1
|
Jiang Y, Lin Y, Tetlow AM, Pan R, Ji C, Kong XP, Congdon EE, Sigurdsson EM. Single-domain antibody-based protein degrader for synucleinopathies. Mol Neurodegener 2024; 19:44. [PMID: 38816762 PMCID: PMC11140919 DOI: 10.1186/s13024-024-00730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein (α-syn) in the brain, leading to motor and neuropsychiatric symptoms. Currently, there are no known cures for synucleinopathies, and treatments mainly focus on symptom management. In this study, we developed a single-domain antibody (sdAb)-based protein degrader with features designed to enhance proteasomal degradation of α-syn. This sdAb derivative targets both α-syn and Cereblon (CRBN), a substrate-receptor for the E3-ubiquitin ligase CRL4CRBN, and thereby induces α-syn ubiquitination and proteasomal degradation. Our results indicate that this therapeutic candidate enhances proteasomal degradation of α-syn, in addition to the endogenous lysosomal degradation machinery. By promoting proteasomal degradation of α-syn, we improved clearance of α-syn in primary culture and mouse models of synucleinopathy. These findings indicate that our sdAb-based protein degrader is a promising therapeutic candidate for synucleinopathies. Considering that only a small percentage of antibodies enter the brain, more potent sdAbs with greater brain entry than whole antibodies could enhance clinical benefits of antibody-based therapies.
Collapse
Affiliation(s)
- Yixiang Jiang
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Yan Lin
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Erin E Congdon
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
2
|
Jiang Y, Lin Y, Tetlow AM, Pan R, Ji C, Kong XP, Congdon EE, Sigurdsson EM. Single-Domain Antibody-Based Protein Degrader for Synucleinopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584473. [PMID: 38558982 PMCID: PMC10979981 DOI: 10.1101/2024.03.11.584473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein (α-syn) in the brain, leading to motor and neuropsychiatric symptoms. Currently, there are no known cures for synucleinopathies, and treatments mainly focus on symptom management. In this study, we developed a single-domain antibody (sdAb)-based protein degrader with features designed to enhance proteasomal degradation of α-syn. This sdAb derivative targets both α-syn and Cereblon (CRBN), a substrate-receptor for the E3-ubiquitin ligase CRL4CRBN, and thereby induces α-syn ubiquitination and proteasomal degradation. Our results indicate that this therapeutic candidate enhances proteasomal degradation of α-syn, in addition to the endogenous lysosomal degradation machinery. By promoting proteasomal degradation of α-syn, we improved clearance of α-syn in primary culture and mouse models of synucleinopathy. These findings indicate that our sdAb-based protein degrader is a promising therapeutic candidate for synucleinopathies. Considering that only a small percentage of antibodies enter the brain, more potent sdAbs with greater brain entry than whole antibodies could enhance clinical benefits of antibody-based therapies.
Collapse
Affiliation(s)
- Yixiang Jiang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Yan Lin
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Erin E Congdon
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| |
Collapse
|
3
|
Sigurdsson EM. Tau Immunotherapies for Alzheimer's Disease and Related Tauopathies: Status of Trials and Insights from Preclinical Studies. J Alzheimers Dis 2024; 101:S129-S140. [PMID: 38427486 DOI: 10.3233/jad-231238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The tau protein undergoes pathological changes in Alzheimer's disease and other tauopathies that eventually lead to functional impairments. Over the years, several therapeutic approaches have been examined to slow or halt the progression of tau pathology but have yet to lead to an approved disease-modifying treatment. Of the drugs in clinical trials that directly target tau, immunotherapies are the largest category and mostly consist of antibodies in different stages of development. There is a reasonable optimism that at least some of these compounds will have a clinically meaningful efficacy. This view is based on the significant although modest efficacy of some antibodies targeting amyloid-β in Alzheimer's disease and the fact that tau pathology correlates much better with the degree of dementia than amyloid-β lesions. In Alzheimer's disease, clearing pathological tau may therefore improve function later in the disease process than when removing amyloid-β. This review provides a brief update on the active and passive clinical tau immunization trials with insight from preclinical studies. Various epitopes are being targeted and some of the antibodies are said to target extracellular tau but because almost all of pathological tau is found intracellularly, the most efficacious antibodies should be able to enter the cell.
Collapse
Affiliation(s)
- Einar M Sigurdsson
- Departments of Neuroscience and Physiology, and Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Vashisth K, Sharma S, Ghosh S, Babu MA, Ghosh S, Iqbal D, Kamal M, Almutary AG, Jha SK, Ojha S, Bhaskar R, Jha NK, Sinha JK. Immunotherapy in Alzheimer's Disease: Current Status and Future Directions. J Alzheimers Dis 2024; 101:S23-S39. [PMID: 39422934 DOI: 10.3233/jad-230603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder characterized by memory loss, cognitive decline, and behavioral changes. Immunotherapy aims to harness the immune system to target the underlying pathology of AD and has shown promise as a disease-modifying treatment for AD. By focusing on the underlying disease pathogenesis and encouraging the removal of abnormal protein aggregates in the brain, immunotherapy shows promise as a potential treatment for AD. The development of immunotherapy for AD began with early attempts to use antibodies to target beta-amyloid. The amyloid hypothesis which suggests that the accumulation of beta-amyloid in the brain triggers the pathological cascade that leads to AD has been a driving force behind the development of immunotherapy for AD. However, recent clinical trials of monoclonal antibodies targeting amyloid-β have shown mixed results, highlighting the need for further research into alternative immunotherapy approaches. Additionally, the safety and efficacy of immunotherapy for AD remain an area of active investigation. Some immunotherapeutic approaches have shown promise, while others have been associated with significant side effects, including inflammation of the brain. Sleep has a significant impact on various physiological processes, including the immune system, and has been linked to the pathogenesis of AD. Thus, improving sleep quality and duration may benefit the immune system and potentially enhance the effectiveness of immunotherapeutic approaches for AD. In this review, we discussed the promises of immunotherapy as a disease-modifying treatment for AD as well as possible methods to improve the efficacy and safety of immunotherapy to achieve better therapeutic outcomes.
Collapse
Affiliation(s)
| | - Shivani Sharma
- Department of Pharmaceutics, R.K.S.D. College of Pharmacy, Kaithal, Haryana, India
| | - Shampa Ghosh
- GloNeuro, Noida, India
- ICMR - National Institute of Nutrition, Tarnaka, Hyderabad, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Korea
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | |
Collapse
|
5
|
Congdon EE, Ji C, Tetlow AM, Jiang Y, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease: current status and future directions. Nat Rev Neurol 2023; 19:715-736. [PMID: 37875627 PMCID: PMC10965012 DOI: 10.1038/s41582-023-00883-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia in older individuals. AD is characterized pathologically by amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain, with associated loss of synapses and neurons, which eventually results in dementia. Many of the early attempts to develop treatments for AD focused on Aβ, but a lack of efficacy of these treatments in terms of slowing disease progression led to a change of strategy towards targeting of tau pathology. Given that tau shows a stronger correlation with symptom severity than does Aβ, targeting of tau is more likely to be efficacious once cognitive decline begins. Anti-tau therapies initially focused on post-translational modifications, inhibition of tau aggregation and stabilization of microtubules. However, trials of many potential drugs were discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting agents in clinical trials are immunotherapies. In this Review, we provide an update on the results from the initial immunotherapy trials and an overview of new therapeutic candidates that are in clinical development, as well as considering future directions for tau-targeting therapies.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Jiang Y, Lin Y, Krishnaswamy S, Pan R, Wu Q, Sandusky-Beltran LA, Liu M, Kuo MH, Kong XP, Congdon EE, Sigurdsson EM. Single-domain antibody-based noninvasive in vivo imaging of α-synuclein or tau pathology. SCIENCE ADVANCES 2023; 9:eadf3775. [PMID: 37163602 PMCID: PMC10171817 DOI: 10.1126/sciadv.adf3775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/11/2023] [Indexed: 05/12/2023]
Abstract
Intracellular deposition of α-synuclein and tau are hallmarks of synucleinopathies and tauopathies, respectively. Recently, several dye-based imaging probes with selectivity for tau aggregates have been developed, but suitable imaging biomarkers for synucleinopathies are still unavailable. Detection of both of these aggregates early in the disease process may allow for prophylactic therapies before functional impairments have manifested, highlighting the importance of developing specific imaging probes for these lesions. In contrast to the β sheet dyes, single-domain antibodies, found in camelids and a few other species, are highly specific, and their small size allows better brain entry and distribution than whole antibodies. Here, we have developed such imaging ligands via phage display libraries derived from llamas immunized with α-synuclein and tau preparations, respectively. These probes allow noninvasive and specific in vivo imaging of α-synuclein versus tau pathology in mice, with the brain signal correlating strongly with lesion burden. These small antibody derivatives have great potential for in vivo diagnosis of these diseases.
Collapse
Affiliation(s)
- Yixiang Jiang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Yan Lin
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Senthilkumar Krishnaswamy
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Qian Wu
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Leslie A. Sandusky-Beltran
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Mengyu Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Erin E. Congdon
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Einar M. Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| |
Collapse
|
7
|
Banka V, Kelleher A, Sehlin D, Hultqvist G, Sigurdsson EM, Syvänen S, Ding YS. Development of brain-penetrable antibody radioligands for in vivo PET imaging of amyloid-β and tau. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1173693. [PMID: 37680310 PMCID: PMC10483511 DOI: 10.3389/fnume.2023.1173693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Introduction Alzheimer's disease (AD) is characterized by the misfolding and aggregation of two major proteins: amyloid-beta (Aβ) and tau. Antibody-based PET radioligands are desirable due to their high specificity and affinity; however, antibody uptake in the brain is limited by the blood-brain barrier (BBB). Previously, we demonstrated that antibody transport across the BBB can be facilitated through interaction with the transferrin receptor (TfR), and the bispecific antibody-based PET ligands were capable of detecting Aβ aggregates via ex vivo imaging. Since tau accumulation in the brain is more closely correlated with neuronal death and cognition, we report here our strategies to prepare four F-18-labeled specifically engineered bispecific antibody probes for the selective detection of tau and Aβ aggregates to evaluate their feasibility and specificity, particularly for in vivo PET imaging. Methods We first created and evaluated (via both in vitro and ex vivo studies) four specifically engineered bispecific antibodies, by fusion of single-chain variable fragments (scFv) of a TfR antibody with either a full-size IgG antibody of Aβ or tau or with their respective scFv. Using [18F]SFB as the prosthetic group, all four 18F-labeled bispecific antibody probes were then prepared by conjugation of antibody and [18F]SFB in acetonitrile/0.1 M borate buffer solution (final pH ~ 8.5) with an incubation of 20 min at room temperature, followed by purification on a PD MiniTrap G-25 size exclusion gravity column. Results Based on both in vitro and ex vivo evaluation, the bispecific antibodies displayed much higher brain concentrations than the unmodified antibody, supporting our subsequent F18-radiolabeling. [18F]SFB was produced in high yields in 60 min (decay-corrected radiochemical yield (RCY) 46.7 ± 5.4) with radiochemical purities of >95%, confirmed by analytical high performance liquid chromatography (HPLC) and radio-TLC. Conjugation of [18F]SFB and bispecific antibodies showed a 65%-83% conversion efficiency with radiochemical purities of 95%-99% by radio-TLC. Conclusions We successfully labeled four novel and specifically engineered bispecific antibodies with [18F]SFB under mild conditions with a high RCY and purities. This study provides strategies to create brain-penetrable F-18 radiolabeled antibody probes for the selective detection of tau and Aβ aggregates in the brain of transgenic AD mice via in vivo PET imaging.
