1
|
Coppi S, Jensen KB, Ehrsson HH. Eliciting the rubber hand illusion by the activation of nociceptive C and Aδ fibers. Pain 2024; 165:2240-2256. [PMID: 38787634 PMCID: PMC11404332 DOI: 10.1097/j.pain.0000000000003245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/12/2024] [Indexed: 05/26/2024]
Abstract
ABSTRACT The coherent perceptual experience of one's own body depends on the processing and integration of signals from multiple sensory modalities, including vision, touch, and proprioception. Although nociception provides critical information about damage to the tissues of one's body, little is known about how nociception contributes to own-body perception. A classic experimental approach to investigate the perceptual and neural mechanisms involved in the multisensory experience of one's own body is the rubber hand illusion (RHI). During the RHI, people experience a rubber hand as part of their own body (sense of body ownership) caused by synchronized stroking of the rubber hand in the participant's view and the hidden participant's real hand. We examined whether the RHI can be elicited by visual and "pure" nociceptive stimulation, ie, without tactile costimulation, and if so, whether it follows the basic perceptual rules of the illusion. In 6 separate experiments involving a total of 180 healthy participants, we used a Nd:YAP laser stimulator to specifically target C and Aδ fibers in the skin and compared the illusion condition (congruent visuonociceptive stimulation) to control conditions of incongruent visuonociceptive, incongruent visuoproprioceptive, and no nociceptive stimulation. The illusion was quantified through direct (questionnaire) and indirect (proprioceptive drift) behavioral measures. We found that a nociceptive rubber hand illusion (N-RHI) could be elicited and that depended on the spatiotemporal congruence of visuonociceptive signals, consistent with basic principles of multisensory integration. Our results suggest that nociceptive information shapes multisensory bodily awareness and contributes to the sense of body ownership.
Collapse
Affiliation(s)
| | - Karin B Jensen
- Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
2
|
Jiang Y, Yu M, Gong X, Zhao Y, Gao X. Association of night-time sleep and daytime napping with painful temporomandibular disorder. J Oral Rehabil 2024; 51:1981-1988. [PMID: 38894533 DOI: 10.1111/joor.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Painful temporomandibular disorder (TMD) is the common cause of chronic oro-facial pain, which may interfere with sleep. Previous studies have documented an association between sleep and TMD. OBJECTIVES This study aimed to further explore the association of night-time sleep and daytime napping with painful TMD. METHODS A total of 419 patients (aged 31.88 ± 11.54 years with women forming 85.4%) from a TMD/Orofacial Pain center were enrolled. Patients' sleep conditions were evaluated with the Pittsburgh Sleep Quality Index (PSQI) questionnaire, and information on night-time sleep duration, napping duration and napping frequency was interviewed. TMD was diagnosed according to the Diagnostic Criteria for TMD protocol and stratified into myalgia (muscle pain), arthralgia (joint pain) and combined (muscle and joint pain) subgroups. The severity of TMD was measured with the Fonseca Anamnestic Index (FAI) questionnaire. Restricted cubic spline (RCS) regression models were established to explore relationships between sleep and painful TMD subgroups. RESULTS Patients with poor sleep quality (PSQI≥6) had higher FAI scores (median 60, p < .001) and higher proportions of painful TMDs. The myalgia subgroup had higher PSQI scores (median 8, p < .001) than the arthralgia subgroup. The RCS models indicated a non-linear relationship between night-time sleep duration and myalgia (p < .001), which was not observed in arthralgia. However, there were no significant findings concerning napping and painful TMD subgroups. CONCLUSION This study found that the association between sleep and TMD is mainly related to painful TMD conditions, which are associated with night-time sleep duration.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- Center for Oral Therapy of Sleep Disordered Breathing, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
| | - Min Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- Center for Oral Therapy of Sleep Disordered Breathing, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
| | - Xu Gong
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- Center for Oral Therapy of Sleep Disordered Breathing, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
| | - Yanping Zhao
- National Center for Stomatology, Beijing, China
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology, Beijing, China
- Center for Temporomandibular Disorders and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuemei Gao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- Center for Oral Therapy of Sleep Disordered Breathing, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
| |
Collapse
|
3
|
Picchioni D, Yang FN, de Zwart JA, Wang Y, Mandelkow H, Özbay PS, Chen G, Taylor PA, Lam N, Chappel-Farley MG, Chang C, Liu J, van Gelderen P, Duyn JH. Sleep defined by arousal threshold reveals decreases in corticocortical functional correlations independently from the conventional sleep stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607376. [PMID: 39149368 PMCID: PMC11326234 DOI: 10.1101/2024.08.09.607376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Sleep research and sleep medicine have benefited from the use of polysomnography but have also suffered from an overreliance on the conventional, polysomnography-defined sleep stages. For example, reports of sleep-specific brain activity patterns have, with few exceptions, been constrained by assessing brain function as it relates to the conventional sleep stages. This limits the variety of sleep states and underlying activity patterns that one can discover. If undiscovered brain activity patterns exist during sleep, then removing the constraint of a stage-specific analysis may uncover them. The current study used all-night functional magnetic resonance imaging sleep data and defined sleep behaviorally with auditory arousal threshold (AAT) to begin to search for new brain states. It was hypothesized that, during sleep compared to wakefulness, corticocortical functional correlations would decrease. Functional correlation values calculated in a window immediately before the determination of AAT were entered into a linear mixed effects model, allowing multiple arousals across the night per subject into the analysis. The hypothesis was supported using both correlation matrices of brain networks and single seed-region analyses showing whole-brain maps. This represents a novel approach to studying the neuroanatomical correlates of sleep with high spatial resolution by defining sleep in a way that was independent from the conventional sleep stages. This work provides initial evidence to justify searching for sleep stages that are more neuroanatomically localized and unrelated to the conventional sleep stages.
