1
|
Dirks CAH, Bachmann CG. From brain to spinal cord: neuromodulation by direct current stimulation and its promising effects as a treatment option for restless legs syndrome. Front Neurol 2024; 15:1278200. [PMID: 38333606 PMCID: PMC10850250 DOI: 10.3389/fneur.2024.1278200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Neuromodulation is a fast-growing field of mostly non-invasive therapies, which includes spinal cord stimulation (SCS), transcranial direct current stimulation (tDCS), vagal nerve stimulation (VNS), peripheral nerve stimulation, transcranial magnetic stimulation (TMS) and transcutaneous spinal direct current stimulation (tsDCS). This narrative review offers an overview of the therapy options, especially of tDCS and tsDCS for chronic pain and spinal cord injury. Finally, we discuss the potential of tsDCS in Restless Legs Syndrome as a promising non-invasive, alternative therapy to medication therapy.
Collapse
|
2
|
Hassan AB, Salihu AT, Masta MA, Gunn H, Marsden J, Abdullahi A, Ahmad RY, Danazumi MS. Effect of transcutaneous spinal direct current stimulation on spasticity in upper motor neuron conditions: a systematic review and meta-analysis. Spinal Cord 2023; 61:587-599. [PMID: 37640926 DOI: 10.1038/s41393-023-00928-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
STUDY DESIGN A systematic review and meta-analysis of clinical trials. OBJECTIVES To determine the effect of non-invasive transcutaneous spinal direct current stimulation (tsDCS) on spasticity, activity limitations and participation restrictions in various upper motor neuron diseases. METHODS Six databases including CINAHL plus, Cochrane CENTRAL, Embase, MEDLINE, SCOPUS and Web of Science were searched for the relevant records from January 2008 to December 2022. Two reviewers independently selected and extracted data on spasticity, activity limitations and participation restrictions. The risk of bias was evaluated using the PEDro scale while the GRADE approach established the certainty of the evidence. RESULTS Eleven studies were identified of which 5 (45.5%) were rated as having a low risk of bias and 8 (72.7%) were meta-analyzed. The meta-analyses did not show any significant differences between cathodal (SMD = -0.67, 95% CI = -1.50 to 0.15, P = 0.11, I2 = 75%, 6 RCTs) or anodal (SMD = 0.11, 95% CI = -0.43 to -0.64, p = 0.69, I2 = 0%, 2 RCTs) and sham tsDCS for spasticity. There was also no significant difference between active and sham tsDCS for activity limitations (SMD = -0.42, 95% CI = -0.04 to 0.21, p = 0.2, I2 = 0%, 2 RCTs) and participation restrictions (MD = -8.10, 95% CI = -18.02 to 1.82, p = 0.11, 1 RCT). CONCLUSIONS The meta-analysis of the available evidence provides an uncertain estimate of the effect of cathodal tsDCS on spasticity, activity limitation and participation restriction. It might be very helpful, or it may make no difference at all. However, considering the level of the evidence and the limitation in the quality of the majority of the included studies, further well-designed research may likely change the estimate of effect. TRIAL REGISTRATION PROSPERO CRD42021245601.
Collapse
Affiliation(s)
- Auwal B Hassan
- Department of Medical Rehabilitation (Physiotherapy), Faculty of Allied Health Sciences, College of Medical Sciences, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Abubakar T Salihu
- Department of Physiotherapy, Monash University, Melbourne, VIC, Australia
| | - Mamman A Masta
- Department of Medical Rehabilitation (Physiotherapy), Faculty of Allied Health Sciences, College of Medical Sciences, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Hilary Gunn
- Peninsula Allied Health Centre, University of Plymouth, Plymouth, UK
| | - Jonathan Marsden
- Peninsula Allied Health Centre, University of Plymouth, Plymouth, UK
| | - Auwal Abdullahi
- Department of Physiotherapy, Bayero University Kano, Kano, Nigeria
| | - Rufa'i Y Ahmad
- Department of Physiotherapy, Bayero University Kano, Kano, Nigeria
| | - Musa S Danazumi
- Discipline of Physiotherapy, School of Allied Health, Human Services and Sport, College of Sciences, Health and Engineering, La Trobe University, Bundoora, VIC, 3085, Australia.
| |
Collapse
|
3
|
Lv L, Cheng X, Yang J, Chen X, Ni J. Novel role for non-invasive neuromodulation techniques in central respiratory dysfunction. Front Neurosci 2023; 17:1226660. [PMID: 37680969 PMCID: PMC10480838 DOI: 10.3389/fnins.2023.1226660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Respiration is a crucial steady-state function of human life. Central nervous system injury can damage the central respiratory pattern generator (CRPG) or interrupt its outflow, leading to central respiratory paralysis and dysfunction, which can endanger the patient's life. At present, there is no effective means to reverse this process. Commonly used non-invasive neuromodulation techniques include repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS) and so forth, which have been widely applied in nervous system diseases and their various secondary symptoms, but rarely in respiratory function. Clinical and animal studies have confirmed that TMS is also suitable for investigating the excitability and plasticity of ascending corticospinal respiratory pathways. In addition, although rTMS and tDCS differ in their respective mechanisms, both can regulate respiratory networks in healthy individuals and in diseased states. In this review, we provide an overview of the physiology of respiration, the use of TMS to assess the excitability of corticophrenic pathways in healthy individuals and in central respiratory disorders, followed by an overview of the animal and clinical studies of rTMS, tDCS and so forth in regulating respiratory circuits and the possible mechanisms behind them. It was found that the supplementary motor area (SMA) and the phrenic motor neuron (PMN) may be key regulatory areas. Finally, the challenges and future research directions of neuroregulation in respiratory function are proposed. Through understanding how neuromodulation affects the respiratory neural circuit non-invasively, we can further explore the therapeutic potential of this neuromodulation strategy, so as to promote the recovery of respiratory function after central nervous system diseases or injury.
Collapse
Affiliation(s)
- Lan Lv
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Rehabilitation Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaoping Cheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jiaying Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xinyuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Marangolo P, Vasta S, Manfredini A, Caltagirone C. What Else Can Be Done by the Spinal Cord? A Review on the Effectiveness of Transpinal Direct Current Stimulation (tsDCS) in Stroke Recovery. Int J Mol Sci 2023; 24:10173. [PMID: 37373323 DOI: 10.3390/ijms241210173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Since the spinal cord has traditionally been considered a bundle of long fibers connecting the brain to all parts of the body, the study of its role has long been limited to peripheral sensory and motor control. However, in recent years, new studies have challenged this view pointing to the spinal cord's involvement not only in the acquisition and maintenance of new motor skills but also in the modulation of motor and cognitive functions dependent on cortical motor regions. Indeed, several reports to date, which have combined neurophysiological techniques with transpinal direct current stimulation (tsDCS), have shown that tsDCS is effective in promoting local and cortical neuroplasticity changes in animals and humans through the activation of ascending corticospinal pathways that modulate the sensorimotor cortical networks. The aim of this paper is first to report the most prominent tsDCS studies on neuroplasticity and its influence at the cortical level. Then, a comprehensive review of tsDCS literature on motor improvement in animals and healthy subjects and on motor and cognitive recovery in post-stroke populations is presented. We believe that these findings might have an important impact in the future making tsDCS a potential suitable adjunctive approach for post-stroke recovery.
Collapse
Affiliation(s)
- Paola Marangolo
- Department of Humanities Studies, University Federico II, 80133 Naples, Italy
| | - Simona Vasta
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Manfredini
- Department of Humanities Studies, University Federico II, 80133 Naples, Italy
| | | |
Collapse
|
5
|
Guidetti M, Giannoni-Luza S, Bocci T, Pacheco-Barrios K, Bianchi AM, Parazzini M, Ionta S, Ferrucci R, Maiorana NV, Verde F, Ticozzi N, Silani V, Priori A. Modeling Electric Fields in Transcutaneous Spinal Direct Current Stimulation: A Clinical Perspective. Biomedicines 2023; 11:1283. [PMID: 37238953 PMCID: PMC10216237 DOI: 10.3390/biomedicines11051283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Clinical findings suggest that transcutaneous spinal direct current stimulation (tsDCS) can modulate ascending sensitive, descending corticospinal, and segmental pathways in the spinal cord (SC). However, several aspects of the stimulation have not been completely understood, and realistic computational models based on MRI are the gold standard to predict the interaction between tsDCS-induced electric fields and anatomy. Here, we review the electric fields distribution in the SC during tsDCS as predicted by MRI-based realistic models, compare such knowledge with clinical findings, and define the role of computational knowledge in optimizing tsDCS protocols. tsDCS-induced electric fields are predicted to be safe and induce both transient and neuroplastic changes. This could support the possibility to explore new clinical applications, such as spinal cord injury. For the most applied protocol (2-3 mA for 20-30 min, active electrode over T10-T12 and the reference on the right shoulder), similar electric field intensities are generated in both ventral and dorsal horns of the SC at the same height. This was confirmed by human studies, in which both motor and sensitive effects were found. Lastly, electric fields are strongly dependent on anatomy and electrodes' placement. Regardless of the montage, inter-individual hotspots of higher values of electric fields were predicted, which could change when the subjects move from a position to another (e.g., from the supine to the lateral position). These characteristics underlines the need for individualized and patient-tailored MRI-based computational models to optimize the stimulation protocol. A detailed modeling approach of the electric field distribution might contribute to optimizing stimulation protocols, tailoring electrodes' configuration, intensities, and duration to the clinical outcome.
Collapse
Affiliation(s)
- Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (T.B.); (N.V.M.)
