear Dynamics, Göttingen, Germany
| | - Walter Paulus
- 1 Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany
| | - Martin Sommer
- 1 Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany
| |
Collapse
|