Collapse
Affiliation(s)
- Dante Picchioni
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Fan Nils Yang
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Jacco A. de Zwart
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Yicun Wang
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Department of Radiology, Stony Brook University, USA
| | - Hendrik Mandelkow
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Artificial Intelligence for Image-Guided Therapy, Koninklijke Philips NV, Netherlands
| | - Pinar S. Özbay
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Institute of Biomedical Engineering, Boğaziçi University, Turkey
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, USA
| | - Paul A. Taylor
- Scientific and Statistical Computing Core, National Institute of Mental Health, USA
| | - Niki Lam
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- School of Medicine and Dentistry, University of Rochester, USA
| | - Miranda G. Chappel-Farley
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Center for Sleep and Circadian Science, University of Pittsburgh, USA
| | - Catie Chang
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Departments of Electrical Engineering and Computer Science, Vanderbilt University, USA
| | - Jiaen Liu
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, USA
| | - Peter van Gelderen
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Jeff H. Duyn
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| |
Collapse
|
4
|
Ruby P, Evangelista E, Bastuji H, Peter-Derex L. From physiological awakening to pathological sleep inertia: Neurophysiological and behavioural characteristics of the sleep-to-wake transition. Neurophysiol Clin 2024; 54:102934. [PMID: 38394921 DOI: 10.1016/j.neucli.2023.102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 02/25/2024] Open
Abstract
Sleep inertia refers to the transient physiological state of hypoarousal upon awakening, associated with various degrees of impaired neurobehavioral performance, confusion, a desire to return to sleep and often a negative emotional state. Scalp and intracranial electro-encephalography as well as functional imaging studies have provided evidence that the sleep inertia phenomenon is underpinned by an heterogenous cerebral state mixing local sleep and local wake patterns of activity, at the neuronal and network levels. Sleep inertia is modulated by homeostasis and circadian processes, sleep stage upon awakening, and individual factors; this translates into a huge variability in its intensity even under physiological conditions. In sleep disorders, especially in hypersomnolence disorders such as idiopathic hypersomnia, sleep inertia may be a daily, serious and long-lasting symptom leading to severe impairment. To date, few tools have been developed to assess sleep inertia in clinical practice. They include mainly questionnaires and behavioral tests such as the psychomotor vigilance task. Only one neurophysiological protocol has been evaluated in hypersomnia, the forced awakening test which is based on an event-related potentials paradigm upon awakening. This contrasts with the major functional consequences of sleep inertia and its potentially dangerous consequences in subjects required to perform safety-critical tasks soon after awakening. There is a great need to identify reproducible biomarkers correlated with sleep inertia-associated cognitive and behavioral impairment. These biomarkers will aim at better understanding and measuring sleep inertia in physiological and pathological conditions, as well as objectively evaluating wake-promoting treatments or non-pharmacological countermeasures to reduce this phenomenon.