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
| | - Stefano Giannoni-Luza
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology—University of Lausanne, Jules Gonin Eye Hospital/Fondation Asile des Aveugles, 1015 Lausanne, Switzerland; (S.G.-L.); (S.I.)
| | - Tommaso Bocci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (T.B.); (N.V.M.)
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy;
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA 02129, USA;
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Lima 15024, Peru
| | - Anna Maria Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
| | - Marta Parazzini
- Istituto di Elettronica e di Ingegneria Dell’Informazione e delle Telecomunicazioni (IEIIT), Consiglio Nazionale delle Ricerche (CNR), 10129 Milan, Italy;
| | - Silvio Ionta
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology—University of Lausanne, Jules Gonin Eye Hospital/Fondation Asile des Aveugles, 1015 Lausanne, Switzerland; (S.G.-L.); (S.I.)
| | - Roberta Ferrucci
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy;
- Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Natale Vincenzo Maiorana
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (T.B.); (N.V.M.)
| | - Federico Verde
- Department of Neurology, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy; (F.V.); (N.T.); (V.S.)
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, 20122 Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy; (F.V.); (N.T.); (V.S.)
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, 20122 Milan, Italy
| | - Vincenzo Silani
- Department of Neurology, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy; (F.V.); (N.T.); (V.S.)
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, 20122 Milan, Italy
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (T.B.); (N.V.M.)
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy;
| |
Collapse
|
6
|
Highlander MM, Elbasiouny SM. Non-Invasive Transcutaneous Spinal DC Stimulation as a Neurorehabilitation ALS Therapy in Awake G93A Mice: The First Step to Clinical Translation. Bioengineering (Basel) 2022; 9:bioengineering9090441. [PMID: 36134987 PMCID: PMC9495504 DOI: 10.3390/bioengineering9090441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal direct current stimulation (sDCS) modulates motoneuron (MN) excitability beyond the stimulation period, making it a potential neurorehabilitation therapy for amyotrophic lateral sclerosis (ALS), a MN degenerative disease in which MN excitability dysfunction plays a critical and complex role. Recent evidence confirms induced changes in MN excitability via measured MN electrophysiological properties in the SOD1 ALS mouse during and following invasive subcutaneous sDCS (ssDCS). The first aim of our pilot study was to determine the clinical potential of these excitability changes at symptom onset (P90-P105) in ALS via a novel non-invasive transcutaneous sDCS (tsDCS) treatment paradigm on un-anesthetized SOD1-G93A mice. The primary outcomes were motor function and survival. Unfortunately, skin damage avoidance limited the strength of applied stimulation intensity, likewise limiting measurable primary effects. The second aim of this study was to determine which orientation of stimulation (anodal vs cathodal, which are expected to have opposing effects) is beneficial vs harmful in ALS. Despite the lack of measured primary effects, strong trends in survival of the anodal stimulation group, combined with an analysis of survival variance and correlations among symptoms, suggest anodal stimulation is harmful at symptom onset. Therefore, cathodal stimulation may be beneficial at symptom onset if a higher stimulation intensity can be safely achieved via subcutaneously implanted electrodes or alternative methods. Importantly, the many logistical, physical, and stimulation parameters explored in developing this novel non-invasive treatment paradigm on unanesthetized mice provide insight into an appropriate and feasible methodology for future tsDCS study designs and potential clinical translation.
Collapse
Affiliation(s)
- Morgan M. Highlander
- Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, OH 45435, USA
| | - Sherif M. Elbasiouny
- Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, OH 45435, USA
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH 45435, USA
- Correspondence: ; Tel.: +1-937-775-2492
| |
Collapse
|
7
|
Song W, Martin JH. Trans-Spinal Direct Current Stimulation Targets Ca 2+ Channels to Induce Persistent Motor Unit Responses. Front Neurosci 2022; 16:856948. [PMID: 35546896 PMCID: PMC9081846 DOI: 10.3389/fnins.2022.856948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/04/2022] [Indexed: 01/13/2023] Open
Abstract
Trans-spinal direct current stimulation (tsDCS) is a neuromodulatory approach to augment spinal cord activity to improve function after neurological disease and injury. Little is known about the mechanisms underlying tsDCS actions on the motor system. The purpose of this study is to determine the role for a persistent inward current (PIC)-like response in motoneurons in mediating tsDCS actions. We recorded single motor units from the extensor and flexor carpi radialis muscles in healthy sedated rats and measured unit activity changes produced by cervical enlargement cathodal and anodal tsDCS (c-tsDCS; a-tsDCS). Both c-tsDCS and a-tsDCS immediately increased spontaneous motor unit firing during stimulation. After c-tsDCS was stopped, spontaneous firing persisted for a substantial period (165 ± 5s), yet after a-tsDCS activity shortly returned to baseline (27 ± 7s). Administration of the L-type calcium channel blocker Nimodipine reduced spontaneous motor unit firing during c-tsDCS and blocked the persistent response. By contrast, Nimodipine did not change unit firing during a-tsDCS but the short persistent response was blocked. Computer simulation using a two-compartment neuronal model replicated the main experimental observations: larger and more persistent responses during and after c-tsDCS than a-tsDCS. Using reduced Ca2+ conductance to model Nimodipine action, a reduced response during c-tsDCS and elimination of the persistent response was observed. Our experimental findings, supported by computer simulation, show that c-tsDCS can target Ca2+ conductances to augment motoneuron activity. As tsDCS is well-tolerated in humans, this knowledge informs therapeutic treatment strategies to achieve rehabilitation goals after injury; in particular, to increase muscle force.
Collapse
Affiliation(s)
- Weiguo Song
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - John H Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, United States.,Neuroscience Program, Graduate Center of the City University of New York, New York, NY, United States
| |
Collapse
|
8
|
Ardolino G, Bocci T, Nigro M, Vergari M, Di Fonzo A, Bonato S, Cogiamanian F, Cortese F, Cova I, Barbieri S, Priori A. Spinal direct current stimulation (tsDCS) in hereditary spastic paraplegias (HSP): A sham-controlled crossover study. J Spinal Cord Med 2021; 44:46-53. [PMID: 30508408 PMCID: PMC7919872 DOI: 10.1080/10790268.2018.1543926] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective: Hereditary spastic paraplegia (HSP) represents a heterogeneous group of neurodegenerative diseases characterized by progressive spasticity and lower limb weakness. We assessed the effects of transcutaneous spinal direct current stimulation (tsDCS) in HSP.Design: A double-blind, randomized, crossover and sham-controlled study.Setting: Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan.Participants: eleven patients with HSP (six men, mean age ± SD: 37.3 ± 8.1 years), eight affected by spastin/SPG4,1 by atlastin1/SPG3a, 1 by paraplegin/SPG7 and 1 by ZFYVE26/SPG15.Interventions: tsDCS (anodal or sham, 2.0 mA, 20', five days) delivered over the thoracic spinal cord (T10-T12).Outcome measures: Motor-evoked potentials (MEPs), the H-reflex (Hr), F-waves, the Ashworth scale for clinical spasticity, the Five Minutes Walking test and the Spastic Paraplegia Rating Scale (SPRS) were assessed. Patients were evaluated before tsDCS (T0), at the end of the stimulation (T1), after one week (T2), one month (T3) and two months (T4).Results: The score of the Ashworth scale improved in the anodal compared with sham group, up to two months following the end of stimulation (T1, P = .0137; T4, P = .0244), whereas the Five Minutes Walking test and SPRS did not differ between the two groups. Among neurophysiological measures, both anodal and sham tsDCS left Hr, F-waves and MEPs unchanged over time.Conclusions: Anodal tsDCS significantly decreases spasticity and might be a complementary strategy for the treatment of spasticity in HSP.
Collapse
Affiliation(s)
- Gianluca Ardolino
- Neuropathophysiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Bocci
- Neuropathophysiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, Pisa University Medical School, Pisa, Italy,“Aldo Ravelli” Center for Neurotechnology and Experiental Brain Therapeutics, Department of Health Sciences, University of Milan & ASST Santi Paolo e Carlo, Milan, Italy
| | - Martina Nigro
- Neuropathophysiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Vergari
- Neuropathophysiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessio Di Fonzo
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Bonato
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Filippo Cogiamanian
- Neuropathophysiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Cortese
- Neuropathophysiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ilaria Cova
- Clinical Center for Neurostimulation, Neurotechnology, and Movement Disorders, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sergio Barbieri
- Neuropathophysiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Priori
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,Clinical Center for Neurostimulation, Neurotechnology, and Movement Disorders, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,Correspondence to: Alberto Priori, Department of Health Sciences, University of Milan, Via Antonio Di Rudinì 8, 20142Milan, Italy. mailto:
| |
Collapse
|
9
|
Zheng Y, Mao YR, Yuan TF, Xu DS, Cheng LM. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation. Neural Regen Res 2020; 15:1437-1450. [PMID: 31997803 PMCID: PMC7059565 DOI: 10.4103/1673-5374.274332] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 04/28/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury is linked to the interruption of neural pathways, which results in irreversible neural dysfunction. Neural repair and neuroregeneration are critical goals and issues for rehabilitation in spinal cord injury, which require neural stem cell repair and multimodal neuromodulation techniques involving personalized rehabilitation strategies. Besides the involvement of endogenous stem cells in neurogenesis and neural repair, exogenous neural stem cell transplantation is an emerging effective method for repairing and replacing damaged tissues in central nervous system diseases. However, to ensure that endogenous or exogenous neural stem cells truly participate in neural repair following spinal cord injury, appropriate interventional measures (e.g., neuromodulation) should be adopted. Neuromodulation techniques, such as noninvasive magnetic stimulation and electrical stimulation, have been safely applied in many neuropsychiatric diseases. There is increasing evidence to suggest that neuromagnetic/electrical modulation promotes neuroregeneration and neural repair by affecting signaling in the nervous system; namely, by exciting, inhibiting, or regulating neuronal and neural network activities to improve motor function and motor learning following spinal cord injury. Several studies have indicated that fine motor skill rehabilitation training makes use of residual nerve fibers for collateral growth, encourages the formation of new synaptic connections to promote neural plasticity, and improves motor function recovery in patients with spinal cord injury. With the development of biomaterial technology and biomechanical engineering, several emerging treatments have been developed, such as robots, brain-computer interfaces, and nanomaterials. These treatments have the potential to help millions of patients suffering from motor dysfunction caused by spinal cord injury. However, large-scale clinical trials need to be conducted to validate their efficacy. This review evaluated the efficacy of neural stem cells and magnetic or electrical stimulation combined with rehabilitation training and intelligent therapies for spinal cord injury according to existing evidence, to build up a multimodal treatment strategy of spinal cord injury to enhance nerve repair and regeneration.