Collapse
Affiliation(s)
- Vinay Banka
- Department of Radiology, New York University School of
Medicine, New York, NY, United States
| | - Andrew Kelleher
- Department of Radiology, New York University School of
Medicine, New York, NY, United States
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala
University, Uppsala, Sweden
| | | | - Einar M. Sigurdsson
- Department of Psychiatry, New York University School of
Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York
University School of Medicine, New York, NY, United States
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala
University, Uppsala, Sweden
| | - Yu-Shin Ding
- Department of Radiology, New York University School of
Medicine, New York, NY, United States
- Department of Psychiatry, New York University School of
Medicine, New York, NY, United States
| |
Collapse
|
8
|
Bajracharya R, Cruz E, Götz J, Nisbet RM. Ultrasound-mediated delivery of novel tau-specific monoclonal antibody enhances brain uptake but not therapeutic efficacy. J Control Release 2022; 349:634-648. [PMID: 35901857 DOI: 10.1016/j.jconrel.2022.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
Abstract
Tau-specific immunotherapy is an attractive strategy for the treatment of Alzheimer's disease and other tauopathies. However, effectively targeting tau in the brain remains a considerable challenge due to the restrictive nature of the blood-brain barrier (BBB), which excludes an estimated >99% of peripherally administered antibodies. However, their transport across the BBB can be facilitated by a novel modality, low-intensity scanning ultrasound used in combination with intravenously injected microbubbles (SUS+MB). We have previously shown that SUS+MB-mediated delivery of a tau-specific antibody in a single-chain (scFv) format to tau transgenic mice enhanced brain and neuronal uptake and subsequently, reduced tau pathology and improved behavioural outcomes to a larger extent than either scFv or SUS+MB on its own. Here we generated a novel tau-specific monoclonal antibody, RNF5, and validated it in its IgG format in the presence or absence of SUS+MB by treating K369I tau transgenic K3 mice once weekly for 12 weeks. We found that both RNF5 and SUS+MB treatments on their own significantly reduced tau pathology. In the combination group (RNF5 + SUS+MB), however, despite increased antibody localization in the brain, there were no further reductions in tau pathology when compared to RNF5 treatment alone. Furthermore, following SUS+MB, RNF5 accumulated heavily within cells across the pyramidal cell layer of the hippocampus, that were negative for MAP2 and p-tau, suggesting that SUS+MB may not facilitate enhanced RNF5 engagement of intraneuronal tau. Overall, our new findings reveal the complexities of combining tau immunotherapy with SUS+MB and challenge the view that this is a straight-forward approach.
Collapse
Affiliation(s)
- Rinie Bajracharya
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Queensland 4072, Australia
| | - Esteban Cruz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Queensland 4072, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Queensland 4072, Australia.
| | - Rebecca M Nisbet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Queensland 4072, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3052, Australia.
| |
Collapse
|
9
|
Vagenknecht P, Luzgin A, Ono M, Ji B, Higuchi M, Noain D, Maschio CA, Sobek J, Chen Z, Konietzko U, Gerez JA, Riek R, Razansky D, Klohs J, Nitsch RM, Dean-Ben XL, Ni R. Non-invasive imaging of tau-targeted probe uptake by whole brain multi-spectral optoacoustic tomography. Eur J Nucl Med Mol Imaging 2022; 49:2137-2152. [PMID: 35128565 PMCID: PMC9165274 DOI: 10.1007/s00259-022-05708-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Abnormal tau accumulation within the brain plays an important role in tauopathies such as Alzheimer's disease and frontotemporal dementia. High-resolution imaging of tau deposits at the whole-brain scale in animal disease models is highly desired. METHODS We approached this challenge by non-invasively imaging the brains of P301L mice of 4-repeat tau with concurrent volumetric multi-spectral optoacoustic tomography (vMSOT) at ~ 115 μm spatial resolution using the tau-targeted pyridinyl-butadienyl-benzothiazole derivative PBB5 (i.v.). In vitro probe characterization, concurrent vMSOT and epi-fluorescence imaging of in vivo PBB5 targeting (i.v.) was performed in P301L and wild-type mice, followed by ex vivo validation using AT-8 antibody for phosphorylated tau. RESULTS PBB5 showed specific binding to recombinant K18 tau fibrils by fluorescence assay, to post-mortem Alzheimer's disease brain tissue homogenate by competitive binding against [11C]PBB3 and to tau deposits (AT-8 positive) in post-mortem corticobasal degeneration and progressive supranuclear palsy brains. Dose-dependent optoacoustic and fluorescence signal intensities were observed in the mouse brains following i.v. administration of different concentrations of PBB5. In vivo vMSOT brain imaging of P301L mice showed higher retention of PBB5 in the tau-laden cortex and hippocampus compared to wild-type mice, as confirmed by ex vivo vMSOT, epi-fluorescence, multiphoton microscopy, and immunofluorescence staining. CONCLUSIONS We demonstrated non-invasive whole-brain imaging of tau in P301L mice with vMSOT system using PBB5 at a previously unachieved ~ 115 μm spatial resolution. This platform provides a new tool to study tau spreading and clearance in a tauopathy mouse model, foreseeable in monitoring tau targeting putative therapeutics.
Collapse
Affiliation(s)
- Patrick Vagenknecht
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Artur Luzgin
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Maiko Ono
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Bin Ji
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Makoto Higuchi
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Daniela Noain
- Neurology Department, University Hospital Zurich, Zurich, Switzerland
| | - Cinzia A Maschio
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
| | - Jens Sobek
- Functional Genomics Center, University of Zurich, Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Uwe Konietzko
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Juan A Gerez
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Jan Klohs
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
| | - Xose Luis Dean-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland.
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland.
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Congdon EE, Jiang Y, Sigurdsson EM. Targeting tau only extracellularly is likely to be less efficacious than targeting it both intra- and extracellularly. Semin Cell Dev Biol 2022; 126:125-137. [PMID: 34896021 PMCID: PMC9680670 DOI: 10.1016/j.semcdb.2021.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
Aggregation of the tau protein is thought to be responsible for the neurodegeneration and subsequent functional impairments in diseases that are collectively named tauopathies. Alzheimer's disease is the most common tauopathy, but the group consists of over 20 different diseases, many of which have tau pathology as their primary feature. The development of tau therapies has mainly focused on preventing the formation of and/or clearing these aggregates. Of these, immunotherapies that aim to either elicit endogenous tau antibodies or deliver exogenous ones are the most common approach in clinical trials. While their mechanism of action can involve several pathways, both extra- and intracellular, pharmaceutical companies have primarily focused on antibody-mediated clearance of extracellular tau. As we have pointed out over the years, this is rather surprising because it is well known that most of pathological tau protein is found intracellularly. It has been repeatedly shown by several groups over the past decades that antibodies can enter neurons and that their cellular uptake can be enhanced by various means, particularly by altering their charge. Here, we will briefly describe the potential extra- and intracellular mechanisms involved in antibody-mediated clearance of tau pathology, discuss these in the context of recent failures of some of the tau antibody trials, and finally provide a brief overview of how the intracellular efficacy of tau antibodies can potentially be further improved by certain modifications that aim to enhance tau clearance via specific intracellular degradation pathways.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, United States.
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, United States; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
11
|
Gong B, Ji W, Chen X, Li P, Cheng W, Zhao Y, He B, Zhuang J, Gao J, Yin Y. Recent Advancements in Strategies for Abnormal Protein Clearance in Alzheimer's Disease. Mini Rev Med Chem 2022; 22:2260-2270. [PMID: 35156576 DOI: 10.2174/1389557522666220214092824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/06/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
:
Alzheimer's disease (AD) is a intricate neurodegenerative disease with chronic and progressive development whose typical neuropathological features encompasses senile plaques and neurofibrillary tangles respectively formed by the extracellular deposition of amyloid-beta (Aβ) and the intracellular accumulation of hyperphosphorylated tau protein in the brain, particularly in limbic and cortical regions. The pathological changes are considered to be caused by the loss of Aβ and tau protein clearance mechanisms under pathological conditions, which leads to an imbalance between the rates of clearance and production. Consequently, the main strategies for treating AD aim to reduce the production of Aβ and hyperphosphorylated tau protein in the brain, inhibit their accumulation, or accelerate their clearance. Although drugs utilizing these therapeutic strategies have been studied successively, their therapeutic effects have generally been less than ideal. Fortunately, recent advances have been made in clearance strategies for these abnormally expressed proteins, including immunotherapies and nanomedicines targeting Aβ or tau, which could represent an important breakthrough for treating AD. Here, we review recent development of the strategies for the removal of abnormal proteins and provide new ideas and methods for treating AD.
Collapse
Affiliation(s)
- Baofeng Gong
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| | - Wenbo Ji
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| | - Xiaohan Chen
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| | - Peng Li
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| | - Wenbin Cheng
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| | - Yuchen Zhao
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| | - Bin He
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| | - Jianhua Zhuang
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| | - Jie Gao
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| | - You Yin
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| |
Collapse
|
12
|
Cao L, Kong Y, Ji B, Ren Y, Guan Y, Ni R. Positron Emission Tomography in Animal Models of Tauopathies. Front Aging Neurosci 2022; 13:761913. [PMID: 35082657 PMCID: PMC8784812 DOI: 10.3389/fnagi.2021.761913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
The microtubule-associated protein tau (MAPT) plays an important role in Alzheimer's disease and primary tauopathy diseases. The abnormal accumulation of tau contributes to the development of neurotoxicity, inflammation, neurodegeneration, and cognitive deficits in tauopathy diseases. Tau synergically interacts with amyloid-beta in Alzheimer's disease leading to detrimental consequence. Thus, tau has been an important target for therapeutics development for Alzheimer's disease and primary tauopathy diseases. Tauopathy animal models recapitulating the tauopathy such as transgenic, knock-in mouse and rat models have been developed and greatly facilitated the understanding of disease mechanisms. The advance in PET and imaging tracers have enabled non-invasive detection of the accumulation and spread of tau, the associated microglia activation, metabolic, and neurotransmitter receptor alterations in disease animal models. In vivo microPET studies on mouse or rat models of tauopathy have provided significant insights into the phenotypes and time course of pathophysiology of these models and allowed the monitoring of treatment targeting at tau. In this study, we discuss the utilities of PET and recently developed tracers for evaluating the pathophysiology in tauopathy animal models. We point out the outstanding challenges and propose future outlook in visualizing tau-related pathophysiological changes in brain of tauopathy disease animal models.