Collapse
Affiliation(s)
- Perrine Ruby
- Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR 5292, Lyon, France
| | - Elisa Evangelista
- Sleep disorder Unit, Carémeau Hospital, Centre Hospitalo-universitaire de Nîmes, France; Institute for Neurosciences of Montpellier INM, Univ Montpellier, INSERM, Montpellier, France
| | - Hélène Bastuji
- Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR 5292, Lyon, France; Centre for Sleep Medicine and Respiratory Diseases, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon 1 University, Lyon, France
| | - Laure Peter-Derex
- Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR 5292, Lyon, France; Centre for Sleep Medicine and Respiratory Diseases, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon 1 University, Lyon, France.
| |
Collapse
|
5
|
Bastuji H, Cadic-Melchior A, Ruelle-Le Glaunec L, Magnin M, Garcia-Larrea L. Functional connectivity between medial pulvinar and cortical networks as a predictor of arousal to noxious stimuli during sleep. Eur J Neurosci 2024; 59:570-583. [PMID: 36889675 DOI: 10.1111/ejn.15958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023]
Abstract
The interruption of sleep by a nociceptive stimulus is favoured by an increase in the pre-stimulus functional connectivity between sensory and higher level cortical areas. In addition, stimuli inducing arousal also trigger a widespread electroencephalographic (EEG) response reflecting the coordinated activation of a large cortical network. Because functional connectivity between distant cortical areas is thought to be underpinned by trans-thalamic connections involving associative thalamic nuclei, we investigated the possible involvement of one principal associative thalamic nucleus, the medial pulvinar (PuM), in the sleeper's responsiveness to nociceptive stimuli. Intra-cortical and intra-thalamic signals were analysed in 440 intracranial electroencephalographic (iEEG) segments during nocturnal sleep in eight epileptic patients receiving laser nociceptive stimuli. The spectral coherence between the PuM and 10 cortical regions grouped in networks was computed during 5 s before and 1 s after the nociceptive stimulus and contrasted according to the presence or absence of an arousal EEG response. Pre- and post-stimulus phase coherence between the PuM and all cortical networks was significantly increased in instances of arousal, both during N2 and paradoxical (rapid eye movement [REM]) sleep. Thalamo-cortical enhancement in coherence involved both sensory and higher level cortical networks and predominated in the pre-stimulus period. The association between pre-stimulus widespread increase in thalamo-cortical coherence and subsequent arousal suggests that the probability of sleep interruption by a noxious stimulus increases when it occurs during phases of enhanced trans-thalamic transfer of information between cortical areas.
Collapse
Affiliation(s)
- Hélène Bastuji
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
- Centre du Sommeil, Hospices Civils de Lyon, Bron, France
| | - Andéol Cadic-Melchior
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
| | - Lucien Ruelle-Le Glaunec
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
| | - Michel Magnin
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
| | - Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
- Centre d'évaluation et de traitement de la douleur, Hôpital Neurologique, Lyon, France
| |
Collapse
|
6
|
Fauchon C, Bastuji H, Peyron R, Garcia-Larrea L. Fractal Similarity of Pain Brain Networks. ADVANCES IN NEUROBIOLOGY 2024; 36:639-657. [PMID: 38468056 DOI: 10.1007/978-3-031-47606-8_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The conscious perception of pain is the result of dynamic interactions of neural activities from local brain regions to distributed brain networks. Mapping out the networks of functional connections between brain regions that form and disperse when an experimental participant received nociceptive stimulations allow to characterize the pattern of network connections related to the pain experience.Although the pattern of intra- and inter-areal connections across the brain are incredibly complex, they appear also largely scale free, with "fractal" connectivity properties reproducing at short and long-time scales. Our results combining intracranial recordings and functional imaging in humans during pain indicate striking similarities in the activity and topological representation of networks at different orders of temporality, with reproduction of patterns of activation from the millisecond to the multisecond range. The connectivity analyzed using graph theory on fMRI data was organized in four sets of brain regions matching those identified through iEEG (i.e., sensorimotor, default mode, central executive, and amygdalo-hippocampal).Here, we discuss similarities in brain network organization at different scales or "orders," in participants as they feel pain. Description of this fractal-like organization may provide clues about how our brain regions work together to create the perception of pain and how pain becomes chronic when its organization is altered.
Collapse
Affiliation(s)
- Camille Fauchon
- Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France.
- Université Jean Monnet, Inserm, CRNL, NeuroPain, Saint-Etienne, France.