Collapse
Affiliation(s)
- Ya Zheng
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ye-Ran Mao
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Dong-Sheng Xu
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education of the People's Republic of China, Tongji University, Shanghai, China
| | - Li-Ming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education of the People's Republic of China, Tongji University, Shanghai, China
- Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Paget-Blanc A, Chang JL, Saul M, Lin R, Ahmed Z, Volpe BT. Non-invasive treatment of patients with upper extremity spasticity following stroke using paired trans-spinal and peripheral direct current stimulation. Bioelectron Med 2020; 5:11. [PMID: 32232101 PMCID: PMC7098221 DOI: 10.1186/s42234-019-0028-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
Background Muscle spasticity is a common impediment to motor recovery in patients with chronic stroke. Standard-of-care treatments such as botulinum toxin injections can temporarily relieve muscle stiffness and pain associated with spasticity, but often at the expense of increased muscle weakness. Recent preclinical investigations of a non-invasive treatment that pairs trans-spinal direct current stimulation and peripheral nerve direct current stimulation (tsDCS+pDCS) provided promising data for a novel approach based on bioelectronic medicine for the treatment of patients with post-stroke spasticity. Methods Twenty-six patients with upper limb hemiparesis and wrist spasticity at least 6 months after their initial stroke participated in this single-blind crossover design study to test whether tsDCS+pDCS reduces chronic upper-extremity spasticity. Subjects received five consecutive daily sessions (20 min of stimulation or sham) of anodal tsDCS+pDCS, separated by a one-week washout period. The sham condition always preceded the active condition. Clinical and objective measures of spasticity and motor function were collected before and after each condition, and for five weeks after the completion of the active intervention. Results Subjects treated with active tsDCS+pDCS demonstrated significant reductions in both Modified Tardieu Scale scores (summed across the upper limb, P < 0.05), and in objective torque measures (Nm) of the spastic catch response at the wrist flexor (P < 0.05), compared to the sham condition. Motor function also improved significantly (measured by the Fugl-Meyer and Wolf Motor Function Test; P < 0.05 for both tests) after active treatment. Conclusions tsDCS+pDCS intervention alone significantly reduced upper limb spasticity in participants with stroke. Decreased spasticity was persistent for five weeks after treatment, and was accompanied by improved motor function even though patients were unsupervised and there was no prescribed activity or training during that interval. Trial registration NCT03080454, March 15, 2017.
Collapse
Affiliation(s)
- Alexandra Paget-Blanc
- 1Feinstein Institute for Medical Research, Biomedical Science Division, Biomedical Sciences /Robot Lab, Laboratory of Clinical Neurorehabilitation Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Johanna L Chang
- 1Feinstein Institute for Medical Research, Biomedical Science Division, Biomedical Sciences /Robot Lab, Laboratory of Clinical Neurorehabilitation Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Maira Saul
- 1Feinstein Institute for Medical Research, Biomedical Science Division, Biomedical Sciences /Robot Lab, Laboratory of Clinical Neurorehabilitation Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Regina Lin
- BARC Global Central Laboratory, 5 Delaware Dr, Hyde Park, NY 11042 USA
| | - Zaghloul Ahmed
- College of Staten Island, Department of Physical Therapy, Center for Developmental Neuroscience, Staten Island, NY 10314 USA.,4Graduate Center, City University of New York, New York, NY USA
| | - Bruce T Volpe
- 1Feinstein Institute for Medical Research, Biomedical Science Division, Biomedical Sciences /Robot Lab, Laboratory of Clinical Neurorehabilitation Research, 350 Community Dr, Manhasset, NY 11030 USA
| |
Collapse
|
11
|
Morya E, Monte-Silva K, Bikson M, Esmaeilpour Z, Biazoli CE, Fonseca A, Bocci T, Farzan F, Chatterjee R, Hausdorff JM, da Silva Machado DG, Brunoni AR, Mezger E, Moscaleski LA, Pegado R, Sato JR, Caetano MS, Sá KN, Tanaka C, Li LM, Baptista AF, Okano AH. Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. J Neuroeng Rehabil 2019; 16:141. [PMID: 31730494 PMCID: PMC6858746 DOI: 10.1186/s12984-019-0581-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function.
Collapse
Affiliation(s)
- Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Rio Grande do Norte Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Kátia Monte-Silva
- Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Andre Fonseca
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Tommaso Bocci
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, International Medical School, University of Milan, Milan, Italy
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Raaj Chatterjee
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Jeffrey M. Hausdorff
- Department of Physical Therapy, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Luciane Aparecida Moscaleski
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Rodrigo Pegado
- Graduate Program in Rehabilitation Science, Universidade Federal do Rio Grande do Norte, Santa Cruz, Rio Grande do Norte Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Marcelo Salvador Caetano
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Kátia Nunes Sá
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
| | - Clarice Tanaka
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Li Min Li
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Abrahão Fontes Baptista
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Alexandre Hideki Okano
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Graduate Program in Physical Education. State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
12
|
Mekhael W, Begum S, Samaddar S, Hassan M, Toruno P, Ahmed M, Gorin A, Maisano M, Ayad M, Ahmed Z. Repeated anodal trans-spinal direct current stimulation results in long-term reduction of spasticity in mice with spinal cord injury. J Physiol 2019; 597:2201-2223. [PMID: 30689208 PMCID: PMC6462463 DOI: 10.1113/jp276952] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 01/18/2019] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Spasticity is a disorder of muscle tone that is associated with lesions of the motor system. This condition involves an overactive spinal reflex loop that resists the passive lengthening of muscles. Previously, we established that application of anodal trans-spinal direct current stimulation (a-tsDCS) for short periods of time to anaesthetized mice sustaining a spinal cord injury leads to an instantaneous reduction of spasticity. However, the long-term effects of repeated a-tsDCS and its mechanism of action remained unknown. In the present study, a-tsDCS was performed for 7 days and this was found to cause long-term reduction in spasticity, increased rate-dependent depression in spinal reflexes, and improved ground and skill locomotion. Pharmacological, molecular and cellular evidence further suggest that a novel mechanism involving Na-K-Cl cotransporter isoform 1 mediates the observed long-term effects of repeated a-tsDCS. ABSTRACT Spasticity can cause pain, fatigue and sleep disturbances; restrict daily activities such as walking, sitting and bathing; and complicate rehabilitation efforts. Thus, spasticity negatively influences an individual's quality of life and novel therapeutic interventions are needed. We previously demonstrated in anaesthetized mice that a short period of trans-spinal subthreshold direct current stimulation (tsDCS) reduces spasticity. In the present study, the long-term effects of repeated tsDCS to attenuate abnormal muscle tone in awake female mice with spinal cord injuries were investigated. A motorized system was used to test velocity-dependent ankle resistance and associated electromyographical activity. Analysis of ground and skill locomotion was also performed, with electrophysiological, molecular and cellular studies being conducted to reveal a potential underlying mechanism of action. A 4 week reduction in spasticity was associated with an increase in rate-dependent depression of spinal reflexes, and ground and skill locomotion were improved following 7 days of anodal-tsDCS (a-tsDCS). Secondary molecular, cellular and pharmacological experiments further demonstrated that the expression of K-Cl co-transporter isoform 2 (KCC2) was not changed in animals with spasticity. However, Na-K-Cl cotransporter isoform 1 (NKCC1) was significantly up-regulated in mice that exhibited spasticity. When mice were treated with a-tsDCS, down regulation of NKCC1 was detected, and this level did not significantly differ from that in the non-injured control mice. Thus, long lasting reduction of spasticity by a-tsDCS via downregulation of NKCC1 may constitute a novel therapy for spasticity following spinal cord injury.