Collapse
Affiliation(s)
- Lei Cao
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Changes Technology Corporation Ltd., Shanghai, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yutong Ren
- Guangdong Robotics Association, Guangzhou, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Sexton CE, Anstey KJ, Baldacci F, Barnum CJ, Barron AM, Blennow K, Brodaty H, Burnham S, Elahi FM, Götz J, Jeon YH, Koronyo-Hamaoui M, Landau SM, Lautenschlager NT, Laws SM, Lipnicki DM, Lu H, Masters CL, Moyle W, Nakamura A, Pasinetti GM, Rao N, Rowe C, Sachdev PS, Schofield PR, Sigurdsson EM, Smith K, Srikanth V, Szoeke C, Tansey MG, Whitmer R, Wilcock D, Wong TY, Bain LJ, Carrillo MC. Alzheimer's disease research progress in Australia: The Alzheimer's Association International Conference Satellite Symposium in Sydney. Alzheimers Dement 2022; 18:178-190. [PMID: 34058063 PMCID: PMC9396711 DOI: 10.1002/alz.12380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
The Alzheimer's Association International Conference held its sixth Satellite Symposium in Sydney, Australia in 2019, highlighting the leadership of Australian researchers in advancing the understanding of and treatment developments for Alzheimer's disease (AD) and other dementias. This leadership includes the Australian Imaging, Biomarker, and Lifestyle Flagship Study of Ageing (AIBL), which has fueled the identification and development of many biomarkers and novel therapeutics. Two multimodal lifestyle intervention studies have been launched in Australia; and Australian researchers have played leadership roles in other global studies in diverse populations. Australian researchers have also played an instrumental role in efforts to understand mechanisms underlying vascular contributions to cognitive impairment and dementia; and through the Women's Healthy Aging Project have elucidated hormonal and other factors that contribute to the increased risk of AD in women. Alleviating the behavioral and psychological symptoms of dementia has also been a strong research and clinical focus in Australia.
Collapse
Affiliation(s)
| | - Kaarin J. Anstey
- University of New South Wales and Neuroscience Research, Sydney, NSW, Australia
| | - Filippo Baldacci
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | | | - Anna M. Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
| | - Samantha Burnham
- CSIRO Health & Biosecurity, The Australian e-Health Research Centre, Parkville, VIC, Australia
| | - Fanny M. Elahi
- Memory and Aging Center, Weill Institute for NeurosciencesUniversity of California San Francisco, San Francisco, California, USA
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus (Brisbane), Brisbane, QLD, Australia
| | - Yun-Hee Jeon
- The University of Sydney, Sydney, NSW, Australia
| | - Maya Koronyo-Hamaoui
- Departments of Neurosurgery and Biomedical Sciences, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Susan M. Landau
- University of California Berkeley, Berkeley, California, USA
| | - Nicola T. Lautenschlager
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- North Western Mental Health, Royal Melbourne Hospital, Melbourne, Australia
| | - Simon M. Laws
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, WA, Australia
| | - Darren M. Lipnicki
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Wendy Moyle
- Menzies Health Institute Queensland, Griffith University, Griffith, QLD, Australia
| | - Akinori Nakamura
- Department of Biomarker Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai (ISSMS), New York, New York, USA
| | - Naren Rao
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Christopher Rowe
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Molecular Imaging, Austin Health, Melbourne, VIC, Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney and School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Einar M. Sigurdsson
- Departments of Neuroscience and Physiology, and Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, USA
| | - Kate Smith
- Centre for Aboriginal Medical and Dental Health, University of Western Australia, Crawley, WA, Australia
| | - Velandai Srikanth
- Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | - Malú G. Tansey
- Departments of Neuroscience and Neurology, Center for Translational Research in Neurodegenerative Disease, Normal Fixel Center for Neurological Diseases, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rachel Whitmer
- Department of Public Health Sciences, University of California, Davis, Davis, California, USA
| | - Donna Wilcock
- Sanders-Brown Center on Aging and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Tien Y. Wong
- Singapore Eye Research Institute, Singapore National Eye Center, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Lisa J. Bain
- Independent Science Writer, Elverson, Pennsylvania, USA
| | | |
Collapse
|
14
|
Shi XF, Ji B, Kong Y, Guan Y, Ni R. Multimodal Contrast Agents for Optoacoustic Brain Imaging in Small Animals. Front Bioeng Biotechnol 2021; 9:746815. [PMID: 34650961 PMCID: PMC8505530 DOI: 10.3389/fbioe.2021.746815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Optoacoustic (photoacoustic) imaging has demonstrated versatile applications in biomedical research, visualizing the disease pathophysiology and monitoring the treatment effect in an animal model, as well as toward applications in the clinical setting. Given the complex disease mechanism, multimodal imaging provides important etiological insights with different molecular, structural, and functional readouts in vivo. Various multimodal optoacoustic molecular imaging approaches have been applied in preclinical brain imaging studies, including optoacoustic/fluorescence imaging, optoacoustic imaging/magnetic resonance imaging (MRI), optoacoustic imaging/MRI/Raman, optoacoustic imaging/positron emission tomography, and optoacoustic/computed tomography. There is a rapid development in molecular imaging contrast agents employing a multimodal imaging strategy for pathological targets involved in brain diseases. Many chemical dyes for optoacoustic imaging have fluorescence properties and have been applied in hybrid optoacoustic/fluorescence imaging. Nanoparticles are widely used as hybrid contrast agents for their capability to incorporate different imaging components, tunable spectrum, and photostability. In this review, we summarize contrast agents including chemical dyes and nanoparticles applied in multimodal optoacoustic brain imaging integrated with other modalities in small animals, and provide outlook for further research.
Collapse
Affiliation(s)
- Xue-feng Shi
- Department of Respiratory Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Westlund K, Montera M, Goins A, Alles S, Afaghpour-Becklund M, Bartel R, Durvasula R, Kunamneni A. Single-chain Fragment variable antibody targeting cholecystokinin-B receptor for pain reduction. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100067. [PMID: 34458647 PMCID: PMC8378781 DOI: 10.1016/j.ynpai.2021.100067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 05/13/2023]
Abstract
The cholecystokinin B receptor and its neuropeptide ligand are upregulated in chronic neuropathic pain models. Single-chain Fragment variable antibodies were generated as preferred non-opioid targeting therapy blocking the cholecystokinin B receptor to inhibit chronic neuropathic pain models in vivo and in vitro. Engineered antibodies of this type feature binding activity similar to monoclonal antibodies but with stronger affinity and increased tissue penetrability due to their smaller size. More importantly, single-chain Fragment variable antibodies have promising biotherapeutic applications for both nervous and immune systems, now recognized as interactive in chronic pain. A mouse single-chain Fragment variable antibody library recognizing a fifteen amino acid extracellular peptide fragment of the cholecystokinin B receptor was generated from immunized spleens. Ribosome display, a powerful cell-free technology, was applied for recombinant antibody selection. Antibodies with higher affinity, stability, solubility, and binding specificity for cholecystokinin B not A receptor were selected and optimized for in vivo and in vitro efficacy. A single dose of the lead candidate reduced mechanical and cold hypersensitivity in two rodent models of neuropathic pain for at least seven weeks. Continuing efficacy was evident with either intraperitoneal or intranasal dosing. Likewise, the lead single-chain Fragment variable antibody totally prevented development of anxiety- and depression-like behaviors and cognitive deficits typical in the models. Reduction of neuronal firing frequency was evident in trigeminal ganglia primary neuronal cultures treated in vitro with the cholecystokinin B receptor antibody. Immunofluorescent staining intensity in the trigeminal neuron primary cultures was significantly reduced incrementally after overnight binding with increasingly higher dilutions of the single-chain Fragment variable antibody. While it is reported that single-chain Fragment variable antibodies are removed systemically within 2-6 h, Western blot evidence indicates the His-tag marker remained after 7 weeks in the trigeminal ganglia and in the dorsolateral medulla, providing evidence of brain and ganglia penetrance known to be compromised in overactivated states. This project showcases the in vivo efficacy of our lead single-chain Fragment variable antibody indicating its potential for development as a non-opioid, non-addictive therapeutic intervention for chronic pain. Importantly, studies by others have indicated treatments with cholecystokinin B receptor antagonists suppress maintenance and reactivation of morphine dependence in place preference tests while lowering tolerance and dose requirements. Our future studies remain to address these potential benefits that may accompany the cholecystokinin B receptor biological therapy. Both chronic sciatic and orofacial pain can be unrelenting and excruciating, reducing quality of life as well as diminishing physical and mental function. An effective non-opiate, non-addictive therapy with potential to significantly reduce chronic neuropathic pain long term is greatly needed.
Collapse
Key Words
- ANOVA, analysis of variance
- ARM, antibody ribosome mRNA
- Anxiety
- BBB, blood–brain barrier
- CCK-8, cholecystokinin octapeptide
- CCK-BR, cholecystokinin B receptor
- CPP, conditioned place preference
- Chronic pain
- DRG, dorsal root ganglia
- Depression
- Eukaryotic ribosome display
- FRICT-ION, foramen rotundum inflammatory compression trigeminal infraorbital nerve model
- GPCR, G-protein-coupled receptor
- IACUC, Institutional Animal Care and Use Committee
- ION, infraorbital nerve
- MΩ, megaOhms
- PBS, phosphate buffered saline
- SEM, standard error of the mean
- TG, trigeminal ganglia
- ms, milliseconds
- pA, picoAmps
- scFv
- scFv, single-chain Fragment variable antibody
Collapse
Affiliation(s)
- K.N. Westlund
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
- Biomedical Laboratory Research & Development (121F), New Mexico VA
Health Care System, Albuquerque, NM, USA
| | - M.A. Montera
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - A.E. Goins
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - S.R.A. Alles
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - M. Afaghpour-Becklund
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - R. Bartel
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - R. Durvasula
- Division of Infectious Diseases, Department of Internal Medicine, Mayo
Clinic, Jacksonville, FL, USA
- Department of Medicine, Loyola University Medical Center, Maywood, IL
60153-3328, USA
| | - A. Kunamneni
- Division of Infectious Diseases, Department of Internal Medicine, Mayo
Clinic, Jacksonville, FL, USA
- Department of Medicine, Loyola University Medical Center, Maywood, IL
60153-3328, USA
| |
Collapse
|
16
|
Ji C, Sigurdsson EM. Current Status of Clinical Trials on Tau Immunotherapies. Drugs 2021; 81:1135-1152. [PMID: 34101156 DOI: 10.1007/s40265-021-01546-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 12/12/2022]
Abstract
Tau immunotherapies have advanced from proof-of-concept studies to over a dozen clinical trials for Alzheimer's disease (AD) and other tauopathies. Mechanistic studies in animal and culture models have provided valuable insight into how these therapies may work but multiple pathways are likely involved. Different groups have emphasized the importance of intracellular vs extracellular antibody-mediated clearance of the tau protein and there is no consensus on which pool of tau should ideally be targeted. Likewise, various normal and disease-selective epitopes are being targeted, and the antibody isotypes either favor phagocytosis of the tau-antibody complex or are neutral in that aspect. Most of the clinical trials are in early stages, thus their efficacy is not yet known, but all have been without any major adverse effects and some have reported target engagement. A few have been discontinued. One in phase I, presumably because of a poor pharmacokinetic profile, and three in phase II for a lack of efficacy although this trial stage is not well powered for efficacy measures. In these phase II studies, trials with two antibodies in patients with progressive supranuclear palsy or other primary tauopathies were halted but are continuing in patients with AD, and one antibody trial was stopped in early-stage AD but is continuing in moderate AD. These three antibodies have been reported to only work extracellularly and tau is not increased in the cerebrospinal fluid of primary tauopathies, which may explain the failures of two of them. In the discontinued AD trial, there are some concerns about how much of extracellular tau contains the N-terminal epitope that is being targeted. In addition, extracellular tau is only a small part of total tau, compared to intracellular tau. Targeting only the former may not be sufficient for functional benefits. Given these outcomes, decision makers within the pharmaceutical companies who green light these trials should attempt to target tau not only extracellularly but also intracellularly to increase their chances of success. Hopefully, some of the ongoing trials will provide some functional benefits to the large number of patients with tauopathies.