| | - Hélène Bastuji
- Université Claude Bernard Lyon 1, UJM, Inserm, CRNL, NeuroPain, Bron, France
| | - Roland Peyron
- Université Jean Monnet, Inserm, CRNL, NeuroPain, Saint-Etienne, France
- CHU, centre de la douleur, Saint-Etienne, France
| | - Luis Garcia-Larrea
- Université Claude Bernard Lyon 1, UJM, Inserm, CRNL, NeuroPain, Bron, France
| |
Collapse
|
7
|
Pan Y, Vinding MC, Zhang L, Lundqvist D, Olsson A. A Brain-To-Brain Mechanism for Social Transmission of Threat Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304037. [PMID: 37544901 PMCID: PMC10558655 DOI: 10.1002/advs.202304037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 08/08/2023]
Abstract
Survival and adaptation in environments require swift and efficacious learning about what is dangerous. Across species, much of such threat learning is acquired socially, e.g., through the observation of others' ("demonstrators'") defensive behaviors. However, the specific neural mechanisms responsible for the integration of information shared between demonstrators and observers remain largely unknown. This dearth of knowledge is addressed by performing magnetoencephalography (MEG) neuroimaging in demonstrator-observer dyads. A set of stimuli are first shown to a demonstrator whose defensive responses are filmed and later presented to an observer, while neuronal activity is recorded sequentially from both individuals who never interacted directly. These results show that brain-to-brain coupling (BtBC) in the fronto-limbic circuit (including insula, ventromedial, and dorsolateral prefrontal cortex) within demonstrator-observer dyads predict subsequent expressions of learning in the observer. Importantly, the predictive power of BtBC magnifies when a threat is imminent to the demonstrator. Furthermore, BtBC depends on how observers perceive their social status relative to the demonstrator, likely driven by shared attention and emotion, as bolstered by dyadic pupillary coupling. Taken together, this study describes a brain-to-brain mechanism for social threat learning, involving BtBC, which reflects social relationships and predicts adaptive, learned behaviors.
Collapse
Affiliation(s)
- Yafeng Pan
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhou310058China
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
| | - Mikkel C. Vinding
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital ‐ Amager and HvidovreCopenhagen2650Denmark
| | - Lei Zhang
- Centre for Human Brain HealthSchool of PsychologyUniversity of BirminghamBirminghamB15 2TTUK
- Institute for Mental HealthSchool of PsychologyUniversity of BirminghamBirminghamB15 2TTUK
- SocialCognitive and Affective Neuroscience UnitDepartment of CognitionEmotionand Methods in PsychologyFaculty of PsychologyUniversity of ViennaVienna1010Austria
| | - Daniel Lundqvist
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
| | - Andreas Olsson
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
| |
Collapse
|
8
|
Gélébart J, Garcia-Larrea L, Frot M. Amygdala and anterior insula control the passage from nociception to pain. Cereb Cortex 2023; 33:3538-3547. [PMID: 35965070 DOI: 10.1093/cercor/bhac290] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/18/2023] Open
Abstract
Activation of the spinothalamic system does not always result in a subjective pain perception. While the cerebral network processing nociception is relatively well known, the one underlying its transition to conscious pain remains poorly described. We used intracranial electroencephalography in epileptic patients to investigate whether the amplitudes and functional connectivity of posterior and anterior insulae (PI and AI) and amygdala differ according to the subjective reports to laser stimuli delivered at a constant intensity set at nociceptive threshold. Despite the constant intensity of stimuli, all patients reported variable subjective perceptions from one stimulus to the other. Responses in the sensory PI remained stable throughout the experiment, hence reflecting accurately the stability of the stimulus. In contrast, both AI and amygdala responses showed significant enhancements associated with painful relative to nonpainful reports, in a time window corresponding to the conscious integration of the stimulus. Functional connectivity in the gamma band between these two regions increased significantly, both before and after stimuli perceived as painful. While the PI appears to transmit faithfully the actual stimulus intensity received via the spinothalamic tract, the AI and the amygdala appear to play a major role in the transformation of nociceptive signals into a painful perception.
Collapse
Affiliation(s)
- Juliette Gélébart
- Central Integration of Pain (Neuropain Lab) - Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, 69677 Bron cedex, France
| | - Luis Garcia-Larrea
- Central Integration of Pain (Neuropain Lab) - Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, 69677 Bron cedex, France
- Centre d'Evaluation et de Traitement de la Douleur, Hospices Civils de Lyon, 69677 Bron cedex, France
| | - Maud Frot
- Central Integration of Pain (Neuropain Lab) - Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, 69677 Bron cedex, France
| |
Collapse
|
9
|
Nahman-Averbuch H, King CD. Disentangling the roles of circadian rhythms and sleep drive in experimental pain sensitivity. Trends Neurosci 2022; 45:796-797. [PMID: 36175268 DOI: 10.1016/j.tins.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Differentiating between circadian rhythm and sleep's effect on pain is challenging, as these two systems can be tightly coupled. A recent study by Daguet et al. found that circadian rhythm, rather than sleep drive, significantly contributed to the variability of experimental heat pain sensitivity in humans. These results support chrono-pharmacological approaches to pain management.
Collapse
Affiliation(s)
- Hadas Nahman-Averbuch
- Washington University Pain Center and Division of Clinical and Translational Research, Department of Anesthesiology, Washington University in St Louis School of Medicine, St Louis, MO, USA.
| | - Christopher D King
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Center for Understanding Pediatric Pain, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|