Collapse
Affiliation(s)
- Wagdy Mekhael
- Graduate CenterCity University of New YorkNew YorkNYUSA
| | - Sultana Begum
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Sreyashi Samaddar
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
- Department of Physical TherapyThe College of Staten IslandStaten IslandNYUSA
| | - Mazen Hassan
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Pedro Toruno
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Malik Ahmed
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Alexis Gorin
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Michael Maisano
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Mark Ayad
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Zaghloul Ahmed
- Graduate CenterCity University of New YorkNew YorkNYUSA
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
- Department of Physical TherapyThe College of Staten IslandStaten IslandNYUSA
| |
Collapse
|
13
|
Bolzoni F, Esposti R, Jankowska E, Hammar I. Interactions Between Baclofen and DC-induced Plasticity of Afferent Fibers within the Spinal Cord. Neuroscience 2019; 404:119-129. [PMID: 30710669 DOI: 10.1016/j.neuroscience.2019.01.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/21/2022]
Abstract
The aims of the study were to compare effects of baclofen, a GABAB receptor agonist commonly used as an antispastic drug, on direct current (DC) evoked long-lasting changes in the excitability of afferent fibers traversing the dorsal columns and their terminal branches in the spinal cord, and to examine whether baclofen interferes with the development and expression of these changes. The experiments were performed on deeply anesthetized rats by analyzing the effects of DC before, during and following baclofen administration. Muscle and skin afferent fibers within the dorsal columns were stimulated epidurally and changes in their excitability were investigated following epidural polarization by 1.0-1.1 μA subsequent to i.v. administration of baclofen. Epidural polarization increased the excitability of these fibers during post-polarization periods of at least 1 h. The facilitation was as potent as in preparations that were not pretreated with baclofen, indicating that the advantages of combining epidural polarization with epidural stimulation would not be endangered by pharmacological antispastic treatment with baclofen. In contrast, baclofen-reduced effects of intraspinal stimulation combined with intraspinal polarization (0.3 μA) of terminal axonal branches of the afferents within the dorsal horn or in motor nuclei, whether administered ionophoretically or intravenously. Effects of DC on monosynaptically evoked synaptic actions of these fibers (extracellular field potentials) were likewise reduced by baclofen. The study thus provides further evidence for differential effects of DC on afferent fibers in the dorsal columns and the preterminal branches of these fibers and their involvement in spinal plasticity.
Collapse
Affiliation(s)
- Francesco Bolzoni
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden; Human Physiology Section of the DEPT, Università degli Studi di Milano, Milano I-20133, Italy
| | - Roberto Esposti
- Human Physiology Section of the DEPT, Università degli Studi di Milano, Milano I-20133, Italy
| | - Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Ingela Hammar
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
14
|
Pereira M, Fernandes SR, Miranda PC, de Carvalho M. Neuromodulation of lower limb motor responses with transcutaneous lumbar spinal cord direct current stimulation. Clin Neurophysiol 2018; 129:1999-2009. [PMID: 30041145 DOI: 10.1016/j.clinph.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/03/2018] [Accepted: 07/02/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Trans-spinal direct current stimulation (tsDCS) is a promising technique to modulate spinal circuits. Combining clinical with modelling studies can improve effectiveness of tsDCS protocols. The aim of this study is to measure the effects of lumbar tsDCS on motor spinal responses and observe if these are consistent with the electric field (E-field) predicted from a computational model. METHODS The exploratory study design was double-blind crossover and randomized. tsDCS was delivered for 15 min (anodal, cathodal, sham) at L2 vertebra level (2.5 mA, 90 C/cm2) in 14 healthy subjects. F-wave, H-reflex, cortical silent period, motor evoked potential and sympathetic skin response were analyzed. Statistical methods were applied with Bonferroni correction for multiple comparisons, a p < 0.05 was set as significant. A human volume conductor model was obtained from available databases. E-field distributions in the spinal grey matter (GM) and white matter (WM) were calculated. RESULTS No tsDCS effects were observed. E-field magnitude predicted in the lumbosacral spinal GM and WM was <0.15 V/m, insufficient to ensure neuromodulation, which is consistent with the absence of effects. CONCLUSION The tsDCS protocol applied did not change motor response to delivered stimulus, thus we observed no effect on motor spinal circuits. SIGNIFICANCE Future tsDCS protocols should be supported by computational models.
Collapse
Affiliation(s)
- Mariana Pereira
- Instituto de Medicina Molecular, Instituto de Fisiologia, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sofia Rita Fernandes
- Instituto de Medicina Molecular, Instituto de Fisiologia, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Pedro C Miranda
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Mamede de Carvalho
- Instituto de Medicina Molecular, Instituto de Fisiologia, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria - Centro Hospitalar Lisboa Norte, Avenida Professor Egas Moniz, 1649-035 Lisboa, Portugal.
| |
Collapse
|
15
|
Does trans-spinal direct current stimulation modulate the Hoffmann reflexes of healthy individuals? A systematic review and meta-analysisc. Spinal Cord 2018; 56:1022-1031. [PMID: 29895879 DOI: 10.1038/s41393-018-0149-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 12/27/2022]
Abstract
STUDY DESIGN Systematic review and meta-analysis. OBJECTIVES To summarize the available evidence regarding the effects of trans-spinal direct current stimulation (tsDCS) on spinal monosynaptic circuit excitability in healthy individuals. SETTING Applied Neuroscience Laboratory, Brazil. METHODS Abstract screening was performed independently by two authors for studies found in the following databases: PubMed, CINAHL, PsycINFO, Web of Science, and LILACS. If the authors were unable to agree, a third reviewer was consulted. Randomized clinical trials that reported monosynaptic reflex measures were included. Methodological quality was assessed using the Cochrane tool for assessing the risk of bias, and information extracted about the spinal neurophysiological and stimulation protocols and their results. RESULTS The initial search identified 538 studies. After applying the inclusion criteria and excluding duplicates, seven crossover studies were included in the risk of bias assessment, and six studies in the meta-analyses. The meta-analysis results did not show any significant differences between anodal (pooled standardized mean difference (SMD) = -0.09, 95% CI = -0.72 to 0.55, p = 0.79, I2 = 67%) or cathodal tsDCS (pooled SMD = 0.28, 95% CI = -0.07 to 0.63, p = 0.11, I2 = 0%) and sham tsDCS for Hoffmann reflex modulation. CONCLUSION tsDCS did not affect the Hoffmann reflex, as shown in six studies. However, these findings come from studies with selection, performance and detection bias, and further research is needed to examine the effect of this intervention.
Collapse
|
16
|
Albuquerque PL, Campêlo M, Mendonça T, Fontes LAM, Brito RDM, Monte-Silva K. Effects of repetitive transcranial magnetic stimulation and trans-spinal direct current stimulation associated with treadmill exercise in spinal cord and cortical excitability of healthy subjects: A triple-blind, randomized and sham-controlled study. PLoS One 2018; 13:e0195276. [PMID: 29596524 PMCID: PMC5875883 DOI: 10.1371/journal.pone.0195276] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/18/2018] [Indexed: 11/18/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) over motor cortex and trans-spinal direct current stimulation (tsDCS) modulate corticospinal circuits in healthy and injured subjects. However, their associated effects with physical exercise is still not defined. This study aimed to investigate the effect of three different settings of rTMS and tsDCS combined with treadmill exercise on spinal cord and cortical excitability of healthy subjects. We performed a triple blind, randomized, sham-controlled crossover study with 12 healthy volunteers who underwent single sessions of rTMS (1Hz, 20Hz and Sham) and tsDCS (anodal, cathodal and Sham) associated with 20 minutes of treadmill walking. Cortical excitability was assessed by motor evoked potential (MEP) and spinal cord excitability by the Hoffmann reflex (Hr), nociceptive flexion reflex (NFR) and homosynaptic depression (HD). All measures were assessed before, immediately, 30 and 60 minutes after the experimental procedures. Our results demonstrated that anodal tsDCS/treadmill exercise reduced MEP's amplitude and NFR's area compared to sham condition, conversely, cathodal tsDCS/treadmill exercise increased NFR's area. High-frequency rTMS increased MEP's amplitude and NFR's area compared to sham condition. Anodal tsDCS/treadmill exercise and 20Hz rTMS/treadmill exercise reduced Hr amplitude up to 30 minutes after stimulation offset and no changes were observed in HD measures. We demonstrated that tsDCS and rTMS combined with treadmill exercise modulated cortical and spinal cord excitability through different mechanisms. tsDCS modulated spinal reflexes in a polarity-dependent way acting at local spinal circuits while rTMS probably promoted changes in the presynaptic inhibition of spinal motoneurons. In addition, the association of two neuromodulatory techniques induced long-lasting changes.
Collapse
Affiliation(s)
- Plínio Luna Albuquerque
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Department of Physical Therapy, Centro Universitário Tabosa de Almeida, Caruaru, Pernambuco, Brazil
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Mayara Campêlo
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Thyciane Mendonça
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Luís Augusto Mendes Fontes
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Rodrigo de Mattos Brito
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Katia Monte-Silva
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
17
|
Bolzoni F, Esposti R, Bruttini C, Zenoni G, Jankowska E, Cavallari P. Direct current stimulation modulates the excitability of the sensory and motor fibres in the human posterior tibial nerve, with a long-lasting effect on the H-reflex. Eur J Neurosci 2017; 46:2499-2506. [PMID: 28892581 DOI: 10.1111/ejn.13696] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023]
Abstract
Several studies demonstrated that transcutaneous direct current stimulation (DCS) may modulate central nervous system excitability. However, much less is known about how DC affects peripheral nerve fibres. We investigated the action of DCS on motor and sensory fibres of the human posterior tibial nerve, with supplementary analysis in acute experiments on rats. In forty human subjects, electric pulses at the popliteal fossa were used to elicit either M-waves or H-reflexes in the Soleus, before (15 min), during (10 min) and after (30 min) DCS. Cathodal or anodal current (2 mA) was applied to the same nerve. Cathodal DCS significantly increased the H-reflex amplitude; the post-polarization effect lasted up to ~ 25 min after the termination of DCS. Anodal DCS instead significantly decreased the reflex amplitude for up to ~ 5 min after DCS end. DCS effects on M-wave showed the same polarity dependence but with considerably shorter after-effects, which never exceeded 5 min. DCS changed the excitability of both motor and sensory fibres. These effects and especially the long-lasting modulation of the H-reflex suggest a possible rehabilitative application of DCS that could be applied either to compensate an altered peripheral excitability or to modulate the afferent transmission to spinal and supraspinal structures. In animal experiments, DCS was applied, under anaesthesia, to either the exposed peroneus nerve or its Dorsal Root, and its effects closely resembled those found in human subjects. They validate therefore the use of the animal models for future investigations on the DCS mechanisms.