Collapse
Affiliation(s)
- Changyi Ji
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, Science Building, 11th floor, 435 East 30th Street, New York, NY, 10016, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, Science Building, 11th floor, 435 East 30th Street, New York, NY, 10016, USA. .,Department of Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Goodwin MS, Sinyavskaya O, Burg F, O'Neal V, Ceballos-Diaz C, Cruz PE, Lewis J, Giasson BI, Davies P, Golde TE, Levites Y. Anti-tau scFvs Targeted to the Cytoplasm or Secretory Pathway Variably Modify Pathology and Neurodegenerative Phenotypes. Mol Ther 2021; 29:859-872. [PMID: 33128896 PMCID: PMC7854277 DOI: 10.1016/j.ymthe.2020.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 11/03/2022] Open
Abstract
Immunotherapies designed to treat neurodegenerative tauopathies that primarily engage extracellular tau may have limited efficacy as tau is primarily intracellular. We generated tau-targeting single-chain variable fragments (scFvs) and intrabodies (iBs) from the phosphorylated tau-specific antibodies CP13 and PHF1 and the pan-tau antibody Tau5. Recombinant adeno-associated virus (rAAV) was utilized to express these antibody fragments in homozygous JNPL3 P301L tau mice. Two iBs (CP13i, PHF1i) and one scFv (PHF1s) abrogated tau pathology and delayed time to severe hindlimb paralysis. In a second tauopathy model (rTg4510), CP13i and PHF1i reduced tau pathology, but cognate scFvs did not. These data demonstrate that (1) disease-modifying efficacy does not require antibody effector functions, (2) the intracellular targeting of tau with phosphorylated tau-specific iBs is more effective than extracellular targeting with the scFvs, and (3) robust effects on tau pathology before neurodegeneration only resulted in modest disease modification as assessed by delay of severe motor phenotype.
Collapse
Affiliation(s)
- Marshall S Goodwin
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Olga Sinyavskaya
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Franklin Burg
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Veronica O'Neal
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Carolina Ceballos-Diaz
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Pedro E Cruz
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jada Lewis
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Peter Davies
- Litwin-Zucker Center for Research in Alzheimer's Disease, Feinstein Institute for Medical Research, North Shore/LIJ Health System, Manhasset, NY, USA
| | - Todd E Golde
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Yona Levites
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
18
|
Pizzarelli R, Pediconi N, Di Angelantonio S. Molecular Imaging of Tau Protein: New Insights and Future Directions. Front Mol Neurosci 2021; 13:586169. [PMID: 33384582 PMCID: PMC7769805 DOI: 10.3389/fnmol.2020.586169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Tau is a microtubule-associated protein (MAPT) that is highly expressed in neurons and implicated in several cellular processes. Tau misfolding and self-aggregation give rise to proteinaceous deposits known as neuro-fibrillary tangles. Tau tangles play a key role in the genesis of a group of diseases commonly referred to as tauopathies; notably, these aggregates start to form decades before any clinical symptoms manifest. Advanced imaging methodologies have clarified important structural and functional aspects of tau and could have a role as diagnostic tools in clinical research. In the present review, recent progresses in tau imaging will be discussed. We will focus mainly on super-resolution imaging methods and the development of near-infrared fluorescent probes.
Collapse
Affiliation(s)
- Rocco Pizzarelli
- Center for Life Nanoscience, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Natalia Pediconi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia (IIT), Rome, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| |
Collapse
|
19
|
Shamir DB, Deng Y, Wu Q, Modak S, Congdon EE, Sigurdsson EM. Dynamics of Internalization and Intracellular Interaction of Tau Antibodies and Human Pathological Tau Protein in a Human Neuron-Like Model. Front Neurol 2020; 11:602292. [PMID: 33324339 PMCID: PMC7727311 DOI: 10.3389/fneur.2020.602292] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
We and others have shown in various in vivo, ex vivo and cell culture models that several tau antibodies interact with pathological tau within neurons. To further clarify this interaction in a dynamic human model, we differentiated SH-SY5Y cells with retinoic acid and BDNF to create a neuron-like model. Therein, tau antibodies were primarily taken up by receptor-mediated endocytosis, and prevented toxicity of human brain-derived paired helical filament-enriched tau (PHF). Subsequently, we monitored in real-time the interaction of antibodies and PHF within endocytic cellular compartments. Cells were pre-treated with fluorescently-tagged PHF and then incubated with tau antibodies, 4E6, 6B2, or non-specific isotype control IgG1 labeled with a pH sensitive dye. The uptake and binding of the efficacious antibody, 4E6, to PHF occurred mainly within the soma, whereas the ineffective antibody, 6B2, and ineffective control IgG1, were visualized via the processes and showed limited colocalization with PHF within this period. In summary, we have developed a neuron-like model that clarifies the early intracellular dynamics of the interaction of tau antibodies with pathological tau, and identifies features associated with efficacy. Since the model is entirely human, it is suitable to verify the therapeutic potential of humanized antibodies prior to extensive clinical trials.
Collapse
Affiliation(s)
- Dov B Shamir
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Yan Deng
- Microscopy Core, New York University Grossman School of Medicine, New York, NY, United States
| | - Qian Wu
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Swananda Modak
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Erin E Congdon
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States.,Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
20
|
Antibody Fragments as Tools for Elucidating Structure-Toxicity Relationships and for Diagnostic/Therapeutic Targeting of Neurotoxic Amyloid Oligomers. Int J Mol Sci 2020; 21:ijms21238920. [PMID: 33255488 PMCID: PMC7727795 DOI: 10.3390/ijms21238920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
The accumulation of amyloid protein aggregates in tissues is the basis for the onset of diseases known as amyloidoses. Intriguingly, many amyloidoses impact the central nervous system (CNS) and usually are devastating diseases. It is increasingly apparent that neurotoxic soluble oligomers formed by amyloidogenic proteins are the primary molecular drivers of these diseases, making them lucrative diagnostic and therapeutic targets. One promising diagnostic/therapeutic strategy has been the development of antibody fragments against amyloid oligomers. Antibody fragments, such as fragment antigen-binding (Fab), scFv (single chain variable fragments), and VHH (heavy chain variable domain or single-domain antibodies) are an alternative to full-length IgGs as diagnostics and therapeutics for a variety of diseases, mainly because of their increased tissue penetration (lower MW compared to IgG), decreased inflammatory potential (lack of Fc domain), and facile production (low structural complexity). Furthermore, through the use of in vitro-based ligand selection, it has been possible to identify antibody fragments presenting marked conformational selectivity. In this review, we summarize significant reports on antibody fragments selective for oligomers associated with prevalent CNS amyloidoses. We discuss promising results obtained using antibody fragments as both diagnostic and therapeutic agents against these diseases. In addition, the use of antibody fragments, particularly scFv and VHH, in the isolation of unique oligomeric assemblies is discussed as a strategy to unravel conformational moieties responsible for neurotoxicity. We envision that advances in this field may lead to the development of novel oligomer-selective antibody fragments with superior selectivity and, hopefully, good clinical outcomes.
Collapse
|
21
|
Sandusky-Beltran LA, Sigurdsson EM. Tau immunotherapies: Lessons learned, current status and future considerations. Neuropharmacology 2020; 175:108104. [PMID: 32360477 PMCID: PMC7492435 DOI: 10.1016/j.neuropharm.2020.108104] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/10/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
The majority of clinical trials targeting the tau protein in Alzheimer's disease and other tauopathies are tau immunotherapies. Because tau pathology correlates better with the degree of dementia than amyloid-β lesions, targeting tau is likely to be more effective in improving cognition than clearing amyloid-β in Alzheimer's disease. However, the development of tau therapies is in many ways more complex than for amyloid-β therapies as briefly outlined in this review. Most of the trials are on humanized antibodies, which may have very different properties than the original mouse antibodies. The impact of these differences are to a large extent unknown, can be difficult to decipher, and may not always be properly considered. Furthermore, the ideal antibody properties for efficacy are not well established and can depend on several factors. However, considering the varied approaches in clinical trials, there is a general optimism that at least some of these trials may provide functional benefits to patients suffering of various tauopathies. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- L A Sandusky-Beltran
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA; Department of Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - E M Sigurdsson
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA; Department of Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
22
|
Ni R, Chen Z, Gerez JA, Shi G, Zhou Q, Riek R, Nilsson KPR, Razansky D, Klohs J. Detection of cerebral tauopathy in P301L mice using high-resolution large-field multifocal illumination fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4989-5002. [PMID: 33014595 PMCID: PMC7510859 DOI: 10.1364/boe.395803] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Current intravital microscopy techniques visualize tauopathy with high-resolution, but have a small field-of-view and depth-of-focus. Herein, we report a transcranial detection of tauopathy over the entire cortex of P301L tauopathy mice using large-field multifocal illumination (LMI) fluorescence microscopy technique and luminescent conjugated oligothiophenes. In vitro assays revealed that fluorescent ligand h-FTAA is optimal for in vivo tau imaging, which was confirmed by observing elevated probe retention in the cortex of P301L mice compared to non-transgenic littermates. Immunohistochemical staining further verified the specificity of h-FTAA to detect tauopathy in P301L mice. The new imaging platform can be leveraged in pre-clinical mechanistic studies of tau spreading and clearance as well as longitudinal monitoring of tau targeting therapeutics.
Collapse
Affiliation(s)
- Ruiqing Ni
- University of Zurich & ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Wolfgang-Pauli-strasse 27 HIT E22.4, 8093, Zurich, Switzerland
- University of Zurich, Zurich Neuroscience Center, Zurich, Switzerland
| | - Zhenyue Chen
- University of Zurich & ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Wolfgang-Pauli-strasse 27 HIT E22.4, 8093, Zurich, Switzerland
- University of Zurich, Faculty of Medicine and Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Juan A. Gerez
- ETH Zurich, Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | - Gloria Shi
- University of Zurich & ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Wolfgang-Pauli-strasse 27 HIT E22.4, 8093, Zurich, Switzerland
| | - Quanyu Zhou
- University of Zurich & ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Wolfgang-Pauli-strasse 27 HIT E22.4, 8093, Zurich, Switzerland
- University of Zurich, Faculty of Medicine and Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Roland Riek
- ETH Zurich, Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | - K. Peter R. Nilsson
- Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping, Sweden
| | - Daniel Razansky
- University of Zurich & ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Wolfgang-Pauli-strasse 27 HIT E22.4, 8093, Zurich, Switzerland
- University of Zurich, Zurich Neuroscience Center, Zurich, Switzerland
- University of Zurich, Faculty of Medicine and Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Jan Klohs
- University of Zurich & ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Wolfgang-Pauli-strasse 27 HIT E22.4, 8093, Zurich, Switzerland
- University of Zurich, Zurich Neuroscience Center, Zurich, Switzerland
| |
Collapse
|
23
|
Krishnaswamy S, Huang HW, Marchal IS, Ryoo HD, Sigurdsson EM. Neuronally expressed anti-tau scFv prevents tauopathy-induced phenotypes in Drosophila models. Neurobiol Dis 2020; 137:104770. [PMID: 31982516 DOI: 10.1016/j.nbd.2020.104770] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 01/20/2023] Open
Abstract
We have derived single-chain variable fragments (scFv) from tau antibody hybridomas and previously shown their promise as imaging diagnostic agents. Here, we examined the therapeutic potential of anti-tau scFv in transgenic Drosophila models that express in neurons wild-type (WT) human tau (htau) or the human tauopathy mutation R406W. scFv expressing flies were crossed with the tauopathy flies and analyzed. Overall, the survival curves differed significantly (p < .0001). Control flies not expressing htau survived the longest, whereas R406W expressing flies had the shortest lifespan, which was greatly prolonged by co-expressing the anti-tau scFv (p < .0001). Likewise, htau WT expressing flies had a moderately short lifespan, which was prolonged by co-expressing the anti-tau scFv (p < .01). In addition, the htau expression impaired wing expansion after eclosion (p < .0001), and caused progressive abdomen expansion (p < .0001). These features were more severe in htau R406W flies than in htau WT flies. Importantly, both phenotypes were prevented by co-expression of the anti-tau scFv (p < .01-0.0001). Lastly, brain analyses revealed scFv-mediated tau clearance (p < .05-0.01), and its prevention of tau-mediated neurotoxicity (p < .05-0.001). In summary, these findings support the therapeutic potential of an anti-tau scFv, including as gene therapies, and the use of Drosophila models for such screening.