Collapse
Affiliation(s)
- Francesco Bolzoni
- Human Physiology Section of the De.P.T., Università degli Studi di Milano, Via Mangiagalli 32, I-20133, Milan, Italy.,Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Roberto Esposti
- Human Physiology Section of the De.P.T., Università degli Studi di Milano, Via Mangiagalli 32, I-20133, Milan, Italy
| | - Carlo Bruttini
- Human Physiology Section of the De.P.T., Università degli Studi di Milano, Via Mangiagalli 32, I-20133, Milan, Italy
| | - Giuseppe Zenoni
- Human Physiology Section of the De.P.T., Università degli Studi di Milano, Via Mangiagalli 32, I-20133, Milan, Italy
| | - Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Paolo Cavallari
- Human Physiology Section of the De.P.T., Università degli Studi di Milano, Via Mangiagalli 32, I-20133, Milan, Italy
| |
Collapse
|
18
|
Dongés SC, Bai S, Taylor JL. Concurrent electrical cervicomedullary stimulation and cervical transcutaneous spinal direct current stimulation result in a stimulus interaction. Exp Physiol 2017; 102:1309-1320. [PMID: 28730695 DOI: 10.1113/ep086360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/03/2017] [Indexed: 01/19/2023]
Abstract
NEW FINDINGS What is the central question of this study? We previously showed that the motor pathway is not modified after cervical transcutaneous spinal direct current stimulation (tsDCS) applied using anterior-posterior electrodes. Here, we examine the motor pathway during stimulation. What is the main finding and its importance? We show that electrically elicited muscle responses to cervicomedullary stimulation are modified during tsDCS, whereas magnetically elicited responses are not. Modelling reveals electrical field modifications during concurrent tsDCS and electrical cervicomedullary stimulation. Changes in muscle response probably result from electrical field modifications rather than physiological changes. Care should be taken when applying electrical stimuli simultaneously. Transcutaneous spinal direct current stimulation (tsDCS) can modulate neuronal excitability within the human spinal cord; however, few studies have used tsDCS at a cervical level. This study aimed to characterize cervical tsDCS further by observing its acute effects on motor responses to transcranial magnetic stimulation and cervicomedullary stimulation. In both studies 1 and 2, participants (study 1, n = 8, four female; and study 2, n = 8, three female) received two periods of 10 min, 3 mA cervical tsDCS on the same day through electrodes placed in an anterior-posterior configuration over the neck; one period with the cathode posterior (c-tsDCS) and the other with the anode posterior (a-tsDCS). In study 1, electrically elicited cervicomedullary motor evoked potentials (eCMEPs) and transcranial magnetic stimulation-elicited motor evoked potentials (MEPs) were measured in biceps brachii and flexor carpi radialis before, during and after each tsDCS period. In study 2, eCMEPs and magnetically elicited CMEPs (mCMEPs) were measured before, during and after each tsDCS period. For study 3, computational modelling was used to observe possible interactions of cervical tsDCS and electrical cervicomedullary stimulation. Studies 1 and 2 revealed that eCMEPs were larger during c-tsDCS and smaller during a-tsDCS compared with those elicited when tsDCS was off (P < 0.05), with no changes in MEPs or mCMEPs. Modelling revealed that eCMEP changes might result from modifications of the electrical field direction and magnitude when combined with cervical tsDCS. Bidirectional eCMEP changes are likely to be caused by an interaction between cervical tsDCS and electrical cervicomedullary stimulation; therefore, care should be taken when combining such electrical stimuli in close proximity.
Collapse
Affiliation(s)
- Siobhan C Dongés
- Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia.,University of New South Wales, Sydney, NSW, 2052, Australia
| | - Siwei Bai
- University of New South Wales, Sydney, NSW, 2052, Australia.,Faculty of Electrical and Computer Engineering, Technical University of Munich, Garching, Germany
| | - Janet L Taylor
- Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia.,University of New South Wales, Sydney, NSW, 2052, Australia.,Edith Cowan University, Joondalup, WA, 6027, Australia
| |
Collapse
|
19
|
Ahmed Z. Effects of cathodal trans-spinal direct current stimulation on lower urinary tract function in normal and spinal cord injury mice with overactive bladder. J Neural Eng 2017; 14:056002. [DOI: 10.1088/1741-2552/aa76f2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Polarity-dependent improvement of maximal-effort sprint cycling performance by direct current stimulation of the central nervous system. Neurosci Lett 2017; 657:97-101. [PMID: 28778807 DOI: 10.1016/j.neulet.2017.07.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 01/26/2023]
Abstract
Sprint motor performance, such as in short-distance running or cycling, gradually decreases after reaching a maximum speed or cadence. This may be attributed to the central nervous system. Brain stimulation studies have recently revealed the plastic nature of the human brain and spinal cord, but it is unclear how direct current stimulation (DCS) affects sprint motor performance. To address this issue, we investigated DCS's effect on healthy volunteers' sprint cycling performance. DCS was applied to the lumbar spinal cord (3mA) or the leg area of the motor cortex (2mA) for 15min with 3 different polarities: anodal, cathodal, and sham. After DCS, the subjects performed maximal-effort sprint cycling for 30s under a constant load. Pooled mean power during the 30s was significantly greater after cathodal transcutaneous spinal DCS to the lumbar spinal cord (tsDCS) than anodal or sham tsDCS. The improvement with cathodal stimulation was notable both 0-5 and 20-25s after the performance onset. There were no significant inter-conditional differences in peak power. Pooled mean power was significantly greater after anodal transcranial DCS to the motor cortex (tDCS) than after cathodal tDCS, although mean powers of anodal and sham tDCS were not significantly different. The increase in mean power after cathodal tsDCS could result from a reduction in central fatigue. This stimulus method might improve sprint performance.
Collapse
|
21
|
Kuck A, Stegeman DF, van Asseldonk EHF. Modeling trans-spinal direct current stimulation for the modulation of the lumbar spinal motor pathways. J Neural Eng 2017. [PMID: 28631619 DOI: 10.1088/1741-2552/aa7960] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Trans-spinal direct current stimulation (tsDCS) is a potential new technique for the treatment of spinal cord injury (SCI). TsDCS aims to facilitate plastic changes in the neural pathways of the spinal cord with a positive effect on SCI recovery. To establish tsDCS as a possible treatment option for SCI, it is essential to gain a better understanding of its cause and effects. We seek to understand the acute effect of tsDCS, including the generated electric field (EF) and its polarization effect on the spinal circuits, to determine a cellular target. We further ask how these findings can be interpreted to explain published experimental results. APPROACH We use a realistic full body finite element volume conductor model to calculate the EF of a 2.5 mA direct current for three different electrode configurations. We apply the calculated electric field to realistic motoneuron models to investigate static changes in membrane resting potential. The results are combined with existing knowledge about the theoretical effect on a neuronal level and implemented into an existing lumbar spinal network model to simulate the resulting changes on a network level. MAIN RESULTS Across electrode configurations, the maximum EF inside the spinal cord ranged from 0.47 V m-1 to 0.82 V m-1. Axon terminal polarization was identified to be the dominant cellular target. Also, differences in electrode placement have a large influence on axon terminal polarization. Comparison between the simulated acute effects and the electrophysiological long-term changes observed in human tsDCS studies suggest an inverse relationship between the two. SIGNIFICANCE We provide methods and knowledge for better understanding the effects of tsDCS and serve as a basis for a more targeted and optimized application of tsDCS.
Collapse
Affiliation(s)
- A Kuck
- University of Twente, Drienerlolaan 5, 7522 NB Enschede, Netherlands
| | | | | |
Collapse
|
22
|
Jankowska E. Spinal control of motor outputs by intrinsic and externally induced electric field potentials. J Neurophysiol 2017; 118:1221-1234. [PMID: 28539396 DOI: 10.1152/jn.00169.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
Despite numerous studies on spinal neuronal systems, several issues regarding their role in motor behavior remain unresolved. One of these issues is how electric fields associated with the activity of spinal neurons influence the operation of spinal neuronal networks and how effects of these field potentials are combined with other means of modulating neuronal activity. Another closely related issue is how external electric field potentials affect spinal neurons and how they can be used for therapeutic purposes such as pain relief or recovery of motor functions by transspinal direct current stimulation. Nevertheless, progress in our understanding of the spinal effects of electric fields and their mechanisms has been made over the last years, and the aim of the present review is to summarize the recent findings in this field.
Collapse
Affiliation(s)
- Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
23
|
Dongés SC, D’Amico JM, Butler JE, Taylor JL. The effects of cervical transcutaneous spinal direct current stimulation on motor pathways supplying the upper limb in humans. PLoS One 2017; 12:e0172333. [PMID: 28225813 PMCID: PMC5321432 DOI: 10.1371/journal.pone.0172333] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 01/08/2017] [Indexed: 12/29/2022] Open
Abstract
Non-invasive, weak direct current stimulation can induce changes in excitability of underlying neural tissue. Many studies have used transcranial direct current stimulation to induce changes in the brain, however more recently a number of studies have used transcutaneous spinal direct current stimulation to induce changes in the spinal cord. This study further characterises the effects following cervical transcutaneous spinal direct current stimulation on motor pathways supplying the upper limb. In Study 1, on two separate days, participants (n = 12, 5 F) received 20 minutes of either real or sham direct current stimulation at 3 mA through electrodes placed in an anterior-posterior configuration over the neck (anode anterior). Biceps brachii, flexor carpi radialis and first dorsal interosseous responses to transcranial magnetic stimulation (motor evoked potentials) and cervicomedullary stimulation (cervicomedullary motor evoked potentials) were measured before and after real or sham stimulation. In Study 2, on two separate days, participants (n = 12, 7 F) received either real or sham direct current stimulation in the same way as for Study 1. Before and after real or sham stimulation, median nerve stimulation elicited M waves and H reflexes in the flexor carpi radialis. H-reflex recruitment curves and homosynaptic depression of the H reflex were assessed. Results show that the effects of real and sham direct current stimulation did not differ for motor evoked potentials or cervicomedullary motor evoked potentials for any muscle, nor for H-reflex recruitment curve parameters or homosynaptic depression. Cervical transcutaneous spinal direct current stimulation with the parameters described here does not modify motor responses to corticospinal stimulation nor does it modify H reflexes of the upper limb. These results are important for the emerging field of transcutaneous spinal direct current stimulation.
Collapse
Affiliation(s)
- Siobhan C. Dongés
- Neuroscience Research Australia, Barker Street, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Jessica M. D’Amico
- Neuroscience Research Australia, Barker Street, Randwick, New South Wales, Australia
| | - Jane E. Butler
- Neuroscience Research Australia, Barker Street, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Janet L. Taylor
- Neuroscience Research Australia, Barker Street, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Samaddar S, Vazquez K, Ponkia D, Toruno P, Sahbani K, Begum S, Abouelela A, Mekhael W, Ahmed Z. Transspinal direct current stimulation modulates migration and proliferation of adult newly born spinal cells in mice. J Appl Physiol (1985) 2017; 122:339-353. [DOI: 10.1152/japplphysiol.00834.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 11/22/2022] Open
Abstract
Direct current electrical fields have been shown to be a major factor in the regulation of cell proliferation, differentiation, migration, and survival, as well as in the maturation of dividing cells during development. During adulthood, spinal cord cells are continuously produced in both animals and humans, and they hold great potential for neural restoration following spinal cord injury. While the effects of direct current electrical fields on adult-born spinal cells cultured ex vivo have recently been reported, the effects of direct current electrical fields on adult-born spinal cells in vivo have not been characterized. Here, we provide convincing findings that a therapeutic form of transspinal direct current stimulation (tsDCS) affects the migration and proliferation of adult-born spinal cells in mice. Specifically, cathodal tsDCS attracted the adult-born spinal cells, while anodal tsDCS repulsed them. In addition, both tsDCS polarities caused a significant increase in cell number. Regarding the potential mechanisms involved, both cathodal and anodal tsDCS caused significant increases in expression of brain-derived neurotrophic factor, while expression of nerve growth factor increased and decreased, respectively. In the spinal cord, both anodal and cathodal tsDCS increased blood flow. Since blood flow and angiogenesis are associated with the proliferation of neural stem cells, increased blood flow may represent a major factor in the modulation of newly born spinal cells by tsDCS. Consequently, we propose that the method and novel findings presented in the current study have the potential to facilitate cellular, molecular, and/or bioengineering strategies to repair injured spinal cords. NEW & NOTEWORTHY Our results indicate that transspinal direct current stimulation (tsDCS) affects the migratory pattern and proliferation of adult newly born spinal cells, a cell population which has been implicated in learning and memory. In addition, our results suggest a potential mechanism of action regarding the functional effects of applying direct current. Thus tsDCS may represent a novel method by which to manipulate the migration and cell number of adult newly born cells and restore functions following brain or spinal cord injury.
Collapse
Affiliation(s)
- Sreyashi Samaddar
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Kizzy Vazquez
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Dipen Ponkia
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Pedro Toruno
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Karim Sahbani
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Sultana Begum
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Ahmed Abouelela
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Wagdy Mekhael
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
- The Graduate Center, The City University of New York, New York, New York
| | - Zaghloul Ahmed
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
- The Graduate Center, The City University of New York, New York, New York
| |
Collapse
|
25
|
Ahmed Z. Modulation of gamma and alpha spinal motor neurons activity by trans-spinal direct current stimulation: effects on reflexive actions and locomotor activity. Physiol Rep 2016; 4:e12696. [PMID: 26869682 PMCID: PMC4758926 DOI: 10.14814/phy2.12696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/24/2022] Open
Abstract
Spontaneous and evoked spinal activities interact to set the characteristics of emergent motor responses. Gamma motor neurons have feedforward and feedback functions in motor control, which are crucial for transforming motor commands into action. Meanwhile, the intrinsic excitability and functional connectivity of alpha motor neurons determine the accuracy of actions. In this study, we investigated the effects of trans-spinal direct current stimulation (tsDCS) on spontaneous and cortically evoked activity of well-isolated single units of gamma and alpha motor neurons in mice. We also investigated the effects of tsDCS on reflexive and locomotor actions. In general, motor neurons showed increased responses to cathodal tsDCS (c-tsDCS) and decreased responses to anodal tsDCS (a-tsDCS). These effects were observed for cortically evoked discharges and spontaneous firing rates of gamma motor neurons, cortically evoked discharges of larger alpha motor neurons, and spontaneous firing rates of smaller alpha motor neurons. An exception was that spontaneous firing rates of larger alpha motor neurons showed the opposite pattern of reduction by c-tsDCS and increase by a-tsDCS. Reflexive and voluntary behavior were also increased by c-tsDCS and reduced by a-tsDCS. Specifically, the amplitude and duration of crossed and tail pinch reflexes in decerebrate animals and the quality of ground and treadmill walking patterns in healthy awake animals showed this pattern. These polarity-specific changes in behavior could be attributed to polarity-mediated modulation of alpha and gamma motor neuron activity and spinal circuitry. The results reveal an important principle: effects of tsDCS on spinal motor neurons depend on current polarity and cell size.
Collapse
Affiliation(s)
- Zaghloul Ahmed
- Department of Physical Therapy, College of Staten Island for Developmental Neuroscience, The College of Staten Island, Staten Island, New York Graduate Center/The City University of New York, New York, New York
| |
Collapse
|
26
|
Bocci T, Caleo M, Vannini B, Vergari M, Cogiamanian F, Rossi S, Priori A, Sartucci F. An unexpected target of spinal direct current stimulation: Interhemispheric connectivity in humans. J Neurosci Methods 2015. [DOI: 10.1016/j.jneumeth.2015.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Nardone R, Höller Y, Taylor A, Thomschewski A, Orioli A, Frey V, Trinka E, Brigo F. Noninvasive Spinal Cord Stimulation: Technical Aspects and Therapeutic Applications. Neuromodulation 2015; 18:580-91; discussion 590-1. [DOI: 10.1111/ner.12332] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/23/2015] [Accepted: 06/03/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Raffaele Nardone
- Department of Neurology; Christian Doppler Klinik, Paracelsus Medical University and Centre for Cognitive Neuroscience; Salzburg Austria
- Department of Neurology; Franz Tappeiner Hospital; Merano Italy
- Spinal Cord Injury and Tissue Regeneration Center; Paracelsus Medical University; Salzburg Austria
| | - Yvonne Höller
- Department of Neurology; Christian Doppler Klinik, Paracelsus Medical University and Centre for Cognitive Neuroscience; Salzburg Austria
- Spinal Cord Injury and Tissue Regeneration Center; Paracelsus Medical University; Salzburg Austria
| | - Alexandra Taylor
- Department of Neurology; Christian Doppler Klinik, Paracelsus Medical University and Centre for Cognitive Neuroscience; Salzburg Austria
- Spinal Cord Injury and Tissue Regeneration Center; Paracelsus Medical University; Salzburg Austria
| | - Aljoscha Thomschewski
- Department of Neurology; Christian Doppler Klinik, Paracelsus Medical University and Centre for Cognitive Neuroscience; Salzburg Austria
- Spinal Cord Injury and Tissue Regeneration Center; Paracelsus Medical University; Salzburg Austria
| | - Andrea Orioli
- Department of Neurology; Franz Tappeiner Hospital; Merano Italy
| | - Vanessa Frey
- Department of Neurology; Christian Doppler Klinik, Paracelsus Medical University and Centre for Cognitive Neuroscience; Salzburg Austria
- Spinal Cord Injury and Tissue Regeneration Center; Paracelsus Medical University; Salzburg Austria
| | - Eugen Trinka
- Department of Neurology; Christian Doppler Klinik, Paracelsus Medical University and Centre for Cognitive Neuroscience; Salzburg Austria
- Spinal Cord Injury and Tissue Regeneration Center; Paracelsus Medical University; Salzburg Austria
| | - Francesco Brigo
- Department of Neurology; Franz Tappeiner Hospital; Merano Italy
- Department of Neurological and Movement Sciences. Section of Clinical Neurology; University of Verona; Verona Italy
| |
Collapse
|
28
|
Bocci T, Marceglia S, Vergari M, Cognetto V, Cogiamanian F, Sartucci F, Priori A. Transcutaneous spinal direct current stimulation modulates human corticospinal system excitability. J Neurophysiol 2015; 114:440-6. [PMID: 25925328 DOI: 10.1152/jn.00490.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 04/24/2015] [Indexed: 12/14/2022] Open
Abstract
This study aimed to assess the effects of thoracic anodal and cathodal transcutaneous spinal direct current stimulation (tsDCS) on upper and lower limb corticospinal excitability. Although there have been studies assessing how thoracic tsDCS influences the spinal ascending tract and reflexes, none has assessed the effects of this technique over upper and lower limb corticomotor neuronal connections. In 14 healthy subjects we recorded motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) from abductor hallucis (AH) and hand abductor digiti minimi (ADM) muscles before (baseline) and at different time points (0 and 30 min) after anodal or cathodal tsDCS (2.5 mA, 20 min, T9-T11 level). In 8 of the 14 subjects we also tested the soleus H reflex and the F waves from AH and ADM before and after tsDCS. Both anodal and cathodal tsDCS left the upper limb MEPs and F wave unchanged. Conversely, while leaving lower limb H reflex unchanged, they oppositely affected lower limb MEPs: whereas anodal tsDCS increased resting motor threshold [(mean ± SE) 107.33 ± 3.3% increase immediately after tsDCS and 108.37 ± 3.2% increase 30 min after tsDCS compared with baseline] and had no effects on MEP area and latency, cathodal tsDCS increased MEP area (139.71 ± 12.9% increase immediately after tsDCS and 132.74 ± 22.0% increase 30 min after tsDCS compared with baseline) without affecting resting motor threshold and MEP latency. Our results show that tsDCS induces polarity-specific changes in corticospinal excitability that last for >30 min after tsDCS offset and selectively affect responses in lower limb muscles innervated by lumbar and sacral motor neurons.