Collapse
Affiliation(s)
- Senthilkumar Krishnaswamy
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, United States of America
| | - Huai-Wei Huang
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States of America
| | - Isabella S Marchal
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, United States of America
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States of America.
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, United States of America; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, United States of America; Neuroscience Institute, New York University School of Medicine, New York, NY 10016, United States of America.
| |
Collapse
|
24
|
Bittar A, Bhatt N, Kayed R. Advances and considerations in AD tau-targeted immunotherapy. Neurobiol Dis 2019; 134:104707. [PMID: 31841678 PMCID: PMC6980703 DOI: 10.1016/j.nbd.2019.104707] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 12/18/2022] Open
Abstract
The multifactorial and complex nature of Alzheimer’s disease (AD) has made it difficult to identify therapeutic targets that are causally involved in the disease process. However, accumulating evidence from experimental and clinical studies that investigate the early disease process point towards the required role of tau in AD etiology. Importantly, a large number of studies investigate and characterize the plethora of pathological forms of tau protein involved in disease onset and propagation. Immunotherapy is one of the most clinical approaches anticipated to make a difference in the field of AD therapeutics. Tau –targeted immunotherapy is the new direction after the failure of amyloid beta (Aß)-targeted immunotherapy and the growing number of studies that highlight the Aß-independent disease process. It is now well established that immunotherapy alone will most likely be insufficient as a monotherapy. Therefore, this review discusses updates on tau-targeted immunotherapy studies, AD-relevant tau species, updates on promising biomarkers and a prospect on combination therapies to surround the disease propagation in an efficient and timely manner.
Collapse
Affiliation(s)
- Alice Bittar
- Department of Neurology, The Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States of America.
| | - Nemil Bhatt
- Department of Neuroscience, Cell Biology and Anatomy, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States of America.
| | - Rakez Kayed
- Department of Neurology, The Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States of America.
| |
Collapse
|
25
|
Sigurdsson EM. Alzheimer's therapy development: A few points to consider. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:205-217. [PMID: 31699315 DOI: 10.1016/bs.pmbts.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Development of therapies for Alzheimer's disease has only resulted in a few approved drugs that provide some temporary symptomatic relief in certain patients. None of these compounds in clinical use halts or slows the progression of the disease. To date, several drugs targeting the amyloid-β peptide, and some against the tau protein, have failed in clinical trials. While there are various reasons for these failures, considering the following points may aid in improving the outcome of future trials. First, the tau protein should ideally be targeted intracellularly because most of tau pathology is within cells, neurons in particular. Second, an overriding emphasis in recent years has been on implementing drug-screening models that focus on prevention of seeding/spread of aggregates. Much less attention has been paid to identify compounds that inhibit neurotoxicity of these aggregates, which may not necessarily relate to their seeding/spread propensity. Ideally, all these markers should be readouts in the same assay or model. Third, diversity in conformers/strains of aggregates complicates drug development of small molecule aggregation inhibitors but is likely to be less of an issue for antibody-based treatments. Lastly, other more general targets associated with neurodegeneration should continue to be pursued but are in many ways more difficult to address than clearing amyloid-β and tau, the defining hallmarks of AD.
Collapse
Affiliation(s)
- Einar M Sigurdsson
- Departments of Neuroscience and Physiology, and Psychiatry, Neuroscience Institute, New York University School of Medicine, New York, NY, United States.
| |
Collapse
|
26
|
Ultrasound-mediated blood-brain barrier opening enhances delivery of therapeutically relevant formats of a tau-specific antibody. Sci Rep 2019; 9:9255. [PMID: 31239479 PMCID: PMC6592925 DOI: 10.1038/s41598-019-45577-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
The microtubule-associated protein tau is an attractive therapeutic target for the treatment of Alzheimer’s disease and related tauopathies as its aggregation strongly correlates with disease progression and is considered a key mediator of neuronal toxicity. Delivery of most therapeutics to the brain is, however, inefficient, due to their limited ability to cross the blood-brain barrier (BBB). Therapeutic ultrasound is an emerging non-invasive technology which transiently opens the BBB in a focused manner to allow peripherally delivered molecules to effectively enter the brain. In order to open a large area of the BBB, we developed a scanning ultrasound (SUS) approach by which ultrasound is applied in a sequential pattern across the whole brain. We have previously shown that delivery of an anti-tau antibody in a single-chain variable fragment (scFv) format to the brain is increased with SUS allowing for an enhanced therapeutic effect. Here we compared the delivery of an anti-tau antibody, RN2N, in an scFv, fragment antigen-binding (Fab) and full-sized immunoglobulin G (IgG) format, with and without sonication, into the brain of pR5 tau transgenic mice, a model of tauopathy. Our results revealed that the full-sized IgG reaches a higher concentration in the brain compared with the smaller formats by bypassing renal excretion. No differences in either the ultrasound-mediated uptake or distribution in the brain from the sonication site was observed across the different antibody formats, suggesting that ultrasound can be used to successfully increase the delivery of therapeutic molecules of various sizes into the brain for the treatment of neurological diseases.
Collapse
|
27
|
Congdon EE, Chukwu JE, Shamir DB, Deng J, Ujla D, Sait HBR, Neubert TA, Kong XP, Sigurdsson EM. Tau antibody chimerization alters its charge and binding, thereby reducing its cellular uptake and efficacy. EBioMedicine 2019; 42:157-173. [PMID: 30910484 PMCID: PMC6492224 DOI: 10.1016/j.ebiom.2019.03.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/28/2022] Open
Abstract
Background Bringing antibodies from pre-clinical studies to human trials requires humanization, but this process may alter properties that are crucial for efficacy. Since pathological tau protein is primarily intraneuronal in Alzheimer's disease, the most efficacious antibodies should work both intra- and extracellularly. Thus, changes which impact uptake or antibody binding will affect antibody efficacy. Methods Initially, we examined four tau mouse monoclonal antibodies with naturally differing charges. We quantified their neuronal uptake, and efficacy in preventing toxicity and pathological seeding induced by human-derived pathological tau. Later, we generated a human chimeric 4E6 (h4E6), an antibody with well documented efficacy in multiple tauopathy models. We compared the uptake and efficacy of unmodified and chimeric antibodies in neuronal and differentiated neuroblastoma cultures. Further, we analyzed tau binding using ELISA assays. Findings Neuronal uptake of tau antibodies and their efficacy strongly depends on antibody charge. Additionally, their ability to prevent tau toxicity and seeding of tau pathology does not necessarily go together. Particularly, chimerization of 4E6 increased its charge from 6.5 to 9.6, which blocked its uptake into human and mouse cells. Furthermore, h4E6 had altered binding characteristics despite intact binding sites, compared to the mouse antibody. Importantly, these changes in uptake and binding substantially decreased its efficacy in preventing tau toxicity, although under certain conditions it did prevent pathological seeding of tau. Conclusions These results indicate that efficacy of chimeric/humanized tau antibodies should be thoroughly characterized prior to clinical trials, which may require further engineering to maintain or improve their therapeutic potential. Fund National Institutes of Health (NS077239, AG032611, R24OD18340, R24OD018339 and RR027990, Alzheimer's Association (2016-NIRG-397228) and Blas Frangione Foundation.
Collapse
Affiliation(s)
- Erin E Congdon
- New York University School of Medicine, Department of Neuroscience and Physiology, and The Neuroscience Institute, 435 E 30th St. SB1123, New York, NY 10016, United States of America
| | - Jessica E Chukwu
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, 550 First Ave, MSB 398, New York, NY 10016, United States of America
| | - Dov B Shamir
- New York University School of Medicine, Department of Neuroscience and Physiology, and The Neuroscience Institute, 435 E 30th St. SB1123, New York, NY 10016, United States of America
| | - Jingjing Deng
- New York University School of Medicine, Department of Cell Biology, 540 First Avenue, Skirball Institute Lab 5-18, New York, NY 10016, United States of America
| | - Devyani Ujla
- New York University School of Medicine, Department of Neuroscience and Physiology, and The Neuroscience Institute, 435 E 30th St. SB1123, New York, NY 10016, United States of America
| | - Hameetha B R Sait
- New York University School of Medicine, Department of Neuroscience and Physiology, and The Neuroscience Institute, 435 E 30th St. SB1123, New York, NY 10016, United States of America
| | - Thomas A Neubert
- New York University School of Medicine, Department of Cell Biology, 540 First Avenue, Skirball Institute Lab 5-18, New York, NY 10016, United States of America
| | - Xiang-Peng Kong
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, 550 First Ave, MSB 398, New York, NY 10016, United States of America
| | - Einar M Sigurdsson
- New York University School of Medicine, Department of Neuroscience and Physiology, and The Neuroscience Institute, 435 E 30th St. SB1123, New York, NY 10016, United States of America; New York University School of Medicine, Department of Psychiatry, 435 E 30th St. Science Building SB1115, New York, NY 10016, United States of America.
| |
Collapse
|
28
|
Regional vulnerability and spreading of hyperphosphorylated tau in seeded mouse brain. Neurobiol Dis 2019; 127:398-409. [PMID: 30878534 DOI: 10.1016/j.nbd.2019.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 11/20/2022] Open
Abstract
We have exploited whole brain microscopy to map the progressive deposition of hyperphosphorylated tau in intact, cleared mouse brain. We found that the three-dimensional spreading pattern of hyperphosphorylated tau in the brain of an aging Tau.P301L mouse model did not resemble that observed in AD patients. Injection of synthetic or patient-derived tau fibrils in the CA1 region resulted in a more faithful spreading pattern. Atlas-guided volumetric analysis showed a connectome-dependent spreading from the injection site and also revealed hyperphosphorylated tau deposits beyond the direct anatomical connections. In fibril-injected brains, we also detected a persistent subpopulation of rod-like and swollen microglia. Furthermore, we showed that the hyperphosphorylated tau load could be reduced by intracranial co-administration of, and to a lesser extent, by repeated systemic dosing with an antibody targeting the microtubule-binding domain of tau. Thus, the combination of targeted seeding and in toto staging of tau pathology allowed assessing regional vulnerability in a comprehensive manner, and holds potential as a preclinical drug validation tool.