Collapse
Affiliation(s)
- Tommaso Bocci
- Fondazione IRCCS "Ca' Granda" Ospedale Maggiore di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milan, Italy; Unità Operativa di Neurologia, Dipartimento di Neuroscienze, Università di Pisa, Pisa, Italy
| | - Sara Marceglia
- Fondazione IRCCS "Ca' Granda" Ospedale Maggiore di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milan, Italy; Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Trieste, Italy; and
| | - Maurizio Vergari
- Fondazione IRCCS "Ca' Granda" Ospedale Maggiore di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milan, Italy
| | - Valeria Cognetto
- Fondazione IRCCS "Ca' Granda" Ospedale Maggiore di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milan, Italy
| | - Filippo Cogiamanian
- Fondazione IRCCS "Ca' Granda" Ospedale Maggiore di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milan, Italy
| | - Ferdinando Sartucci
- Unità Operativa di Neurologia, Dipartimento di Neuroscienze, Università di Pisa, Pisa, Italy; Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Alberto Priori
- Fondazione IRCCS "Ca' Granda" Ospedale Maggiore di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milan, Italy;
| |
Collapse
|
29
|
Bocci T, Barloscio D, Vergari M, Di Rollo A, Rossi S, Priori A, Sartucci F. Spinal Direct Current Stimulation Modulates Short Intracortical Inhibition. Neuromodulation 2015; 18:686-93. [DOI: 10.1111/ner.12298] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/09/2015] [Accepted: 02/25/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Tommaso Bocci
- Department of Clinical and Experimental Medicine, Unit of Neurology; Pisa University Medical School; Pisa Italy
- Department of Neurological and Neurosensorial Sciences, Neurology and Clinical Neurophysiology Section, Brain Investigation and Neuromodulation Lab.; Azienda Ospedaliera Universitaria Senese; Siena Italy
| | - Davide Barloscio
- Department of Clinical and Experimental Medicine, Unit of Neurology; Pisa University Medical School; Pisa Italy
| | - Maurizio Vergari
- Department of Neurological Sciences; University of Milan, Fondazione IRCCS Ospedale Maggiore Policlinico; Milan Italy
| | - Andrea Di Rollo
- Department of Clinical and Experimental Medicine, Cisanello Neurology Unit; Azienda Ospedaliera Universitaria Pisana; Pisa Italy
| | - Simone Rossi
- Department of Neurological and Neurosensorial Sciences, Neurology and Clinical Neurophysiology Section, Brain Investigation and Neuromodulation Lab.; Azienda Ospedaliera Universitaria Senese; Siena Italy
| | - Alberto Priori
- Department of Neurological Sciences; University of Milan, Fondazione IRCCS Ospedale Maggiore Policlinico; Milan Italy
| | - Ferdinando Sartucci
- Department of Clinical and Experimental Medicine, Unit of Neurology; Pisa University Medical School; Pisa Italy
- Department of Clinical and Experimental Medicine, Cisanello Neurology Unit; Azienda Ospedaliera Universitaria Pisana; Pisa Italy
- CNR Neuroscience Institute; Pisa Italy
| |
Collapse
|
30
|
Song W, Truong DQ, Bikson M, Martin JH. Transspinal direct current stimulation immediately modifies motor cortex sensorimotor maps. J Neurophysiol 2015; 113:2801-11. [PMID: 25673738 DOI: 10.1152/jn.00784.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/06/2015] [Indexed: 01/16/2023] Open
Abstract
Motor cortex (MCX) motor representation reorganization occurs after injury, learning, and different long-term stimulation paradigms. The neuromodulatory approach of transspinal direct current stimulation (tsDCS) has been used to promote evoked cortical motor responses. In the present study, we used cathodal tsDCS (c-tsDCS) of the rat cervical cord to determine if spinal cord activation can modify the MCX forelimb motor map. We used a finite-element method model based on coregistered high-resolution rat MRI and microcomputed tomography imaging data to predict spinal current density to target stimulation to the caudal cervical enlargement. We examined the effects of cathodal and anodal tsDCS on the H-reflex and c-tsDCS on responses evoked by intracortical microstimulation (ICMS). To determine if cervical c-tsDCS also modified MCX somatic sensory processing, we examined sensory evoked potentials (SEPs) produced by wrist electrical stimulation and induced changes in ongoing activity. Cervical c-tsDCS enhanced the H-reflex, and anodal depressed the H-reflex. Using cathodal stimulation to examine cortical effects, we found that cervical c-tsDCS immediately modified the forelimb MCX motor map, with decreased thresholds and an expanded area. c-tsDCS also increased SEP amplitude in the MCX. The magnitude of changes produced by c-tsDCS were greater on the motor than sensory response. Cervical c-tsDCS more strongly enhanced forelimb than hindlimb motor representation and had no effect on vibrissal representation. The finite-element model indicated current density localized to caudal cervical segments, informing forelimb motor selectivity. Our results suggest that c-tsDCS augments spinal excitability in a spatially selective manner and may improve voluntary motor function through MCX representational plasticity.
Collapse
Affiliation(s)
- Weiguo Song
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York, New York, New York
| | - Dennis Q Truong
- Department of Biomedical Engineering, City College of the City University of New York, New York, New York; and
| | - Marom Bikson
- Department of Biomedical Engineering, City College of the City University of New York, New York, New York; and
| | - John H Martin
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York, New York, New York; Graduate Center of the City University of New York, New York, New York
| |
Collapse
|
31
|
Does trans-spinal direct current stimulation alter phrenic motoneurons and respiratory neuromechanical outputs in humans? A double-blind, sham-controlled, randomized, crossover study. J Neurosci 2015; 34:14420-9. [PMID: 25339753 DOI: 10.1523/jneurosci.1288-14.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although compelling evidence has demonstrated considerable neuroplasticity in the respiratory control system, few studies have explored the possibility of altering descending projections to phrenic motoneurons (PMNs) using noninvasive stimulation protocols. The present study was designed to investigate the immediate and long-lasting effects of a single session of transcutaneous spinal direct current stimulation (tsDCS), a promising technique for modulating spinal cord functions, on descending ventilatory commands in healthy humans. Using a double-blind, controlled, randomized, crossover approach, we examined the effects of anodal, cathodal, and sham tsDCS delivered to the C3-C5 level on (1) diaphragm motor-evoked potentials (DiMEPs) elicited by transcranial magnetic stimulation and (2) spontaneous ventilation, as measured by respiratory inductance plethysmography. Both anodal and cathodal tsDCS induced a progressive increase in DiMEP amplitude during stimulation that persisted for at least 15 min after current offset. Interestingly, cathodal, but not anodal, tsDCS induced a persistent increase in tidal volume. In addition, (1) short-interval intracortical inhibition, (2) nonlinear complexity of the tidal volume signal (related to medullary ventilatory command), (3) autonomic function, and (4) compound muscle action potentials evoked by cervical magnetic stimulation were unaffected by tsDCS. This suggests that tsDCS-induced aftereffects did not occur at brainstem or cortical levels and were likely not attributable to direct polarization of cranial nerves or ventral roots. Instead, we argue that tsDCS could induce sustained changes in PMN output. Increased tidal volume after cathodal tsDCS opens up the perspective of harnessing respiratory neuroplasticity as a therapeutic tool for the management of several respiratory disorders.
Collapse
|
32
|
Bolzoni F, Jankowska E. Presynaptic and postsynaptic effects of local cathodal DC polarization within the spinal cord in anaesthetized animal preparations. J Physiol 2014; 593:947-66. [PMID: 25416625 DOI: 10.1113/jphysiol.2014.285940] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/11/2014] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Trans-spinal DC stimulation affects both postsynaptic neurons and the presynaptic axons providing input to these neurons. In the present study, we show that intraspinally applied cathodal current replicates the effects of trans-spinal direct current stimulation in deeply anaesthetized animals and affects spinal neurons both during the actual current application and during a post-polarization period. Presynaptic effects of local cathodal polarization were expressed in an increase in the excitability of skin afferents (in the dorsal horn) and group Ia afferents (in motor nuclei), both during and at least 30 min after DC application. However, although the postsynaptic facilitation (i.e. more effective) activation of motoneurons by stimuli applied in a motor nucleus was very potent during local DC application, it was only negligible once DC was discontinued. The results suggest that the prolonged effects of cathodal polarization are primarily associated with changes in synaptic transmission. ABSTRACT The present study aimed to compare presynaptic and postsynaptic actions of direct current polarization in the spinal cord, focusing on DC effects on primary afferents and motoneurons. To reduce the directly affected spinal cord region, a weak polarizing direct current (0.1-0.3 μA) was applied locally in deeply anaesthetized cats and rats; within the hindlimb motor nuclei in the caudal lumbar segments, or in the dorsal horn within the terminal projection area of low threshold skin afferents. Changes in the excitability of primary afferents activated by intraspinal stimuli (20-50 μA) were estimated using increases or decreases in compound action potentials recorded from the dorsal roots or peripheral nerves as their measure. Changes in the postsynaptic actions of the afferents were assessed from intracellularly recorded monosynaptic EPSPs in hindlimb motoneurons and monosynaptic extracellular field potentials (evoked by group Ia afferents in motor nuclei, or by low threshold cutaneous afferents in the dorsal horn). The excitability of motoneurons activated by intraspinal stimuli was assessed using intracellular records or motoneuronal discharges recorded from a ventral root or a muscle nerve. Cathodal polarization was found to affect motoneurons and afferents providing input to them to a different extent. The excitability of both was markedly increased during DC application, although post-polarization facilitation was found to involve presynaptic afferents and some of their postsynaptic actions, but only negligibly motoneurons themselves. Taken together, these results indicate that long-lasting post-polarization facilitation of spinal activity induced by locally applied cathodal current primarily reflects the facilitation of synaptic transmission.