Collapse
|
29
|
Chukwu JE, Congdon EE, Sigurdsson EM, Kong XP. Structural characterization of monoclonal antibodies targeting C-terminal Ser 404 region of phosphorylated tau protein. MAbs 2019; 11:477-488. [PMID: 30794086 DOI: 10.1080/19420862.2019.1574530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Targeting tau with immunotherapies is currently the most common approach taken in clinical trials of patients with Alzheimer's disease. The most prominent pathological feature of tau is its hyperphosphorylation, which may cause the protein to aggregate into toxic assemblies that collectively lead to neurodegeneration. Of the phospho-epitopes, the region around Ser396/Ser404 has received particular attention for therapeutic targeting because of its prominence and stability in diseased tissue. Herein, we present the antigen-binding fragment (Fab)/epitope complex structures of three different monoclonal antibodies (mAbs) that target the pSer404 tau epitope region. Most notably, these structures reveal an antigen conformation similar to a previously described pathogenic tau epitope, pSer422, which was shown to have a β-strand structure that may be linked to the seeding core in tau oligomers. In addition, we have previously reported on the similarly ordered conformation observed in a pSer396 epitope, which is in tandem with pSer404. Our data are the first Fab structures of mAbs bound to this epitope region of the tau protein and support the existence of proteopathic tau conformations stabilized by specific phosphorylation events that are viable targets for immune modulation.
Collapse
Affiliation(s)
- Jessica E Chukwu
- a Department of Biochemistry & Molecular Pharmacology , New York University School of Medicine , New York , NY , USA
| | - Erin E Congdon
- b Departments of Neuroscience & Physiology, & Psychiatry , New York University School of Medicine , New York , NY , USA
| | - Einar M Sigurdsson
- b Departments of Neuroscience & Physiology, & Psychiatry , New York University School of Medicine , New York , NY , USA
| | - Xiang-Peng Kong
- a Department of Biochemistry & Molecular Pharmacology , New York University School of Medicine , New York , NY , USA
| |
Collapse
|
30
|
Wu Q, Lin Y, Gu J, Sigurdsson EM. Dynamic assessment of tau immunotherapies in the brains of live animals by two-photon imaging. EBioMedicine 2018; 35:270-278. [PMID: 30146345 PMCID: PMC6158769 DOI: 10.1016/j.ebiom.2018.08.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/03/2018] [Accepted: 08/14/2018] [Indexed: 02/01/2023] Open
Abstract
Our original findings, showing the effectiveness of active and passive tau immunizations in mouse models, have now been confirmed and extended by many groups, with several clinical trials underway in Alzheimer's disease and progressive supranuclear palsy. Here, we report on a unique and sensitive two-photon imaging approach to concurrently study the dynamics of brain and neuronal uptake and clearance of tau antibodies as well as the acute removal of their pathological target in live animals. This in vivo technique is more sensitive to detect clearance of pathological tau protein than western blot tau analysis of brain tissue. In addition to providing an insight into the mechanisms involved, it allows for an efficient in vivo assessment of the therapeutic potential of tau antibodies, and may be applied to related protein misfolding diseases. Two-photon imaging approach to study uptake and clearance of tau antibodies, and removal of their target in live animals. This technique is more sensitive to detect clearance of pathological tau protein than western blot analysis of brain tissue. It allows for an acute in vivo determination of the therapeutic potential of tau antibodies.
Collapse
Affiliation(s)
- Qian Wu
- Department of Neuroscience and Physiology, New York University School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Yan Lin
- Department of Neuroscience and Physiology, New York University School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Jiaping Gu
- Department of Neuroscience and Physiology, New York University School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University School of Medicine, 435 East 30th Street, New York, NY 10016, United States; Department of Psychiatry, New York University School of Medicine, 435 East 30th Street, New York, NY 10016, United States.
| |
Collapse
|
31
|
Herline K, Drummond E, Wisniewski T. Recent advancements toward therapeutic vaccines against Alzheimer's disease. Expert Rev Vaccines 2018; 17:707-721. [PMID: 30005578 DOI: 10.1080/14760584.2018.1500905] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by protein aggregates of amyloid β (Aβ) and tau. These proteins have normal physiological functions, but in AD, they undergo a conformational change and aggregate as toxic oligomeric and fibrillar species with a high β-sheet content. AREAS COVERED Active and passive immunotherapeutic approaches are among the most attractive methods for targeting misfolded Aβ and tau. Promising preclinical testing of various immunotherapeutic approaches has yet to translate to cognitive benefits in human clinical trials. Knowledge gained from these past failures has led to the development of second-generation Aβ-active immunotherapies, anti-Aβ monoclonal antibodies targeting a wide array of Aβ conformations, and to a number of immunotherapies targeting pathological tau. This review covers the more recent advances in vaccine development for AD from 2016 to present. EXPERT COMMENTARY Due to the complex pathophysiology of AD, greatest clinical efficacy will most likely be achieved by concurrently targeting the most toxic forms of both Aβ and tau.
Collapse
Affiliation(s)
- Krystal Herline
- a Center for Cognitive Neurology , New York University School of Medicine , New York , NY , USA.,b Departments of Neurology , New York University School of Medicine , New York , NY , USA
| | - Eleanor Drummond
- a Center for Cognitive Neurology , New York University School of Medicine , New York , NY , USA.,b Departments of Neurology , New York University School of Medicine , New York , NY , USA
| | - Thomas Wisniewski
- a Center for Cognitive Neurology , New York University School of Medicine , New York , NY , USA.,b Departments of Neurology , New York University School of Medicine , New York , NY , USA.,c Pathology , New York University School of Medicine , New York , NY , USA.,d Psychiatry , New York University School of Medicine , New York , NY , USA
| |
Collapse
|
32
|
Li D, Wang L, Maziuk BF, Yao X, Wolozin B, Cho YK. Directed evolution of a picomolar-affinity, high-specificity antibody targeting phosphorylated tau. J Biol Chem 2018; 293:12081-12094. [PMID: 29899114 PMCID: PMC6078456 DOI: 10.1074/jbc.ra118.003557] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/12/2018] [Indexed: 01/03/2023] Open
Abstract
Antibodies are essential biochemical reagents for detecting protein post-translational modifications (PTMs) in complex samples. However, recent efforts in developing PTM-targeting antibodies have reported frequent nonspecific binding and limited affinity of such antibodies. To address these challenges, we investigated whether directed evolution could be applied to improve the affinity of a high-specificity antibody targeting phosphothreonine 231 (pThr-231) of the human microtubule-associated protein tau. On the basis of existing structural information, we hypothesized that improving antibody affinity may come at the cost of loss in specificity. To test this hypothesis, we developed a novel approach using yeast surface display to quantify the specificity of PTM-targeting antibodies. When we affinity-matured the single-chain variable antibody fragment through directed evolution, we found that its affinity can be improved >20-fold over that of the WT antibody, reaching a picomolar range. We also discovered that most of the high-affinity variants exhibit cross-reactivity toward the nonphosphorylated target site but not to the phosphorylation site with a scrambled sequence. However, systematic quantification of the specificity revealed that such a tradeoff between the affinity and specificity did not apply to all variants and led to the identification of a picomolar-affinity variant that has a matching high specificity of the original phosphotau antibody. In cell- and tissue-imaging experiments, the high-affinity variant gave significantly improved signal intensity while having no detectable nonspecific binding. These results demonstrate that directed evolution is a viable approach for obtaining high-affinity PTM-specific antibodies and highlight the importance of assessing the specificity in the antibody engineering process.
Collapse
Affiliation(s)
- Dan Li
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269
| | - Lei Wang
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Brandon F Maziuk
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269; Department of Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Yong Ku Cho
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269; Department of Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269.
| |
Collapse
|
33
|
Spencer B, Brüschweiler S, Sealey-Cardona M, Rockenstein E, Adame A, Florio J, Mante M, Trinh I, Rissman RA, Konrat R, Masliah E. Selective targeting of 3 repeat Tau with brain penetrating single chain antibodies for the treatment of neurodegenerative disorders. Acta Neuropathol 2018; 136:69-87. [PMID: 29934874 PMCID: PMC6112111 DOI: 10.1007/s00401-018-1869-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly affecting more than 5 million people in the U.S. AD is characterized by the accumulation of β-amyloid (Aβ) and Tau in the brain, and is manifested by severe impairments in memory and cognition. Therefore, removing tau pathology has become one of the main therapeutic goals for the treatment of AD. Tau (tubulin-associated unit) is a major neuronal cytoskeletal protein found in the CNS encoded by the gene MAPT. Alternative splicing generates two major isoforms of tau containing either 3 or 4 repeat (R) segments. These 3R or 4RTau species are differentially expressed in neurodegenerative diseases. Previous studies have been focused on reducing Tau accumulation with antibodies against total Tau, 4RTau or phosphorylated isoforms. Here, we developed a brain penetrating, single chain antibody that specifically recognizes a pathogenic 3RTau. This single chain antibody was modified by the addition of a fragment of the apoB protein to facilitate trafficking into the brain, once in the CNS these antibody fragments reduced the accumulation of 3RTau and related deficits in a transgenic mouse model of tauopathy. NMR studies showed that the single chain antibody recognized an epitope at aa 40-62 of 3RTau. This single chain antibody reduced 3RTau transmission and facilitated the clearance of Tau via the endosomal-lysosomal pathway. Together, these results suggest that targeting 3RTau with highly specific, brain penetrating, single chain antibodies might be of potential value for the treatment of tauopathies such as Pick's Disease.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Sven Brüschweiler
- Department of Computational and Structural Biology, University of Vienna, Vienna, Austria
| | - Marco Sealey-Cardona
- Department of Computational and Structural Biology, University of Vienna, Vienna, Austria
| | - Edward Rockenstein
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Jazmin Florio
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Michael Mante
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Ivy Trinh
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, USA
| | - Robert Konrat
- Department of Computational and Structural Biology, University of Vienna, Vienna, Austria
| | - Eliezer Masliah
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA.
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA.
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 7201 Wisconsin Ave, Bethesda, MD, 20892, USA.
| |
Collapse
|
34
|
Abstract
Alzheimer disease (AD) is the most common form of dementia. Pathologically, AD is characterized by amyloid plaques and neurofibrillary tangles in the brain, with associated loss of synapses and neurons, resulting in cognitive deficits and eventually dementia. Amyloid-β (Aβ) peptide and tau protein are the primary components of the plaques and tangles, respectively. In the decades since Aβ and tau were identified, development of therapies for AD has primarily focused on Aβ, but tau has received more attention in recent years, in part because of the failure of various Aβ-targeting treatments in clinical trials. In this article, we review the current status of tau-targeting therapies for AD. Initially, potential anti-tau therapies were based mainly on inhibition of kinases or tau aggregation, or on stabilization of microtubules, but most of these approaches have been discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting therapies in clinical trials are immunotherapies, which have shown promise in numerous preclinical studies. Given that tau pathology correlates better with cognitive impairments than do Aβ lesions, targeting of tau is expected to be more effective than Aβ clearance once the clinical symptoms are evident. With future improvements in diagnostics, these two hallmarks of the disease might be targeted prophylactically.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Manoutcharian K, Perez-Garmendia R, Gevorkian G. Recombinant Antibody Fragments for Neurodegenerative Diseases. Curr Neuropharmacol 2018; 15:779-788. [PMID: 27697033 PMCID: PMC5771054 DOI: 10.2174/1570159x01666160930121647] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/04/2016] [Accepted: 09/28/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Recombinant antibody fragments are promising alternatives to full-length immunoglobulins and offer important advantages compared with conventional monoclonal antibodies: extreme specificity, higher affinity, superior stability and solubility, reduced immunogenicity as well as easy and inexpensive large-scale production. OBJECTIVE In this article we will review and discuss recombinant antibodies that are being evaluated for neurodegenerative diseases in pre-clinical models and in clinical studies and will summarize new strategies that are being developed to optimize their stability, specificity and potency for advancing their use. METHODS Articles describing recombinant antibody fragments used for neurological diseases were selected (PubMed) and evaluated for their significance. RESULTS Different antibody formats such as single-chain fragment variable (scFv), single-domain antibody fragments (VHHs or sdAbs), bispecific antibodies (bsAbs), intrabodies and nanobodies, are currently being studied in pre-clinical models of cancer as well as infectious and autoimmune diseases and many of them are being tested as therapeutics in clinical trials. Immunotherapy approaches have shown therapeutic efficacy in several animal models of Alzheimer´s disease (AD), Parkinson disease (PD), dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), Huntington disease (HD), transmissible spongiform encephalopathies (TSEs) and multiple sclerosis (MS). It has been demonstrated that recombinant antibody fragments may neutralize toxic extra- and intracellular misfolded proteins involved in the pathogenesis of AD, PD, DLB, FTD, HD or TSEs and may target toxic immune cells participating in the pathogenesis of MS. CONCLUSION Recombinant antibody fragments represent a promising tool for the development of antibody-based immunotherapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF. Mexico
| | - Roxanna Perez-Garmendia
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF. Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP 04510, Mexico. 0
| |
Collapse
|
36
|
Shamir DB, Deng Y, Sigurdsson EM. Live Imaging of Pathological Tau Protein and Tau Antibodies in a Neuron-Like Cellular Model. Methods Mol Biol 2018; 1779:371-379. [PMID: 29886544 DOI: 10.1007/978-1-4939-7816-8_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several tau antibody therapies are now in clinical trials and numerous other tau antibodies are in various stages of preclinical development to treat Alzheimer's disease and related tauopathies. This involves long-term studies in mouse models that are necessary but time consuming and typically provide only a limited mechanistic understanding of how the antibodies work and why some are not effective. Live cellular imaging with fluorescently tagged pathological tau proteins and tau antibodies provides a valuable insight into their dynamic interaction outside or within the cell. Furthermore, this acute technique may have predictive validity to assess the potential efficacy of different tau antibodies in neutralizing and/or clearing tau aggregates, and can likely be applied to other amyloid diseases. Overall, it should facilitate identifying candidate antibodies for more detailed long-term validation. Due to the human origin of the model, it may be particularly useful to characterize humanized antibodies that utilize receptor-mediated uptake to reach their intracellular target.
Collapse
Affiliation(s)
- Dov B Shamir
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Yan Deng
- Microscopy Core, New York University School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
37
|
Abstract
Alzheimer's disease is characterized by amyloid-β plaques and neurofibrillary tangles composed of tau aggregates. Several β-sheet dyes are already in clinical use to detect amyloid-β plaques by in vivo positron emission tomography (PET), and related dye compounds are being developed for targeting pathological tau aggregates. In contrast to β-sheet binders, antibody-derived ligands should provide greater specificity for detecting tau lesions, and can be tailored to detect various pathological tau epitopes.For preclinical in vivo evaluation of these ligands prior to PET development, we have established an in vivo imaging system (IVIS) protocol to detect tauopathy in live mice. Antibodies and their derivatives are conjugated with a near infrared fluorescent dye and injected intravenously into anesthetized mice, which subsequently are imaged at various intervals to assess their pathological tau burden, and clearance of the ligand from the brain. The in vivo signal obtained through the skull correlates well with the degree of tau pathology in the mice, and the injected ligand can be found intraneuronally within the brain bound to tau aggregates. Control IgG and injections of the tau antibodies/fragments into wild-type mice or mice with amyloid-β plaques lead to minimal or no signal, confirming the specificity of the approach.
Collapse
|
38
|
Sigurdsson EM. Tau Immunotherapies for Alzheimer's Disease and Related Tauopathies: Progress and Potential Pitfalls. J Alzheimers Dis 2018; 64:S555-S565. [PMID: 29865056 PMCID: PMC6171771 DOI: 10.3233/jad-179937] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tau immunotherapies have now advanced from proof-of-concept studies to Phase II clinical trials. This review briefly outlines developments in the field and discusses how these therapies may work, which involves multiple variables that are connected in complex ways. These various factors are likely to define therapeutic success in humans and have not been thoroughly investigated, at least based on published reports.
Collapse
Affiliation(s)
- Einar M. Sigurdsson
- New York University School of Medicine, Departments of Neuroscience and Physiology, and Psychiatry, Neuroscience Institute, Science Building, 435 East 30 Street, Room SB1115, New York, NY 10016,
| |
Collapse
|
39
|
Wu XL, Piña-Crespo J, Zhang YW, Chen XC, Xu HX. Tau-mediated Neurodegeneration and Potential Implications in Diagnosis and Treatment of Alzheimer's Disease. Chin Med J (Engl) 2017; 130:2978-2990. [PMID: 29237931 PMCID: PMC5742926 DOI: 10.4103/0366-6999.220313] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To review recent research advances on tau, a major player in Alzheimer's disease (AD) pathogenesis, a biomarker for AD onset, and potential target for AD therapy. DATA SOURCES This review was based on a comprehensive search using online literature databases, including PubMed, Web of Science, and Google Scholar. STUDY SELECTION Literature search was based on the following keywords: Alzheimer's disease, tau protein, biomarker, cerebrospinal fluid (CSF), therapeutics, plasma, imaging, propagation, spreading, seeding, prion, conformational templating, and posttranslational modification. Relevant articles were carefully reviewed, with no exclusions applied to study design and publication type. RESULTS Amyloid plaques enriched with extracellular amyloid beta (Aβ) and intracellular neurofibrillary tangles comprised of hyperphosphorylated tau proteins are the two main pathological hallmarks of AD. Although the Aβ hypothesis has dominated AD research for many years, clinical Aβ-targeting strategies have consistently failed to effectively treat AD or prevent AD onset. The research focus in AD has recently shifted to the role of tau in AD. In addition to phosphorylation, tau is acetylated and proteolytically cleaved, which also contribute to its physiological and pathological functions. Emerging evidence characterizing pathological tau propagation and spreading provides new avenues for research into the molecular and cellular mechanisms underlying AD pathogenesis. Techniques to detect tau at minute levels in CSF and blood have been developed, and improved tracers have facilitated tau imaging in the brain. These advances have potential to accurately determine tau levels at early diagnostic stages in AD. Given that tau is a potential therapeutic target, anti-tau immunotherapy may potentially be a viable treatment strategy in AD intervention. CONCLUSION Detecting changes in tau and targeting tau pathology represent a promising lead in the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Xi-Lin Wu
- Neuroscience Initiative, Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Juan Piña-Crespo
- Neuroscience Initiative, Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiao-Chun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Hua-Xi Xu
- Neuroscience Initiative, Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
40
|
Rajamohamedsait H, Rasool S, Rajamohamedsait W, Lin Y, Sigurdsson EM. Prophylactic Active Tau Immunization Leads to Sustained Reduction in Both Tau and Amyloid-β Pathologies in 3xTg Mice. Sci Rep 2017; 7:17034. [PMID: 29213096 PMCID: PMC5719023 DOI: 10.1038/s41598-017-17313-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/07/2017] [Indexed: 11/15/2022] Open
Abstract
Amyloid-β (Aβ) and tau pathologies are intertwined in Alzheimer's disease, and various immunotherapies targeting these hallmarks are in clinical trials. To determine if tau pathology influences Aβ burden and to assess prophylactic benefits, 3xTg and wild-type mice received tau immunization from 2-6 months of age. The mice developed a high IgG titer that was maintained at 22 months of age. Pronounced tau and Aβ pathologies were primarily detected in the subiculum/CA1 region, which was therefore the focus of analysis. The therapy reduced histopathological tau aggregates by 70-74% overall (68% in males and 78-86% in females), compared to 3xTg controls. Likewise, western blot analysis revealed a 41% clearance of soluble tau (38-76% in males and 48% in females) and 42-47% clearance of insoluble tau (47-58% in males and 49% in females) in the immunized mice. Furthermore, Aβ burden was reduced by 84% overall (61% in males and 97% in females). These benefits were associated with reductions in microgliosis and microhemorrhages. In summary, prophylactic tau immunization not only prevents tau pathology but also Aβ deposition and related pathologies in a sustained manner, indicating that tau pathology can promote Aβ deposition, and that a short immunization regimen can have a long-lasting beneficial effect.
Collapse
Affiliation(s)
- Hameetha Rajamohamedsait
- Departments of Neuroscience and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, United States
| | - Suhail Rasool
- Departments of Neuroscience and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, United States
| | - Wajitha Rajamohamedsait
- Departments of Neuroscience and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, United States
| | - Yan Lin
- Departments of Neuroscience and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, United States
| | - Einar M Sigurdsson
- Departments of Neuroscience and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, United States.
- Departments of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, United States.
| |
Collapse
|
41
|
Nisbet RM, Van der Jeugd A, Leinenga G, Evans HT, Janowicz PW, Götz J. Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model. Brain 2017; 140:1220-1230. [PMID: 28379300 PMCID: PMC5405237 DOI: 10.1093/brain/awx052] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 01/26/2017] [Indexed: 12/30/2022] Open
Abstract
Alzheimer’s disease is characterized by the deposition of amyloid-β as extracellular plaques and hyperphosphorylated tau as intracellular neurofibrillary tangles. Tau pathology characterizes not only Alzheimer’s disease, but also many other tauopathies, presenting tau as an attractive therapeutic target. Passive tau immunotherapy has been previously explored; however, because only a small fraction of peripherally delivered antibodies crosses the blood–brain barrier, enters the brain and engages with tau that forms intracellular aggregates, more efficient ways of antibody delivery and neuronal uptake are warranted. In the brain, tau exists as multiple isoforms. Here, we investigated the efficacy of a novel 2N tau isoform-specific single chain antibody fragment, RN2N, delivered by passive immunization in the P301L human tau transgenic pR5 mouse model. We demonstrate that, in treated mice, RN2N reduces anxiety-like behaviour and phosphorylation of tau at distinct sites. When administration of RN2N was combined with focused ultrasound in a scanning mode (scanning ultrasound), RN2N delivery into the brain and uptake by neurons were markedly increased, and efficacy was significantly enhanced. Our study provides evidence that scanning ultrasound is a viable tool to enhance the delivery of biologics across the blood–brain barrier and improve therapeutic outcomes and further presents single-chain antibodies as an alternative to full-length antibodies.