Collapse
Affiliation(s)
- F Bolzoni
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Human Physiology Section of the DEPT, Università degli Studi di Milano, Milano, Italy
| | | |
Collapse
|
33
|
Budri M, Lodi E, Franchi G. Sensorimotor restriction affects complex movement topography and reachable space in the rat motor cortex. Front Syst Neurosci 2014; 8:231. [PMID: 25565987 PMCID: PMC4264501 DOI: 10.3389/fnsys.2014.00231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/19/2014] [Indexed: 11/25/2022] Open
Abstract
Long-duration intracortical microstimulation (ICMS) studies with 500 ms of current pulses suggest that the forelimb area of the motor cortex is organized into several spatially distinct functional zones that organize movements into complex sequences. Here we studied how sensorimotor restriction modifies the extent of functional zones, complex movements, and reachable space representation in the rat forelimb M1. Sensorimotor restriction was achieved by means of whole-forelimb casting of 30 days duration. Long-duration ICMS was carried out 12 h and 14 days after cast removal. Evoked movements were measured using a high-resolution 3D optical system. Long-term cast caused: (i) a reduction in the number of sites where complex forelimb movement could be evoked; (ii) a shrinkage of functional zones but no change in their center of gravity; (iii) a reduction in movement with proximal/distal coactivation; (iv) a reduction in maximal velocity, trajectory and vector length of movement, but no changes in latency or duration; (v) a large restriction of reachable space. Fourteen days of forelimb freedom after casting caused: (i) a recovery of the number of sites where complex forelimb movement could be evoked; (ii) a recovery of functional zone extent and movement with proximal/distal coactivation; (iii) an increase in movement kinematics, but only partial restoration of control rat values; (iv) a slight increase in reachability parameters, but these remained far below baseline values. We pose the hypothesis that specific aspects of complex movement may be stored within parallel motor cortex re-entrant systems.
Collapse
Affiliation(s)
- Mirco Budri
- Section of Human Physiology, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara Ferrara, Italy
| | - Enrico Lodi
- Section of Human Physiology, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara Ferrara, Italy
| | - Gianfranco Franchi
- Section of Human Physiology, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara Ferrara, Italy
| |
Collapse
|
34
|
Modeling the current density generated by transcutaneous spinal direct current stimulation (tsDCS). Clin Neurophysiol 2014; 125:2260-2270. [DOI: 10.1016/j.clinph.2014.02.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/20/2014] [Accepted: 02/24/2014] [Indexed: 12/25/2022]
|
35
|
Ahmed Z. Trans-spinal direct current stimulation modifies spinal cord excitability through synaptic and axonal mechanisms. Physiol Rep 2014; 2:2/9/e12157. [PMID: 25263206 PMCID: PMC4270225 DOI: 10.14814/phy2.12157] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The spinal cord is extremely complex. Therefore, trans‐spinal direct current stimulation (tsDCS) is expected to produce a multitude of neurophysiological changes. Here, we asked how tsDCS differentially affects synaptic and nonsynaptic transmission. We investigated the effects of tsDCS on synaptically mediated responses by stimulating the medullary longitudinal fascicle and recording responses in the sciatic nerve and triceps and tibialis anterior muscles. Response amplitude was increased during cathodal‐tsDCS (c‐tsDCS), but reduced during anodal‐tsDCS (a‐tsDCS). After‐effects were dependent on the frequency of the test stimulation. c‐tsDCS‐reduced responses evoked by low‐frequency (0.5 Hz) test stimulation and increased responses evoked by high‐frequency (400 Hz) test stimulation. a‐tsDCS had opposite effects. During and after c‐tsDCS, excitability of the lateral funiculus tract (LFT) and dorsal root fibers was increased. However, a‐tsDCS caused a complex response, reducing the excitability of LFT and increasing dorsal root fiber responses. Local DC application on the sciatic nerve showed that the effects of DC on axonal excitability were dependent on polarity, duration of stimulation, temporal profile (during vs. after stimulation), orientation of the current direction relative to the axon and relative to the direction of action potential propagation, distance from the DC electrode, and the local environment of the nervous tissue. Collectively, these results indicate that synaptic as well as axonal mechanisms might play a role in tsDCS‐induced effects. Therefore, this study identified many factors that should be considered in interpreting results of DCS and in designing tsDCS‐based interventions. There are two plastic mechanisms operating in different regions in the nervous system: synaptic‐mediated mechanisms and intrinsic excitability mechanisms. This study indicates that direct current stimulation affects both synaptic and intrinsic mechanisms of plasticity.
Collapse
Affiliation(s)
- Zaghloul Ahmed
- Department of Physical Therapy, College of Staten Island for Developmental Neuroscience, the College of Staten Island, Staten IslandNew York, New York Graduate Center/The City University of New York, New York, New York
| |
Collapse
|
36
|
Priori A, Ciocca M, Parazzini M, Vergari M, Ferrucci R. Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists. J Physiol 2014; 592:3345-69. [PMID: 24907311 PMCID: PMC4229333 DOI: 10.1113/jphysiol.2013.270280] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/30/2014] [Indexed: 12/26/2022] Open
Abstract
Two neuromodulatory techniques based on applying direct current (DC) non-invasively through the skin, transcranial cerebellar direct current stimulation (tDCS) and transcutaneous spinal DCS, can induce prolonged functional changes consistent with a direct influence on the human cerebellum and spinal cord. In this article we review the major experimental works on cerebellar tDCS and on spinal tDCS, and their preliminary clinical applications. Cerebellar tDCS modulates cerebellar motor cortical inhibition, gait adaptation, motor behaviour, and cognition (learning, language, memory, attention). Spinal tDCS influences the ascending and descending spinal pathways, and spinal reflex excitability. In the anaesthetised mouse, DC stimulation applied under the skin along the entire spinal cord may affect GABAergic and glutamatergic systems. Preliminary clinical studies in patients with cerebellar disorders, and in animals and patients with spinal cord injuries, have reported beneficial effects. Overall the available data show that cerebellar tDCS and spinal tDCS are two novel approaches for inducing prolonged functional changes and neuroplasticity in the human cerebellum and spinal cord, and both are new tools for experimental and clinical neuroscientists.
Collapse
Affiliation(s)
- Alberto Priori
- Centro Clinico per la Neurostimolazione, le Neurotecnologie e i Disordini del Movimento, Fondazione IRCCS Ca' Granda, Milan, Italy Dipartimento di Fisiopatologia Medico Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Matteo Ciocca
- Centro Clinico per la Neurostimolazione, le Neurotecnologie e i Disordini del Movimento, Fondazione IRCCS Ca' Granda, Milan, Italy Dipartimento di Fisiopatologia Medico Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Marta Parazzini
- Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni, Milan, Italy
| | - Maurizio Vergari
- Centro Clinico per la Neurostimolazione, le Neurotecnologie e i Disordini del Movimento, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Roberta Ferrucci
- Centro Clinico per la Neurostimolazione, le Neurotecnologie e i Disordini del Movimento, Fondazione IRCCS Ca' Granda, Milan, Italy Dipartimento di Fisiopatologia Medico Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
37
|
Bocci T, Vannini B, Torzini A, Mazzatenta A, Vergari M, Cogiamanian F, Priori A, Sartucci F. Cathodal transcutaneous spinal direct current stimulation (tsDCS) improves motor unit recruitment in healthy subjects. Neurosci Lett 2014; 578:75-9. [DOI: 10.1016/j.neulet.2014.06.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/23/2014] [Accepted: 06/17/2014] [Indexed: 12/14/2022]
|
38
|
Trans-spinal direct current stimulation alters muscle tone in mice with and without spinal cord injury with spasticity. J Neurosci 2014; 34:1701-9. [PMID: 24478352 DOI: 10.1523/jneurosci.4445-13.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Muscle tone abnormalities are associated with many CNS pathologies and severely limit recovery of motor control. Muscle tone depends on the level of excitability of spinal motoneurons and interneurons. The present study investigated the following hypotheses: (1) direct current flowing from spinal cord to sciatic nerve [spinal-to-sciatic direct current stimulation (DCS)] would inhibit spinal motor neurons and interneurons, hence reducing muscle tone; and (2) direct current flowing in the opposite direction (sciatic-to-spinal DCS) would excite spinal motor neurons and interneurons, hence increasing muscle tone. Current intensity was biased to be ~170 times greater at the spinal column than at the sciatic nerve. The results showed marked effects of DCS on muscle tone. In controls and mice with spinal cord injuries with spasticity, spinal-to-sciatic DCS reduced transit and steady stretch-induced nerve and muscle responses. Sciatic-to-spinal DCS caused opposite effects. These findings provide the first direct evidence that trans-spinal DCS can alter muscle tone and suggest that this approach could be used to reduce both hypotonia and hypertonia.
Collapse
|