Collapse
Affiliation(s)
- Rebecca M Nisbet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Ann Van der Jeugd
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Gerhard Leinenga
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Harrison T Evans
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Phillip W Janowicz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia
| |
Collapse
|
42
|
Liu C, Zhang X, Song Y, Wang Y, Zhang F, Zhang Y, Zhang Y, Lan X. SPECT and fluorescence imaging of vulnerable atherosclerotic plaque with a vascular cell adhesion molecule 1 single-chain antibody fragment. Atherosclerosis 2016; 254:263-270. [PMID: 27680307 DOI: 10.1016/j.atherosclerosis.2016.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/02/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS Early detection and evaluation of vulnerable atherosclerotic plaque are important for risk stratification and timely intervention, and vascular cell adhesion molecule 1 (VCAM1) assists in adhesion and recruitment of inflammatory cells to vulnerable lesions. We labeled a single-chain variable fragment (scFv) of VCAM1 with 99mtechnetium (99mTc) and fluorescent markers to investigate its potential utility in detecting vulnerable plaques in animal models of atherosclerosis. METHODS We labeled VCAM1 scFv with 99mTc and cyanine5 (CY5) and evaluated the probes on apolipoprotein E gene-deficient mice and New Zealand White rabbits with induced atherosclerosis. Histopathology and Western blot examinations confirmed atherosclerotic plaque and VCAM1 expression in the aortas. In vivo biodistribution of 99mTc-scFv-VCAM1 was studied. Abdominal organs of mice were removed after CY5-scFv-VCAM1 administration for aortic fluorescence imaging. Rabbits SPECT imaging of 99mTc-scFv-VCAM1 was performed and autoradiography (ARG) of the aortas was checked to confirm the tracer uptake. RESULTS The radiochemical purity of 99mTc-scFv-VCAM1 was 98.72± 1.04% (n = 5) and its specific activity was 7.8 MBq/μg. Biodistribution study indicated predominant probe clearance by kidneys. In fluorescence imaging, stronger signal from CY5-scFv-VCAM1 in the aorta was observed in atherosclerotic mice than that in controls. SPECT imaging with 99mTc-scFv-VCAM1 showed tracer uptake in the abdominal aorta and the aortic arch of atherosclerotic animals. ARG confirmed tracer uptake in the aortas of atherosclerotic rabbits, with higher uptake ratios of aortic arch/descending aorta in experimental animals (4.45 ± 0.63, n = 5) than controls (1.12 ± 0.15, n = 5; p < 0.05). CONCLUSIONS SPECT and fluorescence imaging results showed the feasibility and effectiveness of detecting vulnerable plaque with scFv of VCAM1, indicating its potential for early diagnosis and evaluation of atherosclerosis.
Collapse
Affiliation(s)
- Chunbao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiling Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yichun Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fengzhen Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingying Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
43
|
Congdon EE, Lin Y, Rajamohamedsait HB, Shamir DB, Krishnaswamy S, Rajamohamedsait WJ, Rasool S, Gonzalez V, Levenga J, Gu J, Hoeffer C, Sigurdsson EM. Affinity of Tau antibodies for solubilized pathological Tau species but not their immunogen or insoluble Tau aggregates predicts in vivo and ex vivo efficacy. Mol Neurodegener 2016; 11:62. [PMID: 27578006 PMCID: PMC5006503 DOI: 10.1186/s13024-016-0126-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/04/2016] [Indexed: 11/10/2022] Open
Abstract
Background A few tau immunotherapies are now in clinical trials with several more likely to be initiated in the near future. A priori, it can be anticipated that an antibody which broadly recognizes various pathological tau aggregates with high affinity would have the ideal therapeutic properties. Tau antibodies 4E6 and 6B2, raised against the same epitope region but of varying specificity and affinity, were tested for acutely improving cognition and reducing tau pathology in transgenic tauopathy mice and neuronal cultures. Results Surprisingly, we here show that one antibody, 4E6, which has low affinity for most forms of tau acutely improved cognition and reduced soluble phospho-tau, whereas another antibody, 6B2, which has high affinity for various tau species was ineffective. Concurrently, we confirmed and clarified these efficacy differences in an ex vivo model of tauopathy. Alzheimer’s paired helical filaments (PHF) were toxic to the neurons and increased tau levels in remaining neurons. Both toxicity and tau seeding were prevented by 4E6 but not by 6B2. Furthermore, 4E6 reduced PHF spreading between neurons. Interestingly, 4E6’s efficacy relates to its high affinity binding to solubilized PHF, whereas the ineffective 6B2 binds mainly to aggregated PHF. Blocking 4E6's uptake into neurons prevented its protective effects if the antibody was administered after PHF had been internalized. When 4E6 and PHF were administered at the same time, the antibody was protective extracellularly. Conclusions Overall, these findings indicate that high antibody affinity for solubilized PHF predicts efficacy, and that acute antibody-mediated improvement in cognition relates to clearance of soluble phospho-tau. Importantly, both intra- and extracellular clearance pathways are in play. Together, these results have major implications for understanding the pathogenesis of tauopathies and for development of immunotherapies. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0126-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erin E Congdon
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA
| | - Yan Lin
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA
| | - Hameetha B Rajamohamedsait
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA
| | - Dov B Shamir
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA
| | - Senthilkumar Krishnaswamy
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA
| | - Wajitha J Rajamohamedsait
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA
| | - Suhail Rasool
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA
| | - Veronica Gonzalez
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA
| | - Josien Levenga
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA.,Department of Integrative Physiology, Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
| | - Jiaping Gu
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA
| | - Charles Hoeffer
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA.,Department of Integrative Physiology, Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
| | - Einar M Sigurdsson
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA. .,Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
44
|
Schierle GSK, Michel CH, Gasparini L. Advanced imaging of tau pathology in Alzheimer Disease: New perspectives from super resolution microscopy and label-free nanoscopy. Microsc Res Tech 2016; 79:677-83. [DOI: 10.1002/jemt.22698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/19/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Gabriele S. Kaminski Schierle
- Department of Chemical Engineering and Biotechnology; Pembroke Street, University of Cambridge; Cambridge CB2 3RA United Kingdom
| | - Claire H. Michel
- Department of Chemical Engineering and Biotechnology; Pembroke Street, University of Cambridge; Cambridge CB2 3RA United Kingdom
| | - Laura Gasparini
- Department of Neuroscience and Brain Technologies; Istituto Italiano di Tecnologia; Via Morego 30 Genova Italy
| |
Collapse
|
45
|
Shamir DB, Rosenqvist N, Rasool S, Pedersen JT, Sigurdsson EM. Internalization of tau antibody and pathological tau protein detected with a flow cytometry multiplexing approach. Alzheimers Dement 2016; 12:1098-1107. [PMID: 27016263 DOI: 10.1016/j.jalz.2016.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Tau immunotherapy has emerged as a promising approach to clear tau aggregates from the brain. Our previous findings suggest that tau antibodies may act outside and within neurons to promote such clearance. METHODS We have developed an approach using flow cytometry, a human neuroblastoma cell model overexpressing tau with the P301L mutation, and paired helical filament (PHF)-enriched pathologic tau to effectively screen uptake and retention of tau antibodies in conjunction with PHF. RESULTS The flow cytometry approach correlates well with Western blot analysis to detect internalized antibodies in naïve and transfected SH-SY5Y cells (r2 = 0.958, and r2 = 0.968, P = .021 and P = .016, respectively). In transfected cells, more antibodies are taken up/retained as pathologic tau load increases, both under co-treated conditions and when the cells are pretreated with PHF before antibody administration (r2 = 0.999 and r2 = 0.999, P = .013 and P = .011, respectively). DISCUSSION This approach allows rapid in vitro screening of antibody uptake and retention in conjunction with pathologic tau protein before more detailed studies in animals or other more complex model systems.
Collapse
Affiliation(s)
- Dov B Shamir
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | | | - Suhail Rasool
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | | | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
46
|
Valera E, Spencer B, Masliah E. Immunotherapeutic Approaches Targeting Amyloid-β, α-Synuclein, and Tau for the Treatment of Neurodegenerative Disorders. Neurotherapeutics 2016; 13:179-89. [PMID: 26494242 PMCID: PMC4720672 DOI: 10.1007/s13311-015-0397-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disease-modifying alternatives are sorely needed for the treatment of neurodegenerative disorders, a group of diseases that afflict approximately 50 million Americans annually. Immunotherapy is one of the most developed approaches in this direction. Vaccination against amyloid-β, α-synuclein, or tau has been extensively explored, specially as the discovery that these proteins may propagate cell-to-cell and be accessible to antibodies when embedded into the plasma membrane or in the extracellular space. Likewise, the use of passive immunization approaches with specific antibodies against abnormal conformations of these proteins has also yielded promising results. The clinical development of immunotherapies for Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, dementia with Lewy bodies, and other neurodegenerative disorders is a field in constant evolution. Results to date suggest that immunotherapy is a promising therapeutic approach for neurodegenerative diseases that progress with the accumulation and prion-like propagation of toxic protein aggregates. Here we provide an overview of the most novel and relevant immunotherapeutic advances targeting amyloid-β in Alzheimer’s disease, α-synuclein in Alzheimer’s disease and Parkinson’s disease, and tau in Alzheimer’s disease and frontotemporal dementia.
Collapse
Affiliation(s)
- Elvira Valera
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
| | - Brian Spencer
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
| | - Eliezer Masliah
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
- grid.266100.30000000121074242Department of Pathology, University of California, La Jolla, San Diego, CA 92093 USA
| |
Collapse
|
47
|
Sigurdsson EM. Tau Immunotherapy. NEURODEGENER DIS 2015; 16:34-8. [PMID: 26551002 DOI: 10.1159/000440842] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/03/2015] [Indexed: 12/11/2022] Open
Abstract
In recent years, tau immunotherapy has advanced from proof-of-concept studies [Sigurdsson EM, NIH R01AG020197, 2001; Asuni AA, et al: J Neurosci 2007;27:9115-9129], which have now been confirmed and extended by us and others. Phase I clinical trials on active and passive tau immunizations are being conducted, with several additional passive tau antibody trials likely to be initiated in the near future for Alzheimer's disease and other tauopathies. Because tau pathology correlates better with the degree of dementia than amyloid-β (Aβ) pathology, greater clinical efficacy may be achieved by clearing tau than Aβ aggregates in the later stages of the disease, when cognitive impairments become evident. Substantial insight has now been obtained regarding which epitopes to target, mechanism of action and potential toxicity, but much remains to be clarified. All of these factors likely depend on the model/disease or stage of pathology and the immunogen/antibody. Interestingly, tau antibodies interact with the protein both extra- and intracellularly, but the importance of each site for tau clearance is not well defined. Some antibodies are readily taken up into neurons, whereas others are not. It can be argued that extracellular clearance may be safer but less efficacious than intraneuronal clearance and/or sequestration to prevent secretion and further spread of tau pathology. Development of therapeutic tau antibodies has led to antibody-derived imaging probes, which are more specific than the dye-based compounds that are already in clinical trials. Such specificity may give valuable information on the pathological tau epitope profile, which could then guide the selection of therapeutic antibodies for maximal efficacy and safety. Hopefully, tau immunotherapy will be effective in clinical trials, and further advanced by mechanistic clarification in experimental models with insights from biomarkers and postmortem analyses of clinical subjects.
Collapse
Affiliation(s)
- Einar M Sigurdsson
- Departments of Neuroscience and Physiology, and Psychiatry, New York University School of Medicine, New York, N.Y., USA
| |
Collapse
|
48
|
Pedersen JT, Sigurdsson EM. Tau immunotherapy for Alzheimer's disease. Trends Mol Med 2015; 21:394-402. [DOI: 10.1016/j.molmed.2015.03.003] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 11/27/2022]
|